2bgg Citations

Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex.

Nature 434 663-6 (2005)
Cited: 307 times
EuropePMC logo PMID: 15800628

Abstract

RNA interference and related RNA silencing phenomena use short antisense guide RNA molecules to repress the expression of target genes. Argonaute proteins, containing amino-terminal PAZ (for PIWI/Argonaute/Zwille) domains and carboxy-terminal PIWI domains, are core components of these mechanisms. Here we show the crystal structure of a Piwi protein from Archaeoglobus fulgidus (AfPiwi) in complex with a small interfering RNA (siRNA)-like duplex, which mimics the 5' end of a guide RNA strand bound to an overhanging target messenger RNA. The structure contains a highly conserved metal-binding site that anchors the 5' nucleotide of the guide RNA. The first base pair of the duplex is unwound, separating the 5' nucleotide of the guide from the complementary nucleotide on the target strand, which exits with the 3' overhang through a short channel. The remaining base-paired nucleotides assume an A-form helix, accommodated within a channel in the PIWI domain, which can be extended to place the scissile phosphate of the target strand adjacent to the putative slicer catalytic site. This study provides insights into mechanisms of target mRNA recognition and cleavage by an Argonaute-siRNA guide complex.

Reviews - 2bgg mentioned but not cited (3)

  1. Structural domains in RNAi. Collins RE, Cheng X. FEBS Lett 579 5841-5849 (2005)
  2. A Structural View of miRNA Biogenesis and Function. Leitão AL, Enguita FJ. Noncoding RNA 8 10 (2022)
  3. Protein-RNA interactions: structural biology and computational modeling techniques. Jones S. Biophys Rev 8 359-367 (2016)

Articles - 2bgg mentioned but not cited (15)

  1. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Parker JS, Parizotto EA, Wang M, Roe SM, Barford D. Mol Cell 33 204-214 (2009)
  2. Unique gene-silencing and structural properties of 2'-fluoro-modified siRNAs. Manoharan M, Akinc A, Pandey RK, Qin J, Hadwiger P, John M, Mills K, Charisse K, Maier MA, Nechev L, Greene EM, Pallan PS, Rozners E, Rajeev KG, Egli M. Angew Chem Int Ed Engl 50 2284-2288 (2011)
  3. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. Boland A, Tritschler F, Heimstädt S, Izaurralde E, Weichenrieder O. EMBO Rep 11 522-527 (2010)
  4. DARS-RNP and QUASI-RNP: new statistical potentials for protein-RNA docking. Tuszynska I, Bujnicki JM. BMC Bioinformatics 12 348 (2011)
  5. A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq. Pandey SP, Minesinger BK, Kumar J, Walker GC. Nucleic Acids Res 39 4691-4708 (2011)
  6. RNA major groove modifications improve siRNA stability and biological activity. Terrazas M, Kool ET. Nucleic Acids Res 37 346-353 (2009)
  7. Allosteric regulation of Argonaute proteins by miRNAs. Djuranovic S, Zinchenko MK, Hur JK, Nahvi A, Brunelle JL, Rogers EJ, Green R. Nat Struct Mol Biol 17 144-150 (2010)
  8. Describing RNA structure by libraries of clustered nucleotide doublets. Sykes MT, Levitt M. J Mol Biol 351 26-38 (2005)
  9. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Kinch LN, Grishin NV. Biol Direct 4 2 (2009)
  10. Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps. Kailasam S, Bhattacharyya D, Bansal M. BMC Res Notes 7 83 (2014)
  11. RNA-binding residues prediction using structural features. Ren H, Shen Y. BMC Bioinformatics 16 249 (2015)
  12. Prokaryotic Argonaute from Archaeoglobus fulgidus interacts with DNA as a homodimer. Golovinas E, Rutkauskas D, Manakova E, Jankunec M, Silanskas A, Sasnauskas G, Zaremba M. Sci Rep 11 4518 (2021)
  13. A Graph Approach to Mining Biological Patterns in the Binding Interfaces. Cheng W, Yan C. J Comput Biol 24 31-39 (2017)
  14. A comparative analysis of machine learning classifiers for predicting protein-binding nucleotides in RNA sequences. Agarwal A, Singh K, Kant S, Bahadur RP. Comput Struct Biotechnol J 20 3195-3207 (2022)
  15. Structural basis for sequence-specific recognition of guide and target strands by the Archaeoglobus fulgidus Argonaute protein. Manakova E, Golovinas E, Pocevičiūtė R, Sasnauskas G, Grybauskas A, Gražulis S, Zaremba M. Sci Rep 13 6123 (2023)


Reviews citing this publication (108)

  1. MicroRNAs: target recognition and regulatory functions. Bartel DP. Cell 136 215-233 (2009)
  2. Origins and Mechanisms of miRNAs and siRNAs. Carthew RW, Sontheimer EJ. Cell 136 642-655 (2009)
  3. Regulation of microRNA biogenesis. Ha M, Kim VN. Nat Rev Mol Cell Biol 15 509-524 (2014)
  4. Biogenesis of small RNAs in animals. Kim VN, Han J, Siomi MC. Nat Rev Mol Cell Biol 10 126-139 (2009)
  5. Regulation of mRNA translation and stability by microRNAs. Fabian MR, Sonenberg N, Filipowicz W. Annu Rev Biochem 79 351-379 (2010)
  6. Metazoan MicroRNAs. Bartel DP. Cell 173 20-51 (2018)
  7. Regulation of microRNA function in animals. Gebert LFR, MacRae IJ. Nat Rev Mol Cell Biol 20 21-37 (2019)
  8. Argonaute proteins: key players in RNA silencing. Hutvagner G, Simard MJ. Nat Rev Mol Cell Biol 9 22-32 (2008)
  9. RNA-binding proteins: modular design for efficient function. Lunde BM, Moore C, Varani G. Nat Rev Mol Cell Biol 8 479-490 (2007)
  10. Diversifying microRNA sequence and function. Ameres SL, Zamore PD. Nat Rev Mol Cell Biol 14 475-488 (2013)
  11. Strategies for silencing human disease using RNA interference. Kim DH, Rossi JJ. Nat Rev Genet 8 173-184 (2007)
  12. Illuminating the silence: understanding the structure and function of small RNAs. Rana TM. Nat Rev Mol Cell Biol 8 23-36 (2007)
  13. Molecular mechanisms of RNA interference. Wilson RC, Doudna JA. Annu Rev Biophys 42 217-239 (2013)
  14. MicroRNA function: multiple mechanisms for a tiny RNA? Pillai RS. RNA 11 1753-1761 (2005)
  15. RNAi therapeutics: principles, prospects and challenges. Aagaard L, Rossi JJ. Adv Drug Deliv Rev 59 75-86 (2007)
  16. Small RNA sorting: matchmaking for Argonautes. Czech B, Hannon GJ. Nat Rev Genet 12 19-31 (2011)
  17. Argonaute proteins: mediators of RNA silencing. Peters L, Meister G. Mol Cell 26 611-623 (2007)
  18. A three-dimensional view of the molecular machinery of RNA interference. Jinek M, Doudna JA. Nature 457 405-412 (2009)
  19. PIWI-interacting RNAs: small RNAs with big functions. Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. Nat Rev Genet 20 89-108 (2019)
  20. A parsimonious model for gene regulation by miRNAs. Djuranovic S, Nahvi A, Green R. Science 331 550-553 (2011)
  21. Post-transcriptional gene silencing by siRNAs and miRNAs. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS. Curr Opin Struct Biol 15 331-341 (2005)
  22. Dicing and slicing: the core machinery of the RNA interference pathway. Hammond SM. FEBS Lett 579 5822-5829 (2005)
  23. RNAi: the nuts and bolts of the RISC machine. Filipowicz W. Cell 122 17-20 (2005)
  24. The Argonaute protein family. Höck J, Meister G. Genome Biol 9 210 (2008)
  25. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Engels BM, Hutvagner G. Oncogene 25 6163-6169 (2006)
  26. Slicer and the argonautes. Tolia NH, Joshua-Tor L. Nat Chem Biol 3 36-43 (2007)
  27. Evolution of plant microRNAs and their targets. Axtell MJ, Bowman JL. Trends Plant Sci 13 343-349 (2008)
  28. MicroRNAs in disease and potential therapeutic applications. Soifer HS, Rossi JJ, Saetrom P. Mol Ther 15 2070-2079 (2007)
  29. The evolutionary journey of Argonaute proteins. Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. Nat Struct Mol Biol 21 743-753 (2014)
  30. The silent treatment: siRNAs as small molecule drugs. Dykxhoorn DM, Palliser D, Lieberman J. Gene Ther 13 541-552 (2006)
  31. Identification and characterization of small RNAs involved in RNA silencing. Aravin A, Tuschl T. FEBS Lett 579 5830-5840 (2005)
  32. Therapeutic siRNA: principles, challenges, and strategies. Gavrilov K, Saltzman WM. Yale J Biol Med 85 187-200 (2012)
  33. Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. Tadokoro T, Kanaya S. FEBS J 276 1482-1493 (2009)
  34. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Koonin EV, Makarova KS, Wolf YI. Annu Rev Microbiol 71 233-261 (2017)
  35. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Miyoshi K, Miyoshi T, Siomi H. Mol Genet Genomics 284 95-103 (2010)
  36. MicroRNAs: biogenesis and molecular functions. Liu X, Fortin K, Mourelatos Z. Brain Pathol 18 113-121 (2008)
  37. RNAi in Plants: An Argonaute-Centered View. Fang X, Qi Y. Plant Cell 28 272-285 (2016)
  38. Therapeutic potential for microRNAs. Esau CC, Monia BP. Adv Drug Deliv Rev 59 101-114 (2007)
  39. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. Hutvagner G. FEBS Lett 579 5850-5857 (2005)
  40. Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook. Shukla S, Sumaria CS, Pradeepkumar PI. ChemMedChem 5 328-349 (2010)
  41. MicroRNA Processing and Human Cancer. Ohtsuka M, Ling H, Doki Y, Mori M, Calin GA. J Clin Med 4 1651-1667 (2015)
  42. Protein interactions and complexes in human microRNA biogenesis and function. Perron MP, Provost P. Front Biosci 13 2537-2547 (2008)
  43. Gene regulation by non-coding RNAs. Patil VS, Zhou R, Rana TM. Crit Rev Biochem Mol Biol 49 16-32 (2014)
  44. Argonaute: A scaffold for the function of short regulatory RNAs. Parker JS, Barford D. Trends Biochem Sci 31 622-630 (2006)
  45. Small RNAs: regulators and guardians of the genome. Chu CY, Rana TM. J Cell Physiol 213 412-419 (2007)
  46. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Ernst C, Odom DT, Kutter C. Nat Commun 8 1411 (2017)
  47. Non-Exosomal and Exosomal Circulatory MicroRNAs: Which Are More Valid as Biomarkers? Nik Mohamed Kamal NNSB, Shahidan WNS. Front Pharmacol 10 1500 (2019)
  48. microRNA-guided posttranscriptional gene regulation. Chen PY, Meister G. Biol Chem 386 1205-1218 (2005)
  49. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Nakanishi K. Wiley Interdiscip Rev RNA 7 637-660 (2016)
  50. RNA silencing in Chlamydomonas: mechanisms and tools. Schroda M. Curr Genet 49 69-84 (2006)
  51. Eukaryotic Argonautes come into focus. Kuhn CD, Joshua-Tor L. Trends Biochem Sci 38 263-271 (2013)
  52. Structural Foundations of RNA Silencing by Argonaute. Sheu-Gruttadauria J, MacRae IJ. J Mol Biol 429 2619-2639 (2017)
  53. Structure and function of argonaute proteins. Hall TM. Structure 13 1403-1408 (2005)
  54. Prokaryotic Argonaute proteins: novel genome-editing tools? Hegge JW, Swarts DC, van der Oost J. Nat Rev Microbiol 16 5-11 (2018)
  55. Allele-specific RNA interference for neurological disease. Rodriguez-Lebron E, Paulson HL. Gene Ther 13 576-581 (2006)
  56. Argonaute 2: A Novel Rising Star in Cancer Research. Ye Z, Jin H, Qian Q. J Cancer 6 877-882 (2015)
  57. Argonautes confront new small RNAs. Faehnle CR, Joshua-Tor L. Curr Opin Chem Biol 11 569-577 (2007)
  58. MicroRNA metabolism in plants. Chen X. Curr Top Microbiol Immunol 320 117-136 (2008)
  59. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Guzman-Aranguez A, Loma P, Pintor J. Br J Pharmacol 170 730-747 (2013)
  60. Epigenetics and microRNAs. Saetrom P, Snøve O, Rossi JJ. Pediatr Res 61 17R-23R (2007)
  61. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Koonin EV. Biol Direct 12 5 (2017)
  62. The expanding universe of noncoding RNAs. Hannon GJ, Rivas FV, Murchison EP, Steitz JA. Cold Spring Harb Symp Quant Biol 71 551-564 (2006)
  63. Mammalian piRNAs: Biogenesis, function, and mysteries. Fu Q, Wang PJ. Spermatogenesis 4 e27889 (2014)
  64. Structural insights into RNA interference. Sashital DG, Doudna JA. Curr Opin Struct Biol 20 90-97 (2010)
  65. Target RNAs Strike Back on MicroRNAs. Fuchs Wightman F, Giono LE, Fededa JP, de la Mata M. Front Genet 9 435 (2018)
  66. Pathways through the small RNA world of plants. Herr AJ. FEBS Lett 579 5879-5888 (2005)
  67. Ancestral roles of small RNAs: an Ago-centric perspective. Joshua-Tor L, Hannon GJ. Cold Spring Harb Perspect Biol 3 a003772 (2011)
  68. Argonaute and the nuclear RNAs: new pathways for RNA-mediated control of gene expression. Gagnon KT, Corey DR. Nucleic Acid Ther 22 3-16 (2012)
  69. Ancient endo-siRNA pathways reveal new tricks. Claycomb JM. Curr Biol 24 R703-15 (2014)
  70. Concise review: The Piwi-piRNA axis: pivotal beyond transposon silencing. Bamezai S, Rawat VP, Buske C. Stem Cells 30 2603-2611 (2012)
  71. Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Müller M, Fazi F, Ciaudo C. Front Cell Dev Biol 7 360 (2019)
  72. The Argonautes. Joshua-Tor L. Cold Spring Harb Symp Quant Biol 71 67-72 (2006)
  73. A role for microRNAs in the development of the immune system and in the pathogenesis of cancer. Kanellopoulou C, Monticelli S. Semin Cancer Biol 18 79-88 (2008)
  74. Argonaute and GW182 proteins: an effective alliance in gene silencing. Pfaff J, Meister G. Biochem Soc Trans 41 855-860 (2013)
  75. MicroRNA-target interactions: new insights from genome-wide approaches. Lee D, Shin C. Ann N Y Acad Sci 1271 118-128 (2012)
  76. DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. Lisitskaya L, Aravin AA, Kulbachinskiy A. Nat Commun 9 5165 (2018)
  77. RNA interference: a chemist's perspective. Gaynor JW, Campbell BJ, Cosstick R. Chem Soc Rev 39 4169-4184 (2010)
  78. Silence of the transcripts: RNA interference in medicine. Barik S. J Mol Med (Berl) 83 764-773 (2005)
  79. Structural and functional modules in RNA interference. Nowotny M, Yang W. Curr Opin Struct Biol 19 286-293 (2009)
  80. Argonaute proteins: Structural features, functions and emerging roles. Wu J, Yang J, Cho WC, Zheng Y. J Adv Res 24 317-324 (2020)
  81. Small non-coding RNAs as magic bullets. Eckstein F. Trends Biochem Sci 30 445-452 (2005)
  82. Context-specific microRNA function in developmental complexity. Carroll AP, Tooney PA, Cairns MJ. J Mol Cell Biol 5 73-84 (2013)
  83. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Swamy MN, Wu H, Shankar P. Adv Drug Deliv Rev 103 174-186 (2016)
  84. Therapeutic RNA interference for neurodegenerative diseases: From promise to progress. Gonzalez-Alegre P. Pharmacol Ther 114 34-55 (2007)
  85. Structural biology of RNA silencing and its functional implications. Patel DJ, Ma JB, Yuan YR, Ye K, Pei Y, Kuryavyi V, Malinina L, Meister G, Tuschl T. Cold Spring Harb Symp Quant Biol 71 81-93 (2006)
  86. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Das A, Samidurai A, Salloum FN. Front Cardiovasc Med 5 73 (2018)
  87. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. Olina AV, Kulbachinskiy AV, Aravin AA, Esyunina DM. Biochemistry (Mosc) 83 483-497 (2018)
  88. RNAi pathways in parasitic protists and worms. Batista TM, Marques JT. J Proteomics 74 1504-1514 (2011)
  89. RNAi: a potential therapy for the dominantly inherited nucleotide repeat diseases. Denovan-Wright EM, Davidson BL. Gene Ther 13 525-531 (2006)
  90. Target selectivity in mRNA silencing. Aronin N. Gene Ther 13 509-516 (2006)
  91. Of social molecules: The interactive assembly of ASH1 mRNA-transport complexes in yeast. Niedner A, Edelmann FT, Niessing D. RNA Biol 11 998-1009 (2014)
  92. Therapeutic potential of siRNA and DNAzymes in cancer. Karnati HK, Yalagala RS, Undi R, Pasupuleti SR, Gutti RK. Tumour Biol 35 9505-9521 (2014)
  93. Behind the scenes of a small RNA gene-silencing pathway. Ku G, McManus MT. Hum Gene Ther 19 17-26 (2008)
  94. Chemistry, structure and function of approved oligonucleotide therapeutics. Egli M, Manoharan M. Nucleic Acids Res 51 2529-2573 (2023)
  95. Protein universe containing a PUA RNA-binding domain. Cerrudo CS, Ghiringhelli PD, Gomez DE. FEBS J 281 74-87 (2014)
  96. Anatomy of four human Argonaute proteins. Nakanishi K. Nucleic Acids Res 50 6618-6638 (2022)
  97. Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge. Colombo S, Zeng X, Ragelle H, Foged C. Expert Opin Drug Deliv 11 1481-1495 (2014)
  98. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants. Katoch R, Thakur N. Appl Biochem Biotechnol 169 1579-1605 (2013)
  99. Small RNAs in flower development. Wollmann H, Weigel D. Eur J Cell Biol 89 250-257 (2010)
  100. Novel Nuclear Functions of Arabidopsis ARGONAUTE1: Beyond RNA Interference. Bajczyk M, Bhat SS, Szewc L, Szweykowska-Kulinska Z, Jarmolowski A, Dolata J. Plant Physiol 179 1030-1039 (2019)
  101. RNAi and microRNAs: from animal models to disease therapy. Fjose A, Drivenes O. Birth Defects Res C Embryo Today 78 150-171 (2006)
  102. RNAi pathway integration in Caenorhabditis elegans development. Azimzadeh Jamalkandi S, Masoudi-Nejad A. Funct Integr Genomics 11 389-405 (2011)
  103. Impact of microRNA Regulated Macrophage Actions on Adipose Tissue Function in Obesity. Matz A, Qu L, Karlinsey K, Zhou B. Cells 11 1336 (2022)
  104. Argonaute and Argonaute-Bound Small RNAs in Stem Cells. Zhai L, Wang L, Teng F, Zhou L, Zhang W, Xiao J, Liu Y, Deng W. Int J Mol Sci 17 208 (2016)
  105. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Halder K, Chaudhuri A, Abdin MZ, Datta A. Int J Mol Sci 24 3143 (2023)
  106. Argonaute protein-based nucleic acid detection technology. Wu Z, Yu L, Shi W, Ma J. Front Microbiol 14 1255716 (2023)
  107. Beyond Loading: Functions of Plant ARGONAUTE Proteins. Liang C, Wang X, He H, Xu C, Cui J. Int J Mol Sci 24 16054 (2023)
  108. When Argonaute takes out the ribonuclease sword. Nakanishi K. J Biol Chem 300 105499 (2023)

Articles citing this publication (181)

  1. The role of site accessibility in microRNA target recognition. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. Nat Genet 39 1278-1284 (2007)
  2. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y. Cell 133 116-127 (2008)
  3. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Cell 123 607-620 (2005)
  4. A human snoRNA with microRNA-like functions. Ender C, Krek A, Friedländer MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G. Mol Cell 32 519-528 (2008)
  5. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC. Cell 133 128-141 (2008)
  6. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS. RNA 12 1197-1205 (2006)
  7. The role of PACT in the RNA silencing pathway. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. EMBO J 25 522-532 (2006)
  8. Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ. Nature 434 666-670 (2005)
  9. Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2. Frank F, Sonenberg N, Nagar B. Nature 465 818-822 (2010)
  10. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ. Nature 456 921-926 (2008)
  11. Target RNA-directed trimming and tailing of small silencing RNAs. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD. Science 328 1534-1539 (2010)
  12. Identification of novel argonaute-associated proteins. Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Lührmann R, Tuschl T. Curr Biol 15 2149-2155 (2005)
  13. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. Förstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD. PLoS Biol 3 e236 (2005)
  14. The structure of human argonaute-2 in complex with miR-20a. Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L. Cell 150 100-110 (2012)
  15. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ. Nature 461 754-761 (2009)
  16. Structure of the guide-strand-containing argonaute silencing complex. Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ. Nature 456 209-213 (2008)
  17. Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Gu W, Shirayama M, Conte D, Vasale J, Batista PJ, Claycomb JM, Moresco JJ, Youngman EM, Keys J, Stoltz MJ, Chen CC, Chaves DA, Duan S, Kasschau KD, Fahlgren N, Yates JR, Mitani S, Carrington JC, Mello CC. Mol Cell 36 231-244 (2009)
  18. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D, Bertino JR. Proc Natl Acad Sci U S A 104 13513-13518 (2007)
  19. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y. Mol Cell 39 292-299 (2010)
  20. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC. Genes Dev 19 2837-2848 (2005)
  21. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB. RNA 13 1894-1910 (2007)
  22. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T. RNA 14 2580-2596 (2008)
  23. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Lee HC, Gu W, Shirayama M, Youngman E, Conte D, Mello CC. Cell 150 78-87 (2012)
  24. Improved targeting of miRNA with antisense oligonucleotides. Davis S, Lollo B, Freier S, Esau C. Nucleic Acids Res 34 2294-2304 (2006)
  25. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ. Mol Cell 19 405-419 (2005)
  26. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Wee LM, Flores-Jasso CF, Flores-Jasso CF, Salomon WE, Zamore PD. Cell 151 1055-1067 (2012)
  27. MiRmap: comprehensive prediction of microRNA target repression strength. Vejnar CE, Zdobnov EM. Nucleic Acids Res 40 11673-11683 (2012)
  28. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD. RNA 16 43-56 (2010)
  29. Structure of yeast Argonaute with guide RNA. Nakanishi K, Weinberg DE, Bartel DP, Patel DJ. Nature 486 368-374 (2012)
  30. Functional polarity is introduced by Dicer processing of short substrate RNAs. Rose SD, Kim DH, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, Rossi JJ, Behlke MA. Nucleic Acids Res 33 4140-4156 (2005)
  31. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers SV, Naismith JH, Spagnolo L, White MF. Mol Cell 45 303-313 (2012)
  32. Thermodynamics of RNA-RNA binding. Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL. Bioinformatics 22 1177-1182 (2006)
  33. 3' end formation of PIWI-interacting RNAs in vitro. Kawaoka S, Izumi N, Katsuma S, Tomari Y. Mol Cell 43 1015-1022 (2011)
  34. Discovering the first microRNA-targeted drug. Lindow M, Kauppinen S. J Cell Biol 199 407-412 (2012)
  35. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG. Nat Struct Mol Biol 14 897-903 (2007)
  36. The N domain of Argonaute drives duplex unwinding during RISC assembly. Kwak PB, Tomari Y. Nat Struct Mol Biol 19 145-151 (2012)
  37. Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S. BMC Genomics 9 451 (2008)
  38. Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides. Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V. Cell 162 84-95 (2015)
  39. Bacterial argonaute samples the transcriptome to identify foreign DNA. Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Mol Cell 51 594-605 (2013)
  40. Phosphorylation of human Argonaute proteins affects small RNA binding. Rüdel S, Wang Y, Lenobel R, Körner R, Hsiao HH, Urlaub H, Patel D, Meister G. Nucleic Acids Res 39 2330-2343 (2011)
  41. A multifunctional human Argonaute2-specific monoclonal antibody. Rüdel S, Flatley A, Weinmann L, Kremmer E, Meister G. RNA 14 1244-1253 (2008)
  42. Strand-specific 5'-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. Chen PY, Weinmann L, Gaidatzis D, Pei Y, Zavolan M, Tuschl T, Meister G. RNA 14 263-274 (2008)
  43. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. Naito Y, Yoshimura J, Morishita S, Ui-Tei K. BMC Bioinformatics 10 392 (2009)
  44. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y. Proc Natl Acad Sci U S A 111 652-657 (2014)
  45. Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, Juni A, Saigo K. Nucleic Acids Res 36 2136-2151 (2008)
  46. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Rehwinkel J, Natalin P, Stark A, Brennecke J, Cohen SM, Izaurralde E. Mol Cell Biol 26 2965-2975 (2006)
  47. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Makarova KS, Wolf YI, van der Oost J, Koonin EV. Biol Direct 4 29 (2009)
  48. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. BMC Genomics 14 234 (2013)
  49. siRNA repositioning for guide strand selection by human Dicer complexes. Noland CL, Ma E, Doudna JA. Mol Cell 43 110-121 (2011)
  50. The making of a slicer: activation of human Argonaute-1. Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L. Cell Rep 3 1901-1909 (2013)
  51. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Boland A, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O. Proc Natl Acad Sci U S A 108 10466-10471 (2011)
  52. Improved Performance of Anti-miRNA Oligonucleotides Using a Novel Non-Nucleotide Modifier. Lennox KA, Owczarzy R, Thomas DM, Walder JA, Behlke MA. Mol Ther Nucleic Acids 2 e117 (2013)
  53. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2. De N, Young L, Lau PW, Meisner NC, Morrissey DV, MacRae IJ. Mol Cell 50 344-355 (2013)
  54. A systematic analysis of the effect of target RNA structure on RNA interference. Westerhout EM, Berkhout B. Nucleic Acids Res 35 4322-4330 (2007)
  55. Evidence for co-evolution between human microRNAs and Alu-repeats. Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC. PLoS One 4 e4456 (2009)
  56. Replication in cells of hematopoietic origin is necessary for Dengue virus dissemination. Pham AM, Langlois RA, TenOever BR. PLoS Pathog 8 e1002465 (2012)
  57. A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii. Braun L, Cannella D, Ortet P, Barakat M, Sautel CF, Kieffer S, Garin J, Bastien O, Voinnet O, Hakimi MA. PLoS Pathog 6 e1000920 (2010)
  58. Binding and cleavage specificities of human Argonaute2. Lima WF, Wu H, Nichols JG, Sun H, Murray HM, Crooke ST. J Biol Chem 284 26017-26028 (2009)
  59. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. Miyoshi K, Okada TN, Siomi H, Siomi MC. RNA 15 1282-1291 (2009)
  60. MicroRNAs in gene regulation: when the smallest governs it all. Ouellet DL, Perron MP, Gobeil LA, Plante P, Provost P. J Biomed Biotechnol 2006 69616 (2006)
  61. Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein. Simon B, Kirkpatrick JP, Eckhardt S, Reuter M, Rocha EA, Andrade-Navarro MA, Sehr P, Pillai RS, Carlomagno T. Structure 19 172-180 (2011)
  62. The evolution of core proteins involved in microRNA biogenesis. Murphy D, Dancis B, Brown JR. BMC Evol Biol 8 92 (2008)
  63. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Nakanishi K, Ascano M, Gogakos T, Ishibe-Murakami S, Serganov AA, Briskin D, Morozov P, Tuschl T, Patel DJ. Cell Rep 3 1893-1900 (2013)
  64. DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Rossi L, Salvetti A, Lena A, Batistoni R, Deri P, Pugliesi C, Loreti E, Gremigni V. Dev Genes Evol 216 335-346 (2006)
  65. A bacterial Argonaute with noncanonical guide RNA specificity. Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA. Proc Natl Acad Sci U S A 113 4057-4062 (2016)
  66. Inosine in DNA and RNA. Alseth I, Dalhus B, Bjørås M. Curr Opin Genet Dev 26 116-123 (2014)
  67. The initial uridine of primary piRNAs does not create the tenth adenine that Is the hallmark of secondary piRNAs. Wang W, Yoshikawa M, Han BW, Izumi N, Tomari Y, Weng Z, Zamore PD. Mol Cell 56 708-716 (2014)
  68. Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs. Frank F, Hauver J, Sonenberg N, Nagar B. EMBO J 31 3588-3595 (2012)
  69. Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper. Webster A, Li S, Hur JK, Wachsmuth M, Bois JS, Perkins EM, Patel DJ, Aravin AA. Mol Cell 59 564-575 (2015)
  70. Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs. Torres AG, Fabani MM, Vigorito E, Williams D, Al-Obaidi N, Wojciechowski F, Hudson RH, Seitz O, Gait MJ. Nucleic Acids Res 40 2152-2167 (2012)
  71. Specific residues at every third position of siRNA shape its efficient RNAi activity. Katoh T, Suzuki T. Nucleic Acids Res 35 e27 (2007)
  72. Dicer is dispensable for asymmetric RISC loading in mammals. Betancur JG, Tomari Y. RNA 18 24-30 (2012)
  73. Stable expression of shRNAs in human CD34+ progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Robbins MA, Li M, Leung I, Li H, Boyer DV, Song Y, Behlke MA, Rossi JJ. Nat Biotechnol 24 566-571 (2006)
  74. High-Throughput Analysis Reveals Rules for Target RNA Binding and Cleavage by AGO2. Becker WR, Ober-Reynolds B, Jouravleva K, Jolly SM, Zamore PD, Greenleaf WJ. Mol Cell 75 741-755.e11 (2019)
  75. The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs. Cora E, Pandey RR, Xiol J, Taylor J, Sachidanandam R, McCarthy AA, Pillai RS. RNA 20 773-781 (2014)
  76. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Xu HJ, Chen T, Ma XF, Xue J, Pan PL, Zhang XC, Cheng JA, Zhang CX. Insect Mol Biol 22 635-647 (2013)
  77. The PIWI protein acts as a predictive marker for human gastric cancer. Wang Y, Liu Y, Shen X, Zhang X, Chen X, Yang C, Gao H. Int J Clin Exp Pathol 5 315-325 (2012)
  78. How to slice: snapshots of Argonaute in action. Parker JS. Silence 1 3 (2010)
  79. Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein. Willkomm S, Oellig CA, Zander A, Restle T, Keegan R, Grohmann D, Schneider S. Nat Microbiol 2 17035 (2017)
  80. Predicting microRNA targeting efficacy in Drosophila. Agarwal V, Subtelny AO, Thiru P, Ulitsky I, Bartel DP. Genome Biol 19 152 (2018)
  81. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Miyoshi T, Ito K, Murakami R, Uchiumi T. Nat Commun 7 11846 (2016)
  82. MicroRNA: A matter of life or death. Wang Z. World J Biol Chem 1 41-54 (2010)
  83. Sorting out small RNAs. Kim VN. Cell 133 25-26 (2008)
  84. Precursor microRNA-programmed silencing complex assembly pathways in mammals. Liu X, Jin DY, McManus MT, Mourelatos Z. Mol Cell 46 507-517 (2012)
  85. High potency silencing by single-stranded boranophosphate siRNA. Hall AH, Wan J, Spesock A, Sergueeva Z, Shaw BR, Alexander KA. Nucleic Acids Res 34 2773-2781 (2006)
  86. Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. Klum SM, Chandradoss SD, Schirle NT, Joo C, MacRae IJ. EMBO J 37 75-88 (2018)
  87. A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. Dorner S, Lum L, Kim M, Paro R, Beachy PA, Green R. Proc Natl Acad Sci U S A 103 11880-11885 (2006)
  88. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM, Sullivan CM, Chapman EJ, Hoyer JS, Gilbert KB, Grünwald NJ, Carrington JC. PLoS One 8 e77181 (2013)
  89. Multilayer checkpoints for microRNA authenticity during RISC assembly. Kawamata T, Yoda M, Tomari Y. EMBO Rep 12 944-949 (2011)
  90. The Expanded Universe of Prokaryotic Argonaute Proteins. Ryazansky S, Kulbachinskiy A, Aravin AA. mBio 9 e01935-18 (2018)
  91. Evaluation of genetic variants in microRNA biosynthesis genes and risk of breast cancer in Chinese women. Jiang Y, Chen J, Wu J, Hu Z, Qin Z, Liu X, Guan X, Wang Y, Han J, Jiang T, Jin G, Zhang M, Ma H, Wang S, Shen H. Int J Cancer 133 2216-2224 (2013)
  92. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. Quévillon Huberdeau M, Zeitler DM, Hauptmann J, Bruckmann A, Fressigné L, Danner J, Piquet S, Strieder N, Engelmann JC, Jannot G, Deutzmann R, Simard MJ, Meister G. EMBO J 36 2088-2106 (2017)
  93. A 5'-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. Seitz H, Tushir JS, Zamore PD. Silence 2 4 (2011)
  94. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Schraivogel D, Schindler SG, Danner J, Kremmer E, Pfaff J, Hannus S, Depping R, Meister G. Nucleic Acids Res 43 7447-7461 (2015)
  95. Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. Ameres SL, Hung JH, Xu J, Weng Z, Zamore PD. RNA 17 54-63 (2011)
  96. Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism. Dykxhoorn DM, Schlehuber LD, London IM, Lieberman J. Proc Natl Acad Sci U S A 103 5953-5958 (2006)
  97. Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3'-5' exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch. Zhang D, Xiong H, Shan J, Xia X, Trudeau VL. Biol Direct 3 48 (2008)
  98. Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Spadaro PA, Bredy TW. Front Genet 3 132 (2012)
  99. Whole body regeneration in a colonial ascidian, Botrylloides violaceus. Brown FD, Keeling EL, Le AD, Swalla BJ. J Exp Zool B Mol Dev Evol 312 885-900 (2009)
  100. A potential protein-RNA recognition event along the RISC-loading pathway from the structure of A. aeolicus Argonaute with externally bound siRNA. Yuan YR, Pei Y, Chen HY, Tuschl T, Patel DJ. Structure 14 1557-1565 (2006)
  101. Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Burroughs AM, Iyer LM, Aravind L. Biol Direct 8 13 (2013)
  102. Expression determinants of mammalian argonaute proteins in mediating gene silencing. Valdmanis PN, Gu S, Schüermann N, Sethupathy P, Grimm D, Kay MA. Nucleic Acids Res 40 3704-3713 (2012)
  103. The conformation of microRNA seed regions in native microRNPs is prearranged for presentation to mRNA targets. Lambert NJ, Gu SG, Zahler AM. Nucleic Acids Res 39 4827-4835 (2011)
  104. Gene silencing activity of siRNA molecules containing phosphorodithioate substitutions. Yang X, Sierant M, Janicka M, Peczek L, Martinez C, Hassell T, Li N, Li X, Wang T, Nawrot B. ACS Chem Biol 7 1214-1220 (2012)
  105. The siRNA Non-seed Region and Its Target Sequences Are Auxiliary Determinants of Off-Target Effects. Kamola PJ, Nakano Y, Takahashi T, Wilson PA, Ui-Tei K. PLoS Comput Biol 11 e1004656 (2015)
  106. Accommodation of Helical Imperfections in Rhodobacter sphaeroides Argonaute Ternary Complexes with Guide RNA and Target DNA. Liu Y, Esyunina D, Olovnikov I, Teplova M, Kulbachinskiy A, Aravin AA, Patel DJ. Cell Rep 24 453-462 (2018)
  107. Identifying mRNA sequence elements for target recognition by human Argonaute proteins. Li J, Kim T, Nutiu R, Ray D, Hughes TR, Zhang Z. Genome Res 24 775-785 (2014)
  108. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs. Mutisya D, Selvam C, Lunstad BD, Pallan PS, Haas A, Leake D, Egli M, Rozners E. Nucleic Acids Res 42 6542-6551 (2014)
  109. Germline AGO2 mutations impair RNA interference and human neurological development. Lessel D, Zeitler DM, Reijnders MRF, Kazantsev A, Hassani Nia F, Bartholomäus A, Martens V, Bruckmann A, Graus V, McConkie-Rosell A, McDonald M, Lozic B, Tan ES, Gerkes E, Johannsen J, Denecke J, Telegrafi A, Zonneveld-Huijssoon E, Lemmink HH, Cham BWM, Kovacevic T, Ramsdell L, Foss K, Le Duc D, Mitter D, Syrbe S, Merkenschlager A, Sinnema M, Panis B, Lazier J, Osmond M, Hartley T, Mortreux J, Busa T, Missirian C, Prasun P, Lüttgen S, Mannucci I, Lessel I, Schob C, Kindler S, Pappas J, Rabin R, Willemsen M, Gardeitchik T, Löhner K, Rump P, Dias KR, Evans CA, Andrews PI, Roscioli T, Brunner HG, Chijiwa C, Lewis MES, Jamra RA, Dyment DA, Boycott KM, Stegmann APA, Kubisch C, Tan EC, Mirzaa GM, McWalter K, Kleefstra T, Pfundt R, Ignatova Z, Meister G, Kreienkamp HJ. Nat Commun 11 5797 (2020)
  110. Mutations in conserved residues of the C. elegans microRNA Argonaute ALG-1 identify separable functions in ALG-1 miRISC loading and target repression. Zinovyeva AY, Bouasker S, Simard MJ, Hammell CM, Ambros V. PLoS Genet 10 e1004286 (2014)
  111. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA. Musiyenko A, Majumdar T, Andrews J, Adams B, Barik S. Cell Microbiol 14 882-901 (2012)
  112. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference. Yi T, Arthanari H, Akabayov B, Song H, Papadopoulos E, Qi HH, Jedrychowski M, Güttler T, Guo C, Luna RE, Gygi SP, Huang SA, Wagner G. Nat Commun 6 7194 (2015)
  113. Expression Status of PIWIL1 as a Prognostic Marker of Colorectal Cancer. Sun R, Gao CL, Li DH, Li BJ, Ding YH. Dis Markers 2017 1204937 (2017)
  114. Structural and biochemical insights into 2'-O-methylation at the 3'-terminal nucleotide of RNA by Hen1. Mui Chan C, Zhou C, Brunzelle JS, Huang RH. Proc Natl Acad Sci U S A 106 17699-17704 (2009)
  115. Genome-Wide Analysis of DCL, AGO, and RDR Gene Families in Pepper (Capsicum Annuum L.). Qin L, Mo N, Muhammad T, Liang Y. Int J Mol Sci 19 E1038 (2018)
  116. Identification of RNA silencing components in soybean and sorghum. Liu X, Lu T, Dou Y, Yu B, Zhang C. BMC Bioinformatics 15 4 (2014)
  117. AtRLI2 is an endogenous suppressor of RNA silencing. Sarmiento C, Nigul L, Kazantseva J, Buschmann M, Truve E. Plant Mol Biol 61 153-163 (2006)
  118. Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. Hauptmann J, Kater L, Löffler P, Merkl R, Meister G. RNA 20 1532-1538 (2014)
  119. A Seed Mismatch Enhances Argonaute2-Catalyzed Cleavage and Partially Rescues Severely Impaired Cleavage Found in Fish. Chen GR, Sive H, Bartel DP. Mol Cell 68 1095-1107.e5 (2017)
  120. Domain motions of Argonaute, the catalytic engine of RNA interference. Ming D, Wall ME, Sanbonmatsu KY. BMC Bioinformatics 8 470 (2007)
  121. RNA interference tolerates 2'-fluoro modifications at the Argonaute2 cleavage site. Muhonen P, Tennilä T, Azhayeva E, Parthasarathy RN, Janckila AJ, Väänänen HK, Azhayev A, Laitala-Leinonen T. Chem Biodivers 4 858-873 (2007)
  122. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs. Mutisya D, Hardcastle T, Cheruiyot SK, Pallan PS, Kennedy SD, Egli M, Kelley ML, Smith AVB, Rozners E. Nucleic Acids Res 45 8142-8155 (2017)
  123. Interactions between the non-seed region of siRNA and RNA-binding RLC/RISC proteins, Ago and TRBP, in mammalian cells. Takahashi T, Zenno S, Ishibashi O, Takizawa T, Saigo K, Ui-Tei K. Nucleic Acids Res 42 5256-5269 (2014)
  124. The 5' terminal uracil of let-7a is critical for the recruitment of mRNA to Argonaute2. Felice KM, Salzman DW, Shubert-Coleman J, Jensen KP, Furneaux HM. Biochem J 422 329-341 (2009)
  125. miRNA-like duplexes as RNAi triggers with improved specificity. Betancur JG, Yoda M, Tomari Y. Front Genet 3 127 (2012)
  126. Characterization of Argonaute family members in the silkworm, Bombyx mori. Wang GH, Jiang L, Zhu L, Cheng TC, Niu WH, Yan YF, Xia QY. Insect Sci 20 78-91 (2013)
  127. Functional validation of microRNA-target RNA interactions. Vasudevan S. Methods 58 126-134 (2012)
  128. Minor-groove-modulating adenosine replacements control protein binding and RNAi activity in siRNAs. Peacock H, Fostvedt E, Beal PA. ACS Chem Biol 5 1115-1124 (2010)
  129. Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes. Sheng G, Gogakos T, Wang J, Zhao H, Serganov A, Juranek S, Tuschl T, Patel DJ, Wang Y. Nucleic Acids Res 45 9149-9163 (2017)
  130. Nucleotide bias of DCL and AGO in plant anti-virus gene silencing. Ho T, Wang L, Huang L, Li Z, Pallett DW, Dalmay T, Ohshima K, Walsh JA, Wang H. Protein Cell 1 847-858 (2010)
  131. Kinetic analysis of the effects of target structure on siRNA efficiency. Chen J, Zhang W. J Chem Phys 137 225102 (2012)
  132. Origin, evolution and diversification of plant ARGONAUTE proteins. Li Z, Li W, Guo M, Liu S, Liu L, Yu Y, Mo B, Chen X, Gao L. Plant J 109 1086-1097 (2022)
  133. Research Support, Non-U.S. Gov't The true core of RNA silencing revealed. Sasaki HM, Tomari Y. Nat Struct Mol Biol 19 657-660 (2012)
  134. Argonaute MID domain takes centre stage. Faehnle CR, Joshua-Tor L. EMBO Rep 11 564-565 (2010)
  135. Optimal choice of functional and off-target effect-reduced siRNAs for RNAi therapeutics. Ui-Tei K. Front Genet 4 107 (2013)
  136. Differential expression of small RNA pathway genes associated with the Biomphalaria glabrata/Schistosoma mansoni interaction. Queiroz FR, Silva LM, Jeremias WJ, Babá ÉH, Caldeira RL, Coelho PMZ, Gomes MS. PLoS One 12 e0181483 (2017)
  137. PIWIL1 destabilizes microtubule by suppressing phosphorylation at Ser16 and RLIM-mediated degradation of Stathmin1. Li C, Zhou X, Chen J, Lu Y, Sun Q, Tao D, Hu W, Zheng X, Bian S, Liu Y, Ma Y. Oncotarget 6 27794-27804 (2015)
  138. Phosphorylation-specific status of RNAi triggers in pharmacokinetic and biodistribution analyses. Trubetskoy VS, Griffin JB, Nicholas AL, Nord EM, Xu Z, Peterson RM, Wooddell CI, Rozema DB, Wakefield DH, Lewis DL, Kanner SB. Nucleic Acids Res 45 1469-1478 (2017)
  139. RNA interference by 2',5'-linked nucleic acid duplexes in mammalian cells. Prakash TP, Kraynack B, Baker BF, Swayze EE, Bhat B. Bioorg Med Chem Lett 16 3238-3240 (2006)
  140. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5. Ehsani A, Saetrom P, Zhang J, Alluin J, Li H, Snøve O, Aagaard L, Rossi JJ. Mol Ther 18 796-802 (2010)
  141. Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro. Hunt EA, Evans TC, Tanner NA. PLoS One 13 e0203073 (2018)
  142. Deep Sequencing Analyses of DsiRNAs Reveal the Influence of 3' Terminal Overhangs on Dicing Polarity, Strand Selectivity, and RNA Editing of siRNAs. Zhou J, Song MS, Jacobi AM, Behlke MA, Wu X, Rossi JJ. Mol Ther Nucleic Acids 1 e17 (2012)
  143. A MC motif in silkworm Argonaute 1 is indispensible for translation repression. Zhu L, Masaki Y, Tatsuke T, Li Z, Mon H, Xu J, Lee JM, Kusakabe T. Insect Mol Biol 22 320-330 (2013)
  144. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation. Bhagwat B, Chi M, Su L, Tang H, Tang G, Xiang Y. J Genet Genomics 40 261-270 (2013)
  145. Characterization of Argonaute2 gene from black tiger shrimp (Penaeus monodon) and its responses to immune challenges. Yang L, Li X, Jiang S, Qiu L, Zhou F, Liu W, Jiang S. Fish Shellfish Immunol 36 261-269 (2014)
  146. Cloning and characterization of two Argonaute genes in wheat (Triticum aestivum L.). Meng F, Jia H, Ling N, Xue Y, Liu H, Wang K, Yin J, Li Y. BMC Plant Biol 13 18 (2013)
  147. First transcriptome of the Neotropical pest Euschistus heros (Hemiptera: Pentatomidae) with dissection of its siRNA machinery. Cagliari D, Dias NP, Dos Santos EÁ, Rickes LN, Kremer FS, Farias JR, Lenz G, Galdeano DM, Garcia FRM, Smagghe G, Zotti MJ. Sci Rep 10 4856 (2020)
  148. Nonviral transfection of mouse calvarial organ in vitro using Accell-modified siRNA. Gupta AK, Eshraghi Y, Gliniak C, Gosain AK. Plast Reconstr Surg 125 494-501 (2010)
  149. Synthesis and silencing properties of siRNAs possessing lipophilic groups at their 3'-termini. Ueno Y, Kawada K, Naito T, Shibata A, Yoshikawa K, Kim HS, Wataya Y, Kitade Y. Bioorg Med Chem 16 7698-7704 (2008)
  150. Congress Demystifying small RNA pathways. Pasquinelli AE. Dev Cell 10 419-424 (2006)
  151. Stage-dependent piRNAs in chicken implicated roles in modulating male germ cell development. Chang KW, Tseng YT, Chen YC, Yu CY, Liao HF, Chen YC, Tu YE, Wu SC, Liu IH, Pinskaya M, Morillon A, Pain B, Lin SP. BMC Genomics 19 425 (2018)
  152. Distinct fitness costs associated with the knockdown of RNAi pathway genes in western corn rootworm adults. Wu K, Camargo C, Fishilevich E, Narva KE, Chen X, Taylor CE, Siegfried BD. PLoS One 12 e0190208 (2017)
  153. Identification, chromosomal mapping and conserved synteny of porcine Argonaute family of genes. Zhou X, Guo H, Chen K, Cheng H, Zhou R. Genetica 138 805-812 (2010)
  154. Impact of sustained RNAi-mediated suppression of cellular cofactor Tat-SF1 on HIV-1 replication in CD4+ T cells. Green VA, Arbuthnot P, Weinberg MS. Virol J 9 272 (2012)
  155. MicroRNA-binding is required for recruitment of human Argonaute 2 to stress granules and P-bodies. Pare JM, López-Orozco J, Hobman TC. Biochem Biophys Res Commun 414 259-264 (2011)
  156. Structural and functional analyses reveal the contributions of the C- and N-lobes of Argonaute protein to selectivity of RNA target cleavage. Dayeh DM, Kruithoff BC, Nakanishi K. J Biol Chem 293 6308-6325 (2018)
  157. Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex. Huang X, Hu H, Webster A, Zou F, Du J, Patel DJ, Sachidanandam R, Toth KF, Aravin AA, Li S. Nat Commun 12 4061 (2021)
  158. Comparative analysis of RNAi screening technologies at genome-scale reveals an inherent processing inefficiency of the plasmid-based shRNA hairpin. Bhinder B, Shum D, Djaballah H. Comb Chem High Throughput Screen 17 98-113 (2014)
  159. Essential notes regarding the design of functional siRNAs for efficient mammalian RNAi. Ui-Tei K, Naito Y, Saigo K. J Biomed Biotechnol 2006 65052 (2006)
  160. Genome-wide identification, evolutionary relationship and expression analysis of AGO, DCL and RDR family genes in tea. Krishnatreya DB, Baruah PM, Dowarah B, Chowrasia S, Mondal TK, Agarwala N. Sci Rep 11 8679 (2021)
  161. Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Kropocheva EV, Lisitskaya LA, Agapov AA, Musabirov AA, Kulbachinskiy AV, Esyunina DM. Mol Biol 56 854-873 (2022)
  162. Nuclease-resistant 63-bp trimeric siRNAs simultaneously silence three different genes in tumor cells. Gvozdeva OV, Gladkih DV, Chernikov IV, Meschaninova MI, Venyaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL. FEBS Lett 592 122-129 (2018)
  163. Thermodynamic basis of selectivity in guide-target-mismatched RNA interference. Joseph TT, Osman R. Proteins 80 1283-1298 (2012)
  164. An evolutionarily conserved stop codon enrichment at the 5' ends of mammalian piRNAs. Bornelöv S, Czech B, Hannon GJ. Nat Commun 13 2118 (2022)
  165. Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target. Wang Z, Wang Y, Liu T, Wang Y, Zhang W. RNA 25 620-629 (2019)
  166. Expansion and Divergence of Argonaute Genes in the Oomycete Genus Phytophthora. Bollmann SR, Press CM, Tyler BM, Grünwald NJ. Front Microbiol 9 2841 (2018)
  167. High-throughput biochemical profiling reveals functional adaptation of a bacterial Argonaute. Ober-Reynolds B, Becker WR, Jouravleva K, Jolly SM, Zamore PD, Greenleaf WJ. Mol Cell 82 1329-1342.e8 (2022)
  168. Molecular Characterization and the Function of Argonaute3 in RNAi Pathway of Plutella xylostella. Hameed MS, Wang Z, Vasseur L, Yang G. Int J Mol Sci 19 E1249 (2018)
  169. Principles and pitfalls of high-throughput analysis of microRNA-binding thermodynamics and kinetics by RNA Bind-n-Seq. Jouravleva K, Vega-Badillo J, Zamore PD. Cell Rep Methods 2 100185 (2022)
  170. Structural basis for substrate recognition and processive cleavage mechanisms of the trimeric exonuclease PhoExo I. Miyazono K, Ishino S, Tsutsumi K, Ito T, Ishino Y, Tanokura M. Nucleic Acids Res 43 7122-7136 (2015)
  171. Synthesis and gene silencing properties of siRNAs containing terminal amide linkages. Gaglione M, Mercurio ME, Potenza N, Mosca N, Russo A, Novellino E, Cosconati S, Messere A. Biomed Res Int 2014 901617 (2014)
  172. Variables and strategies in development of therapeutic post-transcriptional gene silencing agents. Sullivan JM, Yau EH, Kolniak TA, Sheflin LG, Taggart RT, Abdelmaksoud HE. J Ophthalmol 2011 531380 (2011)
  173. Crystallization and preliminary X-ray analysis of Escherichia coli RNase HI-dsRNA complexes. Loukachevitch LV, Egli M. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 84-88 (2007)
  174. Identification of microRNA target genes in vivo. Zheng W, Zou HW, Tan YG, Cai WS. Mol Biotechnol 47 200-204 (2011)
  175. Isonucleotide incorporation into middle and terminal siRNA duplexes exhibits high gene silencing efficacy and nuclease resistance. Ma Y, Liu S, Wang Y, Zhao Y, Huang Y, Zhong L, Guan Z, Zhang L, Yang Z. Org Biomol Chem 15 5161-5170 (2017)
  176. Solution-state structure of a fully alternately 2'-F/2'-OMe modified 42-nt dimeric siRNA construct. Podbevsek P, Allerson CR, Bhat B, Plavec J. Nucleic Acids Res 38 7298-7307 (2010)
  177. Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy. Maiti M, Nauwelaerts K, Lescrinier E, Herdewijn P. Chemistry 17 1519-1528 (2011)
  178. A robust model for quantitative prediction of the silencing efficacy of wild-type and A-to-I edited miRNAs. Tian S, Terai G, Kobayashi Y, Kimura Y, Abe H, Asai K, Ui-Tei K. RNA Biol 17 264-280 (2020)
  179. A study on the fundamental factors determining the efficacy of siRNAs with high C/G contents. Liao JY, Yin JQ, Chen F, Liu TG, Yue JC. Cell Mol Biol Lett 13 283-302 (2008)
  180. Bacterial Argonaute Proteins Aid Cell Division in the Presence of Topoisomerase Inhibitors in Escherichia coli. Olina A, Agapov A, Yudin D, Sutormin D, Galivondzhyan A, Kuzmenko A, Severinov K, Aravin AA, Kulbachinskiy A. Microbiol Spectr 11 e0414622 (2023)
  181. Genome-wide identification of DCL, AGO, and RDR gene families in wheat (Triticum aestivum L.) and their expression analysis in response to heat stress. Mishra S, Sharma P, Singh R, Ahlawat OP, Singh G. Physiol Mol Biol Plants 29 1525-1541 (2023)


Related citations provided by authors (1)