2br9 Citations

Structural basis for protein-protein interactions in the 14-3-3 protein family.

Proc Natl Acad Sci U S A 103 17237-42 (2006)
Related entries: 2bq0, 2btp, 2c23, 2c63, 2c74

Cited: 239 times
EuropePMC logo PMID: 17085597

Abstract

The seven members of the human 14-3-3 protein family regulate a diverse range of cell signaling pathways by formation of protein-protein complexes with signaling proteins that contain phosphorylated Ser/Thr residues within specific sequence motifs. Previously, crystal structures of three 14-3-3 isoforms (zeta, sigma, and tau) have been reported, with structural data for two isoforms deposited in the Protein Data Bank (zeta and sigma). In this study, we provide structural detail for five 14-3-3 isoforms bound to ligands, providing structural coverage for all isoforms of a human protein family. A comparative structural analysis of the seven 14-3-3 proteins revealed specificity determinants for binding of phosphopeptides in a specific orientation, target domain interaction surfaces and flexible adaptation of 14-3-3 proteins through domain movements. Specifically, the structures of the beta isoform in its apo and peptide bound forms showed that its binding site can exhibit structural flexibility to facilitate binding of its protein and peptide partners. In addition, the complex of 14-3-3 beta with the exoenzyme S peptide displayed a secondary structural element in the 14-3-3 peptide binding groove. These results show that the 14-3-3 proteins are adaptable structures in which internal flexibility is likely to facilitate recognition and binding of their interaction partners.

Reviews - 2br9 mentioned but not cited (2)

  1. TSPO protein binding partners in bacteria, animals, and plants. Hiser C, Montgomery BL, Ferguson-Miller S. J Bioenerg Biomembr 53 463-487 (2021)
  2. 14-3-3 proteins-a moonlight protein complex with therapeutic potential in neurological disorder: in-depth review with Alzheimer's disease. Abdi G, Jain M, Patil N, Upadhyay B, Vyas N, Dwivedi M, Kaushal RS. Front Mol Biosci 11 1286536 (2024)

Articles - 2br9 mentioned but not cited (20)

  1. Structural basis for protein-protein interactions in the 14-3-3 protein family. Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, Sundström M, Doyle DA, Elkins JM. Proc Natl Acad Sci U S A 103 17237-17242 (2006)
  2. Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition. Elena-Real CA, Díaz-Quintana A, González-Arzola K, Velázquez-Campoy A, Orzáez M, López-Rivas A, Gil-Caballero S, De la Rosa MÁ, Díaz-Moreno I. Cell Death Dis 9 365 (2018)
  3. Structural and functional analysis of novel human cytochrome C targets in apoptosis. Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Velázquez-Campoy A, Díaz-Quintana A, De la Rosa MA. Mol Cell Proteomics 13 1439-1456 (2014)
  4. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Borisova ME, Voigt A, Tollenaere MAX, Sahu SK, Juretschke T, Kreim N, Mailand N, Choudhary C, Bekker-Jensen S, Akutsu M, Wagner SA, Beli P. Nat Commun 9 1017 (2018)
  5. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Alblova M, Smidova A, Docekal V, Vesely J, Herman P, Obsilova V, Obsil T. Proc Natl Acad Sci U S A 114 E9811-E9820 (2017)
  6. Migratory activation of parasitized dendritic cells by the protozoan Toxoplasma gondii 14-3-3 protein. Weidner JM, Kanatani S, Uchtenhagen H, Varas-Godoy M, Schulte T, Engelberg K, Gubbels MJ, Sun HS, Harrison RE, Achour A, Barragan A. Cell Microbiol 18 1537-1550 (2016)
  7. Induction of androgen formation in the male by a TAT-VDAC1 fusion peptide blocking 14-3-3ɛ protein adaptor and mitochondrial VDAC1 interactions. Aghazadeh Y, Martinez-Arguelles DB, Fan J, Culty M, Papadopoulos V. Mol Ther 22 1779-1791 (2014)
  8. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage. Nefla M, Sudre L, Denat G, Priam S, Andre-Leroux G, Berenbaum F, Jacques C. J Cell Sci 128 3250-3262 (2015)
  9. Regulating small G protein signaling to coordinate axon adhesion and repulsion. Yang T, Terman JR. Small GTPases 4 34-41 (2013)
  10. Characterization of 14-3-3 proteins from Cryptosporidium parvum. Brokx SJ, Wernimont AK, Dong A, Wasney GA, Lin YH, Lew J, Vedadi M, Lee WH, Hui R. PLoS One 6 e14827 (2011)
  11. Critical residue that promotes protein dimerization: a story of partially exposed Phe25 in 14-3-3σ. Liu JY, Li Z, Li H, Zhang JT. J Chem Inf Model 51 2612-2625 (2011)
  12. Ganoderic acid D prevents oxidative stress-induced senescence by targeting 14-3-3ε to activate CaM/CaMKII/NRF2 signaling pathway in mesenchymal stem cells. Yuan H, Xu Y, Luo Y, Zhang JR, Zhu XX, Xiao JH. Aging Cell 21 e13686 (2022)
  13. Bioinformatic analysis reveals new determinants of antigenic 14-3-3 proteins and a novel antifungal strategy. McGowan JE, Kratch J, Chattopadhyay S, Joe B, Conti HR, Chakravarti R. PLoS One 12 e0189503 (2017)
  14. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference. Fiorillo A, di Marino D, Bertuccini L, Via A, Pozio E, Camerini S, Ilari A, Lalle M. PLoS One 9 e92902 (2014)
  15. Structure of a 14-3-3ε:FOXO3apS253 Phosphopeptide Complex Reveals 14-3-3 Isoform-Specific Binding of Forkhead Box Class O Transcription Factor (FOXO) Phosphoproteins. Mathivanan S, Chunchagatta Lakshman PK, Singh M, Giridharan S, Sathish K, Hurakadli MA, Bharatham K, Kamariah N. ACS Omega 7 24344-24352 (2022)
  16. Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling. Roy MJ, Surudoi MG, Kropp A, Hou J, Dai W, Hardy JM, Liang LY, Cotton TR, Lechtenberg BC, Dite TA, Ma X, Daly RJ, Patel O, Lucet IS. Nat Commun 14 3542 (2023)
  17. Cinnamaldehyde and eugenol change the expression folds of AKT1 and DKC1 genes and decrease the telomere length of human adipose-derived stem cells (hASCs): An experimental and in silico study. Absalan A, Mesbah-Namin SA, Tiraihi T, Taheri T. Iran J Basic Med Sci 20 316-326 (2017)
  18. Site-Specific Amino Acid Distributions Follow a Universal Shape. Johnson MM, Wilke CO. J Mol Evol 88 731-741 (2020)
  19. Target identification for small-molecule discovery in the FOXO3a tumor-suppressor pathway using a biodiverse peptide library. Emery A, Hardwick BS, Crooks AT, Milech N, Watt PM, Mithra C, Kumar V, Giridharan S, Sadasivam G, Mathivanan S, Sudhakar S, Bairy S, Bharatham K, Hurakadli MA, Prasad TK, Kamariah N, Muellner M, Coelho M, Torrance CJ, McKenzie GJ, Venkitaraman AR. Cell Chem Biol 28 1602-1615.e9 (2021)
  20. Pathogenic mutations of human phosphorylation sites affect protein-protein interactions. Rrustemi T, Meyer K, Roske Y, Uyar B, Akalin A, Imami K, Ishihama Y, Daumke O, Selbach M. Nat Commun 15 3146 (2024)


Reviews citing this publication (29)

  1. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J. Signal Transduct Target Ther 5 213 (2020)
  2. Structural basis of 14-3-3 protein functions. Obsil T, Obsilova V. Semin Cell Dev Biol 22 663-672 (2011)
  3. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Aitken A. Semin Cell Dev Biol 22 673-680 (2011)
  4. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Cornell B, Toyo-Oka K. Front Mol Neurosci 10 318 (2017)
  5. 14-3-3 zeta as novel molecular target for cancer therapy. Matta A, Siu KW, Ralhan R. Expert Opin Ther Targets 16 515-523 (2012)
  6. 14-3-3 Proteins Are on the Crossroads of Cancer, Aging, and Age-Related Neurodegenerative Disease. Fan X, Cui L, Zeng Y, Song W, Gaur U, Yang M. Int J Mol Sci 20 E3518 (2019)
  7. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. Sluchanko NN, Gusev NB. FEBS J 284 1279-1295 (2017)
  8. ROS1 fusions in cancer: a review. Uguen A, De Braekeleer M. Future Oncol 12 1911-1928 (2016)
  9. Oligomeric structure of 14-3-3 protein: what do we know about monomers? Sluchanko NN, Gusev NB. FEBS Lett 586 4249-4256 (2012)
  10. Mechanisms and physiological implications of cooperative gating of clustered ion channels. Dixon RE, Navedo MF, Binder MD, Santana LF. Physiol Rev 102 1159-1210 (2022)
  11. The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins. Gileadi O, Knapp S, Lee WH, Marsden BD, Müller S, Niesen FH, Kavanagh KL, Ball LJ, von Delft F, Doyle DA, Oppermann UC, Sundström M. J Struct Funct Genomics 8 107-119 (2007)
  12. 14-3-3 proteins in Echinococcus: their role and potential as protective antigens. Siles-Lucas M, Merli M, Gottstein B. Exp Parasitol 119 516-523 (2008)
  13. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma. Wu YJ, Jan YJ, Ko BS, Liang SM, Liou JY. Cancers (Basel) 7 1022-1036 (2015)
  14. Protein intrinsic disorder and network connectivity. The case of 14-3-3 proteins. Uhart M, Bustos DM. Front Genet 5 10 (2014)
  15. Structural insights into the functional roles of 14-3-3 proteins. Obsilova V, Obsil T. Front Mol Biosci 9 1016071 (2022)
  16. The application of modular protein domains in proteomics. Jadwin JA, Ogiue-Ikeda M, Machida K. FEBS Lett 586 2586-2596 (2012)
  17. Large-scale structural biology of the human proteome. Edwards A. Annu Rev Biochem 78 541-568 (2009)
  18. Switching responses: spatial and temporal regulators of axon guidance. Kaplan A, Kent CB, Charron F, Fournier AE. Mol Neurobiol 49 1077-1086 (2014)
  19. Molecular insight into specific 14-3-3 modulators: Inhibitors and stabilisers of protein-protein interactions of 14-3-3. Hartman AM, Hirsch AKH. Eur J Med Chem 136 573-584 (2017)
  20. Emerging roles of 14-3-3γ in the brain disorder. Cho E, Park JY. BMB Rep 53 500-511 (2020)
  21. Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. Giusto E, Yacoubian TA, Greggio E, Civiero L. NPJ Parkinsons Dis 7 85 (2021)
  22. 14-3-3 Proteins are Potential Regulators of Liquid-Liquid Phase Separation. Huang X, Zheng Z, Wu Y, Gao M, Su Z, Huang Y. Cell Biochem Biophys 80 277-293 (2022)
  23. Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation. Bartel M, Schäfer A, Stevers LM, Ottmann C. Future Med Chem 6 903-921 (2014)
  24. Small molecules targeting protein-protein interactions for cancer therapy. Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Acta Pharm Sin B 13 4060-4088 (2023)
  25. 14-3-3 protein regulation of excitation-contraction coupling. Thompson WC, Goldspink PH. Pflugers Arch 474 267-279 (2022)
  26. PADI6: What we know about the elusive fifth member of the peptidyl arginine deiminase family. Williams JPC, Walport LJ. Philos Trans R Soc Lond B Biol Sci 378 20220242 (2023)
  27. 14-3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer. Zhang Y, Yan M, Yu Y, Wang J, Jiao Y, Zheng M, Zhang S. Cell Commun Signal 22 72 (2024)
  28. Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins. Obsilova V, Obsil T. Physiol Res 73 S401-S412 (2024)
  29. The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways. Obsilova V, Obsil T. Front Mol Biosci 11 1327014 (2024)

Articles citing this publication (188)

  1. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Science 325 834-840 (2009)
  2. Bioinformatic and experimental survey of 14-3-3-binding sites. Johnson C, Crowther S, Stafford MJ, Campbell DG, Toth R, MacKintosh C. Biochem J 427 69-78 (2010)
  3. Ligand and Target Discovery by Fragment-Based Screening in Human Cells. Parker CG, Galmozzi A, Wang Y, Correia BE, Sasaki K, Joslyn CM, Kim AS, Cavallaro CL, Lawrence RM, Johnson SR, Narvaiza I, Saez E, Cravatt BF. Cell 168 527-541.e29 (2017)
  4. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Liu HM, Loo YM, Horner SM, Zornetzer GA, Katze MG, Gale M. Cell Host Microbe 11 528-537 (2012)
  5. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Gao W, Yang J, Liu W, Wang Y, Shao F. Proc Natl Acad Sci U S A 113 E4857-66 (2016)
  6. Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK {alpha}. Oh CS, Pedley KF, Martin GB. Plant Cell 22 260-272 (2010)
  7. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Stevers LM, Lam CV, Leysen SF, Meijer FA, van Scheppingen DS, de Vries RM, Carlile GW, Milroy LG, Thomas DY, Brunsveld L, Ottmann C. Proc Natl Acad Sci U S A 113 E1152-61 (2016)
  8. 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification? Paul AL, Denison FC, Schultz ER, Zupanska AK, Ferl RJ. Front Plant Sci 3 190 (2012)
  9. Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. Sakiyama H, Wynn RM, Lee WR, Fukasawa M, Mizuguchi H, Gardner KH, Repa JJ, Uyeda K. J Biol Chem 283 24899-24908 (2008)
  10. Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2. Nutt LK, Buchakjian MR, Gan E, Darbandi R, Yoon SY, Wu JQ, Miyamoto YJ, Gibbons JA, Andersen JL, Freel CD, Tang W, He C, Kurokawa M, Wang Y, Margolis SS, Fissore RA, Kornbluth S. Dev Cell 16 856-866 (2009)
  11. Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. Lange PF, Huesgen PF, Nguyen K, Overall CM. J Proteome Res 13 2028-2044 (2014)
  12. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. Zhao J, Du Y, Horton JR, Upadhyay AK, Lou B, Bai Y, Zhang X, Du L, Li M, Wang B, Zhang L, Barbieri JT, Khuri FR, Cheng X, Fu H. Proc Natl Acad Sci U S A 108 16212-16216 (2011)
  13. 14-3-3sigma, the double-edged sword of human cancers. Li Z, Liu JY, Zhang JT. Am J Transl Res 1 326-340 (2009)
  14. Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3ζ dimer. Molzan M, Ottmann C. J Mol Biol 423 486-495 (2012)
  15. 14-3-3ε overexpression contributes to epithelial-mesenchymal transition of hepatocellular carcinoma. Liu TA, Jan YJ, Ko BS, Liang SM, Chen SC, Wang J, Hsu C, Wu YM, Liou JY. PLoS One 8 e57968 (2013)
  16. 14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening. Lavalley NJ, Slone SR, Ding H, West AB, Yacoubian TA. Hum Mol Genet 25 109-122 (2016)
  17. Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. Oh CS, Martin GB. J Biol Chem 286 14129-14136 (2011)
  18. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Rajagopalan S, Sade RS, Townsley FM, Fersht AR. Nucleic Acids Res 38 893-906 (2010)
  19. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Vega-Rubin-de-Celis S, Abdallah Z, Kinch L, Grishin NV, Brugarolas J, Zhang X. Biochemistry 49 2491-2501 (2010)
  20. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis. Liang X, Da Paula AC, Bozóky Z, Zhang H, Bertrand CA, Peters KW, Forman-Kay JD, Frizzell RA. Mol Biol Cell 23 996-1009 (2012)
  21. The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Plotegher N, Kumar D, Tessari I, Brucale M, Munari F, Tosatto L, Belluzzi E, Greggio E, Bisaglia M, Capaldi S, Aioanei D, Mammi S, Monaco HL, Samo B, Bubacco L. Hum Mol Genet 23 5615-5629 (2014)
  22. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Wu H, Ge J, Yao SQ. Angew Chem Int Ed Engl 49 6528-6532 (2010)
  23. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding. Martinez Fiesco JA, Durrant DE, Morrison DK, Zhang P. Nat Commun 13 486 (2022)
  24. The cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes. Cleverley RM, Rutter ZJ, Rismondo J, Corona F, Tsui HT, Alatawi FA, Daniel RA, Halbedel S, Massidda O, Winkler ME, Lewis RJ. Nat Commun 10 261 (2019)
  25. Crystal structure of human myosin 1c--the motor in GLUT4 exocytosis: implications for Ca2+ regulation and 14-3-3 binding. Münnich S, Taft MH, Taft MH, Manstein DJ. J Mol Biol 426 2070-2081 (2014)
  26. Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Gogl G, Tugaeva KV, Eberling P, Kostmann C, Trave G, Sluchanko NN. Nat Commun 12 1677 (2021)
  27. Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation. Zhong J, Kong X, Zhang H, Yu C, Xu Y, Kang J, Yu H, Yi H, Yang X, Sun L. PLoS One 7 e39378 (2012)
  28. Research Support, Non-U.S. Gov't 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). Sonntag T, Vaughan JM, Montminy M. FEBS J 285 467-480 (2018)
  29. Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in Populus. Tian F, Wang T, Xie Y, Zhang J, Hu J. PLoS One 10 e0123225 (2015)
  30. 14-3-3 Proteins regulate exonuclease 1-dependent processing of stalled replication forks. Engels K, Giannattasio M, Muzi-Falconi M, Lopes M, Ferrari S. PLoS Genet 7 e1001367 (2011)
  31. A Thermodynamic Model for Multivalency in 14-3-3 Protein-Protein Interactions. Stevers LM, de Vink PJ, Ottmann C, Huskens J, Brunsveld L. J Am Chem Soc 140 14498-14510 (2018)
  32. A single phosphorylation site of SIK3 regulates daily sleep amounts and sleep need in mice. Honda T, Fujiyama T, Miyoshi C, Ikkyu A, Hotta-Hirashima N, Kanno S, Mizuno S, Sugiyama F, Takahashi S, Funato H, Yanagisawa M. Proc Natl Acad Sci U S A 115 10458-10463 (2018)
  33. Ketohexokinase-A acts as a nuclear protein kinase that mediates fructose-induced metastasis in breast cancer. Kim J, Kang J, Kang YL, Woo J, Kim Y, Huh J, Park JW. Nat Commun 11 5436 (2020)
  34. De Novo Mutations in YWHAG Cause Early-Onset Epilepsy. Guella I, McKenzie MB, Evans DM, Buerki SE, Toyota EB, Van Allen MI, Epilepsy Genomics Study, Suri M, Elmslie F, Deciphering Developmental Disorders Study, Simon MEH, van Gassen KLI, Héron D, Keren B, Nava C, Connolly MB, Demos M, Farrer MJ. Am J Hum Genet 101 300-310 (2017)
  35. Dimerization is essential for 14-3-3zeta stability and function in vivo. Messaritou G, Grammenoudi S, Skoulakis EM. J Biol Chem 285 1692-1700 (2010)
  36. Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation. Uhart M, Bustos DM. PLoS One 8 e55703 (2013)
  37. Phenotypic and genotypic convergences are influenced by historical contingency and environment in yeast. Spor A, Kvitek DJ, Nidelet T, Martin J, Legrand J, Dillmann C, Bourgais A, de Vienne D, Sherlock G, Sicard D. Evolution 68 772-790 (2014)
  38. 14-3-3 scaffold proteins mediate the inactivation of trim25 and inhibition of the type I interferon response by herpesvirus deconjugases. Gupta S, Ylä-Anttila P, Sandalova T, Sun R, Achour A, Masucci MG. PLoS Pathog 15 e1008146 (2019)
  39. Three-way interaction between 14-3-3 proteins, the N-terminal region of tyrosine hydroxylase, and negatively charged membranes. Halskau Ø, Ying M, Baumann A, Kleppe R, Rodriguez-Larrea D, Almås B, Haavik J, Martinez A. J Biol Chem 284 32758-32769 (2009)
  40. Importin-alpha protein binding to a nuclear localization signal of carbohydrate response element-binding protein (ChREBP). Ge Q, Nakagawa T, Wynn RM, Chook YM, Miller BC, Uyeda K. J Biol Chem 286 28119-28127 (2011)
  41. Comprehensive histone phosphorylation analysis and identification of Pf14-3-3 protein as a histone H3 phosphorylation reader in malaria parasites. Dastidar EG, Dzeyk K, Krijgsveld J, Malmquist NA, Doerig C, Scherf A, Lopez-Rubio JJ. PLoS One 8 e53179 (2013)
  42. A noncanonical role for the engulfment gene ELMO1 in neutrophils that promotes inflammatory arthritis. Arandjelovic S, Perry JSA, Lucas CD, Penberthy KK, Kim TH, Zhou M, Rosen DA, Chuang TY, Bettina AM, Shankman LS, Cohen AH, Gaultier A, Conrads TP, Kim M, Elliott MR, Ravichandran KS. Nat Immunol 20 141-151 (2019)
  43. Involvement of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in response to oxidative stress. Bustos DM, Bustamante CA, Iglesias AA. J Plant Physiol 165 456-461 (2008)
  44. 14-3-3 proteins activate Pseudomonas exotoxins-S and -T by chaperoning a hydrophobic surface. Karlberg T, Hornyak P, Pinto AF, Milanova S, Ebrahimi M, Lindberg M, Püllen N, Nordström A, Löverli E, Caraballo R, Wong EV, Näreoja K, Thorsell AG, Elofsson M, De La Cruz EM, Björkegren C, Schüler H. Nat Commun 9 3785 (2018)
  45. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Sun Z, Song J, Xin X, Xie X, Zhao B. Front Microbiol 9 91 (2018)
  46. Emerging roles for the FSH receptor adapter protein APPL1 and overlap of a putative 14-3-3τ interaction domain with a canonical G-protein interaction site. Dias JA, Mahale SD, Nechamen CA, Davydenko O, Thomas RM, Ulloa-Aguirre A. Mol Cell Endocrinol 329 17-25 (2010)
  47. Genome-Wide Identification and Expression Analysis of the 14-3-3 Family Genes in Medicago truncatula. Qin C, Cheng L, Shen J, Zhang Y, Cao H, Lu D, Shen C. Front Plant Sci 7 320 (2016)
  48. Structural insights of the MLF1/14-3-3 interaction. Molzan M, Weyand M, Rose R, Ottmann C. FEBS J 279 563-571 (2012)
  49. Structural characterization of a unique interface between carbohydrate response element-binding protein (ChREBP) and 14-3-3β protein. Ge Q, Huang N, Wynn RM, Li Y, Du X, Miller B, Zhang H, Uyeda K. J Biol Chem 287 41914-41921 (2012)
  50. 14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Pohl P, Joshi R, Petrvalska O, Obsil T, Obsilova V. Commun Biol 4 899 (2021)
  51. Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Macakova E, Kopecka M, Kukacka Z, Veisova D, Novak P, Man P, Obsil T, Obsilova V. Biochim Biophys Acta 1830 4491-4499 (2013)
  52. Letter Biophysical and structural insight into the USP8/14-3-3 interaction. Centorrino F, Ballone A, Wolter M, Ottmann C. FEBS Lett 592 1211-1220 (2018)
  53. Dysregulation of 14-3-3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology. McFerrin MB, Chi X, Cutter G, Yacoubian TA. Ann Clin Transl Neurol 4 466-477 (2017)
  54. Genome-Wide Identification and Expression Analysis of the 14-3-3 Gene Family in Mango (Mangifera indica L.). Xia L, He X, Huang X, Yu H, Lu T, Xie X, Zeng X, Zhu J, Luo C. Int J Mol Sci 23 1593 (2022)
  55. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening. Sijbesma E, Skora L, Leysen S, Brunsveld L, Koch U, Nussbaumer P, Jahnke W, Ottmann C. Biochemistry 56 3972-3982 (2017)
  56. Rapid affinity-based fingerprinting of 14-3-3 isoforms using a combinatorial peptide microarray. Lu CH, Sun H, Abu Bakar FB, Uttamchandani M, Zhou W, Liou YC, Yao SQ. Angew Chem Int Ed Engl 47 7438-7441 (2008)
  57. 14-3-3zeta escorts CCTalpha for calcium-activated nuclear import in lung epithelia. Agassandian M, Chen BB, Schuster CC, Houtman JC, Mallampalli RK. FASEB J 24 1271-1283 (2010)
  58. Decoded calreticulin-deficient embryonic stem cell transcriptome resolves latent cardiophenotype. Faustino RS, Chiriac A, Niederlander NJ, Nelson TJ, Behfar A, Mishra PK, Macura S, Michalak M, Terzic A, Perez-Terzic C. Stem Cells 28 1281-1291 (2010)
  59. Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway. Pandey A, Raj P, Goru SK, Kadakol A, Malek V, Sharma N, Sharma N, Gaikwad AB. Pharmacol Rep 69 666-672 (2017)
  60. Structure of the super-elongation complex subunit AFF4 C-terminal homology domain reveals requirements for AFF homo- and heterodimerization. Chen Y, Cramer P. J Biol Chem 294 10663-10673 (2019)
  61. Substrate-modulated thermal fluctuations affect long-range allosteric signaling in protein homodimers: exemplified in CAP. Toncrova H, McLeish TC. Biophys J 98 2317-2326 (2010)
  62. 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma. Liu CC, Jan YJ, Ko BS, Wu YM, Liang SM, Chen SC, Lee YM, Liu TA, Chang TC, Wang J, Shyue SK, Sung LY, Liou JY. BMC Cancer 14 425 (2014)
  63. A Proteomics Approach to Investigate miR-153-3p and miR-205-5p Targets in Neuroblastoma Cells. Patil KS, Basak I, Pal R, Ho HP, Alves G, Chang EJ, Larsen JP, Møller SG. PLoS One 10 e0143969 (2015)
  64. A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Telles E, Hosing AS, Kundu ST, Venkatraman P, Dalal SN. Exp Cell Res 315 1448-1457 (2009)
  65. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction. Tugaeva KV, Tsvetkov PO, Sluchanko NN. PLoS One 12 e0178933 (2017)
  66. Characterization of 14-3-3-ζ Interactions with integrin tails. Bonet R, Vakonakis I, Campbell ID. J Mol Biol 425 3060-3072 (2013)
  67. Large-Scale Analysis of Breast Cancer-Related Conformational Changes in Proteins Using Limited Proteolysis. Liu F, Fitzgerald MC. J Proteome Res 15 4666-4674 (2016)
  68. Regulation of aldo-keto-reductase family 1 B10 by 14-3-3ε and their prognostic impact of hepatocellular carcinoma. Liu TA, Jan YJ, Ko BS, Wu YJ, Lu YJ, Liang SM, Liu CC, Chen SC, Wang J, Shyue SK, Liou JY. Oncotarget 6 38967-38982 (2015)
  69. Structural characterization of partially disordered human Chibby: insights into its function in the Wnt-signaling pathway. Mokhtarzada S, Yu C, Brickenden A, Choy WY. Biochemistry 50 715-726 (2011)
  70. The N-terminal sequence of tyrosine hydroxylase is a conformationally versatile motif that binds 14-3-3 proteins and membranes. Skjevik AA, Mileni M, Baumann A, Halskau O, Teigen K, Stevens RC, Martinez A. J Mol Biol 426 150-168 (2014)
  71. 14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression. Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, Thorat R, Basu S, Bhatt K, Hosing AS, Balyan R, Borde L, Kundu TK, Dalal SN. Sci Rep 6 26580 (2016)
  72. Genetic vulnerabilities upon inhibition of DNA damage response. Wang C, Tang M, Chen Z, Nie L, Li S, Xiong Y, Szymonowicz KA, Park JM, Zhang H, Feng X, Huang M, Su D, Hart T, Chen J. Nucleic Acids Res 49 8214-8231 (2021)
  73. Genome-Wide Identification and Characterization of Wheat 14-3-3 Genes Unravels the Role of TaGRF6-A in Salt Stress Tolerance by Binding MYB Transcription Factor. Shao W, Chen W, Zhu X, Zhou X, Jin Y, Zhan C, Liu G, Liu X, Ma D, Qiao Y. Int J Mol Sci 22 1904 (2021)
  74. Identification of Novel 14-3-3 Residues That Are Critical for Isoform-specific Interaction with GluN2C to Regulate N-Methyl-D-aspartate (NMDA) Receptor Trafficking. Chung C, Wu WH, Chen BS. J Biol Chem 290 23188-23200 (2015)
  75. Phosphorylation dependence and stoichiometry of the complex formed by tyrosine hydroxylase and 14-3-3γ. Kleppe R, Rosati S, Jorge-Finnigan A, Alvira S, Ghorbani S, Haavik J, Valpuesta JM, Heck AJ, Martinez A. Mol Cell Proteomics 13 2017-2030 (2014)
  76. Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods. Hu G, Cao Z, Xu S, Wang W, Wang J. Sci Rep 5 16481 (2015)
  77. A third functional isoform enriched in mushroom body neurons is encoded by the Drosophila 14-3-3zeta gene. Messaritou G, Leptourgidou F, Franco M, Skoulakis EM. FEBS Lett 583 2934-2938 (2009)
  78. Chaperone-like activity of monomeric human 14-3-3ζ on different protein substrates. Sluchanko NN, Roman SG, Chebotareva NA, Gusev NB. Arch Biochem Biophys 549 32-39 (2014)
  79. Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. Rezabkova L, Man P, Novak P, Herman P, Vecer J, Obsilova V, Obsil T. J Biol Chem 286 43527-43536 (2011)
  80. Epistatic and gene wide effects in YWHA and aromatic amino hydroxylase genes across ADHD and other common neuropsychiatric disorders: Association with YWHAE. Jacobsen KK, Kleppe R, Johansson S, Zayats T, Haavik J. Am J Med Genet B Neuropsychiatr Genet 168 423-432 (2015)
  81. Insight into conformational change for 14-3-3σ protein by molecular dynamics simulation. Hu G, Li H, Liu JY, Wang J. Int J Mol Sci 15 2794-2810 (2014)
  82. Interaction With 14-3-3 Correlates With Inactivation of the RIG-I Signalosome by Herpesvirus Ubiquitin Deconjugases. Gupta S, Ylä-Anttila P, Sandalova T, Achour A, Masucci MG. Front Immunol 11 437 (2020)
  83. Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. Kopecka M, Kosek D, Kukacka Z, Rezabkova L, Man P, Novak P, Obsil T, Obsilova V. J Biol Chem 289 13948-13961 (2014)
  84. Structural Analysis of the 14-3-3ζ/Chibby Interaction Involved in Wnt/β-Catenin Signaling. Killoran RC, Fan J, Yang D, Shilton BH, Choy WY. PLoS One 10 e0123934 (2015)
  85. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues. Bustad HJ, Skjaerven L, Ying M, Halskau Ø, Baumann A, Rodriguez-Larrea D, Costas M, Underhaug J, Sanchez-Ruiz JM, Martinez A. PLoS One 7 e49671 (2012)
  86. 14-3-3ζ binds to and stabilizes phospho-beclin 1S295 and induces autophagy in hepatocellular carcinoma cells. Tang Y, Zhang Y, Liu S, Sun Z, Wang C, Li L, Zhou W, Cheng S. J Cell Mol Med 24 954-964 (2020)
  87. A Supramolecular Stabilizer of the 14-3-3ζ/ERα Protein-Protein Interaction with a Synergistic Mode of Action. Gigante A, Sijbesma E, Sánchez-Murcia PA, Hu X, Bier D, Bäcker S, Knauer S, Gago F, Ottmann C, Schmuck C. Angew Chem Int Ed Engl 59 5284-5287 (2020)
  88. Chimeric 14-3-3 proteins for unraveling interactions with intrinsically disordered partners. Sluchanko NN, Tugaeva KV, Greive SJ, Antson AA. Sci Rep 7 12014 (2017)
  89. Expression and purification of recombinant human inward rectifier K+ (KCNJ) channels in Saccharomyces cerevisiae. D'Avanzo N, Cheng WW, Xia X, Dong L, Savitsky P, Nichols CG, Doyle DA. Protein Expr Purif 71 115-121 (2010)
  90. PreImplantation factor (PIF*) regulates systemic immunity and targets protective regulatory and cytoskeleton proteins. Barnea ER, Hayrabedyan S, Todorova K, Almogi-Hazan O, Or R, Guingab J, McElhinney J, Fernandez N, Barder T. Immunobiology 221 778-793 (2016)
  91. A robust protocol to map binding sites of the 14-3-3 interactome: Cdc25C requires phosphorylation of both S216 and S263 to bind 14-3-3. Chan PM, Ng YW, Manser E. Mol Cell Proteomics 10 M110.005157 (2011)
  92. Direct interaction of 14-3-3ζ with ezrin promotes cell migration by regulating the formation of membrane ruffle. Chen M, Liu T, Xu L, Gao X, Liu X, Wang C, He Q, Zhang G, Liu L. J Mol Biol 426 3118-3133 (2014)
  93. Macrocycle-stabilization of its interaction with 14-3-3 increases plasma membrane localization and activity of CFTR. Stevers LM, Wolter M, Carlile GW, Macdonald D, Richard L, Gielkens F, Hanrahan JW, Thomas DY, Chakka SK, Peterson ML, Thomas H, Brunsveld L, Ottmann C. Nat Commun 13 3586 (2022)
  94. Upregulation of heat shock protein 70 and the differential protein expression induced by tumor necrosis factor-alpha enhances migration and inhibits apoptosis of hepatocellular carcinoma cell HepG2. Huang BP, Lin CS, Wang CJ, Kao SH. Int J Med Sci 14 284-293 (2017)
  95. 14-3-3ζ reduces DNA damage by interacting with and stabilizing proliferating cell nuclear antigen. Gao X, Dan S, Xie Y, Qin H, Tang D, Liu X, He QY, Liu L. J Cell Biochem 116 158-169 (2015)
  96. Exploring the binding pathways of the 14-3-3ζ protein: Structural and free-energy profiles revealed by Hamiltonian replica exchange molecular dynamics with distancefield distance restraints. Nagy G, Oostenbrink C, Hritz J. PLoS One 12 e0180633 (2017)
  97. G-protein-coupled receptors mediate 14-3-3 signal transduction. Li H, Eishingdrelo A, Kongsamut S, Eishingdrelo H. Signal Transduct Target Ther 1 16018 (2016)
  98. Identification of genes involved in carbon metabolism from Eleusine coracana (L.) for understanding their light-mediated entrainment and regulation. Kanwal P, Gupta S, Arora S, Kumar A. Plant Cell Rep 33 1403-1411 (2014)
  99. Molecular Analysis of 14-3-3 Genes in Citrus sinensis and Their Responses to Different Stresses. Lyu S, Chen G, Pan D, Chen J, She W. Int J Mol Sci 22 E568 (2021)
  100. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β. Weinert M, Millet A, Jonas EA, Alavian KN. FASEB J 33 8925-8934 (2019)
  101. 14-3-3 proteins facilitate the activation of MAP kinase cascades by upstream immunity-related kinases. Dong X, Feng F, Li Y, Li L, Chen S, Zhou JM. Plant Cell 35 2413-2428 (2023)
  102. Diabetes Induced Alterations in Murine Vitreous Proteome Are Mitigated by IL-6 Trans-Signaling Inhibition. Robinson R, Youngblood H, Iyer H, Bloom J, Lee TJ, Chang L, Lukowski Z, Zhi W, Sharma A, Sharma S. Invest Ophthalmol Vis Sci 61 2 (2020)
  103. Dissection of binding between a phosphorylated tyrosine hydroxylase peptide and 14-3-3zeta: A complex story elucidated by NMR. Hritz J, Byeon IJ, Krzysiak T, Martinez A, Sklenar V, Gronenborn AM. Biophys J 107 2185-2194 (2014)
  104. Molecular Dynamics Investigations Suggest a Non-specific Recognition Strategy of 14-3-3σ Protein by Tweezer: Implication for the Inhibition Mechanism. Shi M, Xu D. Front Chem 7 237 (2019)
  105. Role of the 14-3-3 C-terminal region in the interaction with the plasma membrane H+-ATPase. Visconti S, Camoni L, Marra M, Aducci P. Plant Cell Physiol 49 1887-1897 (2008)
  106. The 14-3-3 Protein Homolog ArtA Regulates Development and Secondary Metabolism in the Opportunistic Plant Pathogen Aspergillus flavus. Ibarra BA, Lohmar JM, Satterlee T, McDonald T, Cary JW, Calvo AM. Appl Environ Microbiol 84 e02241-17 (2018)
  107. The weak complex between RhoGAP protein ARHGAP22 and signal regulatory protein 14-3-3 has 1:2 stoichiometry and a single peptide binding mode. Hu SH, Whitten AE, King GJ, Jones A, Rowland AF, James DE, Martin JL. PLoS One 7 e41731 (2012)
  108. MeNINV1: An Alkaline/Neutral Invertase Gene of Manihot esculenta, Enhanced Sucrose Catabolism and Promoted Plant Vegetative Growth in Transgenic Arabidopsis. Wang YJ, Zhen XH, Zhou YJ, Wang YL, Hou JY, Wang X, Li RM, Liu J, Hu XW, Geng MT, Yao Y, Guo JC. Plants (Basel) 11 946 (2022)
  109. YWHAG Mutations Cause Childhood Myoclonic Epilepsy and Febrile Seizures: Molecular Sub-regional Effect and Mechanism. Ye XG, Liu ZG, Wang J, Dai JM, Qiao PX, Gao PM, Liao WP. Front Genet 12 632466 (2021)
  110. CdGAP/ARHGAP31 is regulated by RSK phosphorylation and binding to 14-3-3β adaptor protein. Ben Djoudi Ouadda A, He Y, Calabrese V, Ishii H, Chidiac R, Gratton JP, Roux PP, Lamarche-Vane N. Oncotarget 9 11646-11664 (2018)
  111. Concatenation of 14-3-3 with partner phosphoproteins as a tool to study their interaction. Tugaeva KV, Kalacheva DI, Cooley RB, Strelkov SV, Sluchanko NN. Sci Rep 9 15007 (2019)
  112. Protease-Activatable Scaffold Proteins as Versatile Molecular Hubs in Synthetic Signaling Networks. Aper SJA, den Hamer A, Wouters SFA, Lemmens LJM, Ottmann C, Brunsveld L, Merkx M. ACS Synth Biol 7 2216-2225 (2018)
  113. Role of salt bridges in the dimer interface of 14-3-3ζ in dimer dynamics, N-terminal α-helical order, and molecular chaperone activity. Woodcock JM, Goodwin KL, Sandow JJ, Coolen C, Perugini MA, Webb AI, Pitson SM, Lopez AF, Carver JA. J Biol Chem 293 89-99 (2018)
  114. Screening of a library of T7 phage-displayed peptides identifies alphaC helix in 14-3-3 protein as a CBP501-binding site. Matsumoto Y, Shindo Y, Takakusagi Y, Takakusagi K, Tsukuda S, Kusayanagi T, Sato H, Kawabe T, Sugawara F, Sakaguchi K. Bioorg Med Chem 19 7049-7056 (2011)
  115. Targeting 14-3-3ε activates apoptotic signaling to prevent cutaneous squamous cell carcinoma. Holmes TR, Al Matouq J, Holmes M, Sioda N, Rudd JC, Bloom C, Nicola L, Palermo NY, Madson JG, Lovas S, Hansen LA. Carcinogenesis 42 232-242 (2021)
  116. The interaction between casein kinase Ialpha and 14-3-3 is phosphorylation dependent. Clokie S, Falconer H, Mackie S, Dubois T, Aitken A. FEBS J 276 6971-6984 (2009)
  117. The structure of importin α and the nuclear localization peptide of ChREBP, and small compound inhibitors of ChREBP-importin α interactions. Jung H, Takeshima T, Nakagawa T, MacMillan KS, Wynn RM, Wang H, Sakiyama H, Wei S, Li Y, Bruick RK, Posner BA, De Brabander JK, Uyeda K. Biochem J 477 3253-3269 (2020)
  118. Arginine mimetic appended peptide-based probes for fluorescence turn-on detection of 14-3-3 proteins. Maity D, Gigante A, Sánchez-Murcia PA, Sijbesma E, Li M, Bier D, Mosel S, Knauer S, Ottmann C, Schmuck C. Org Biomol Chem 17 4359-4363 (2019)
  119. Molecular Modeling of Differentially Phosphorylated Serine 10 and Acetylated lysine 9/14 of Histone H3 Regulates their Interactions with 14-3-3ζ, MSK1, and MKP1. Sharma AK, Mansukh A, Varma A, Gadewal N, Gupta S. Bioinform Biol Insights 7 271-288 (2013)
  120. Regulation of H+-pyrophosphatase by 14-3-3 Proteins from Arabidopsis thaliana. Hsu YD, Huang YF, Pan YJ, Huang LK, Liao YY, Lin WH, Liu TY, Lee CH, Pan RL. J Membr Biol 251 263-276 (2018)
  121. Regulation of tyrosine hydroxylase is preserved across different homo- and heterodimeric 14-3-3 proteins. Ghorbani S, Fossbakk A, Jorge-Finnigan A, Flydal MI, Haavik J, Kleppe R. Amino Acids 48 1221-1229 (2016)
  122. The binding of 14-3-3γ to membranes studied by intrinsic fluorescence spectroscopy. Bustad HJ, Underhaug J, Halskau O, Martinez A. FEBS Lett 585 1163-1168 (2011)
  123. The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors. Trcka F, Durech M, Vankova P, Vandova V, Simoncik O, Kavan D, Vojtesek B, Muller P, Man P. J Biol Chem 295 8928-8944 (2020)
  124. YWHAG Deficiency Disrupts the EMT-Associated Network to Induce Oxidative Cell Death and Prevent Metastasis. Lee JXT, Tan WR, Low ZS, Lee JQ, Chua D, Yeo WDC, See B, Vos MIG, Yasuda T, Nomura S, Cheng HS, Tan NS. Adv Sci (Weinh) 10 e2301714 (2023)
  125. A Cytosolic Multiprotein Complex Containing p85α Is Required for β-Catenin Activation in Colitis and Colitis-associated Cancer. Goretsky T, Bradford EM, Ryu H, Tahir M, Moyer MP, Gao T, Li L, Barrett TA. J Biol Chem 291 4166-4177 (2016)
  126. A new class of supramolecular ligands stabilizes 14-3-3 protein-protein interactions by up to two orders of magnitude. Gigante A, Grad JN, Briels J, Bartel M, Hoffmann D, Ottmann C, Schmuck C. Chem Commun (Camb) 55 111-114 (2018)
  127. Free energy calculations on the stability of the 14-3-3ζ protein. Jandova Z, Trosanova Z, Weisova V, Oostenbrink C, Hritz J. Biochim Biophys Acta Proteins Proteom 1866 442-450 (2018)
  128. Identification of Inhibitors of Pseudomonas aeruginosa Exotoxin-S ADP-Ribosyltransferase Activity. Pinto AF, Ebrahimi M, Saleeb M, Forsberg Å, Elofsson M, Schüler H. J Biomol Screen 21 590-595 (2016)
  129. Probing the 14-3-3 Isoform-Specificity Profile of Protein-Protein Interactions Stabilized by Fusicoccin A. Sengupta A, Liriano J, Bienkiewicz EA, Miller BG, Frederich JH. ACS Omega 5 25029-25035 (2020)
  130. Similarity of the non-amyloid-β component and C-terminal tail of monomeric and tetrameric alpha-synuclein with 14-3-3 sigma. Evans SR, West C, Klein-Seetharaman J. Comput Struct Biotechnol J 19 5348-5359 (2021)
  131. The Integration of Proteome-Wide PTM Data with Protein Structural and Sequence Features Identifies Phosphorylations that Mediate 14-3-3 Interactions. Egbert CM, Warr LR, Pennington KL, Thornton MM, Vaughan AJ, Ashworth SW, Heaton MJ, English N, Torres MP, Andersen JL. J Mol Biol 435 167890 (2023)
  132. 14-3-3ε acts as a proviral factor in highly pathogenic porcine reproductive and respiratory syndrome virus infection. Cao S, Cong F, Tan M, Ding G, Liu J, Li L, Zhao Y, Liu S, Xiao Y. Vet Res 50 16 (2019)
  133. Cleavage of 14-3-3ε by the enteroviral 3C protease dampens RIG-I-mediated antiviral signaling. Andrews DDT, Vlok M, Akbari Bani D, Hay BN, Mohamud Y, Foster LJ, Luo H, Overall CM, Jan E. J Virol 97 e0060423 (2023)
  134. Effect of Arginine on Chaperone-Like Activity of HspB6 and Monomeric 14-3-3ζ. Mikhaylova VV, Eronina TB, Chebotareva NA, Shubin VV, Kalacheva DI, Kurganov BI. Int J Mol Sci 21 E2039 (2020)
  135. Genetic encoding of 3-nitro-tyrosine reveals the impacts of 14-3-3 nitration on client binding and dephosphorylation. Zhu P, Nguyen KT, Estelle AB, Sluchanko NN, Mehl RA, Cooley RB. Protein Sci 32 e4574 (2023)
  136. Genome-wide identification and gene expression analysis of the 14-3-3 gene family in potato (Solanum tuberosum L.). He F, Duan S, Jian Y, Xu J, Hu J, Zhang Z, Lin T, Cheng F, Li G. BMC Genomics 23 811 (2022)
  137. Heterologous fermentation of a diterpene from Alternaria brassisicola. Arens J, Bergs D, Mewes M, Merz J, Schembecker G, Schulz F. Mycology 5 207-219 (2014)
  138. Protein Carbonylation in Patients with Myelodysplastic Syndrome: An Opportunity for Deferasirox Therapy. Rodríguez-García A, Morales ML, Garrido-García V, García-Baquero I, Leivas A, Carreño-Tarragona G, Sánchez R, Arenas A, Cedena T, Ayala RM, Bautista JM, Martínez-López J, Linares M. Antioxidants (Basel) 8 E508 (2019)
  139. Superhelical DNA as a preferential binding target of 14-3-3γ protein. Brázda V, Cechová J, Coufal J, Rumpel S, Jagelská EB. J Biomol Struct Dyn 30 371-378 (2012)
  140. The application of an emerging technique for protein-protein interaction interface mapping: the combination of photo-initiated cross-linking protein nanoprobes with mass spectrometry. Ptáčková R, Ječmen T, Novák P, Hudeček J, Stiborová M, Šulc M. Int J Mol Sci 15 9224-9241 (2014)
  141. 14-3-3τ drives estrogen receptor loss via ERα36 induction and GATA3 inhibition in breast cancer. Garan LAW, Xiao Y, Lin WC. Proc Natl Acad Sci U S A 119 e2209211119 (2022)
  142. Arsenic trioxide enhances the chemotherapeutic efficiency of cisplatin in cholangiocarcinoma cells via inhibiting the 14-3-3ε-mediated survival mechanism. Jin M, Wu L, Chen S, Cai R, Dai Y, Yang H, Tang L, Li Y. Cell Death Discov 6 92 (2020)
  143. Cloning and characterization of the 14-3-3 protein gene from the halotolerant alga Dunaliella salina. Wang T, Xue L, Ji X, Li J, Wang Y, Feng Y. Mol Biol Rep 36 207-214 (2009)
  144. Fragment Screening Yields a Small-Molecule Stabilizer of 14-3-3 Dimers That Modulates Client Protein Interactions. Brink HJ, Riemens R, Thee S, Beishuizen B, da Costa Pereira D, Wijtmans M, de Esch I, Smit MJ, de Boer AH. Chembiochem 23 e202200178 (2022)
  145. Interaction between 14-3-3β and PrP influences the dimerization of 14-3-3 and fibrillization of PrP106-126. Han J, Song QQ, Sun P, Zhang J, Wang X, Song J, Li GQ, Liu YH, Mei GY, Shi Q, Tian C, Chen C, Gao C, Zhao B, Dong XP. Int J Biochem Cell Biol 47 20-28 (2014)
  146. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability. Seo GW, Jo YH, Seong JH, Park KB, Patnaik BB, Tindwa H, Kim SA, Lee YS, Kim YJ, Han YS. Genes (Basel) 7 E53 (2016)
  147. The Systemic Lupus Erythematosus-Associated Single Nucleotide Polymorphism rs1143678 in Integrin αM Cytoplasmic Tail Generates a 14-3-3ζ Binding Site That Is Proinflammatory. Ong LT, Tan HF, Feng C, Qu J, Loh SC, Bhattacharyya S, Tan SM. J Immunol 198 883-894 (2017)
  148. The regulatory protein 14-3-3β binds to the IQ motifs of myosin-IC independent of phosphorylation. Ji HH, Ostap EM. J Biol Chem 295 3749-3756 (2020)
  149. Understanding the interaction of 14-3-3 proteins with hDMX and hDM2: a structural and biophysical study. Srdanović S, Wolter M, Trinh CH, Ottmann C, Warriner SL, Wilson AJ. FEBS J 289 5341-5358 (2022)
  150. 14-3-3-β and -{varepsilon} contribute to activation of the osmoprotective transcription factor NFAT5 by increasing its protein abundance and its transactivating activity. Izumi Y, Burg MB, Ferraris JD. Physiol Rep 2 e12000 (2014)
  151. Activation of the transcription of Gal4-regulated genes by Physarum 14-3-3 in yeast is related to dimer-binding motif-2 and three phosphorylation sites. Liu S, Li M, Zhang J, Kang K, Tian S, Wang Y, Xing M. Arch Microbiol 192 33-40 (2010)
  152. Letter Bermuda Principles meet structural biology. Edwards A. Nat Struct Mol Biol 15 116 (2008)
  153. Crystal structure of potato 14-3-3 protein St14f revealed the importance of helix I in StFDL1 recognition. Harada KI, Furuita K, Yamashita E, Taoka KI, Tsuji H, Fujiwara T, Nakagawa A, Kojima C. Sci Rep 12 11596 (2022)
  154. GNIP1 functions both as a scaffold protein and an E3 ubiquitin ligase to regulate autophagy in lung cancer. Zhou F, Liu Y, Ai W, Wang Y, Gan M, Jiang Q, Han T, Wang JB. Cell Commun Signal 20 133 (2022)
  155. Identification of the 14-3-3 Gene Family in Bamboo and Characterization of Pe14-3-3b Reveals Its Potential Role in Promoting Growth. Guo D, Zhu C, Yang K, Liu Y, Xiao X, Li Z, Gao Z. Int J Mol Sci 23 11221 (2022)
  156. Proteomic analysis of selective cytotoxic anticancer properties of flavonoids isolated from Citrus platymamma on A549 human lung cancer cells. Nagappan A, Venkatarame Gowda Saralamma V, Hong GE, Lee HJ, Shin SC, Kim EH, Lee WS, Kim GS. Mol Med Rep 14 3814-3822 (2016)
  157. Serum 14-3-3η protein is associated with clinical and serologic features of Sjögren's syndrome in patients with systemic lupus erythematosus: a cross-sectional analysis. Hammam N, Gamal NM, Elzohri MH, Elsonbaty AM, Rashed AM, Eldaly ZH, Tarik D, Gheita TA. Clin Rheumatol 39 2603-2610 (2020)
  158. Voltage sensors of a Na+ channel dissociate from the pore domain and form inter-channel dimers in the resting state. Sumino A, Sumikama T, Shibata M, Irie K. Nat Commun 14 7835 (2023)
  159. Will 14-3-3η Be a New Diagnostic and Prognostic Biomarker in Rheumatoid Arthritis? A Prospective Study of Its Utility in Early Diagnosis and Response to Treatment. Alashkar DS, Elkhouly RM, Abd Elnaby AY, Nada DW. Autoimmune Dis 2022 1497748 (2022)
  160. Characterizing the protein-protein interaction between MDM2 and 14-3-3σ; proof of concept for small molecule stabilization. Ward JA, Romartinez-Alonso B, Kay DF, Bellamy-Carter J, Thurairajah B, Basran J, Kwon H, Leney AC, Macip S, Roversi P, Muskett FW, Doveston RG. J Biol Chem 300 105651 (2024)
  161. Different phosphorylation and farnesylation patterns tune Rnd3-14-3-3 interaction in distinct mechanisms. Hu J, Sun XM, Su JY, Zhao YF, Chen YX. Chem Sci 12 4432-4442 (2021)
  162. Expanding the repertoire of human tandem repeat RNA-binding proteins. Ormazábal A, Carletti MS, Saldaño TE, Gonzalez Buitron M, Marchetti J, Palopoli N, Bateman A. PLoS One 18 e0290890 (2023)
  163. Formation of amyloid fibrils by the regulatory 14-3-3ζ protein. Šulskis D, Žiaunys M, Sakalauskas A, Sniečkutė R, Smirnovas V. Open Biol 14 230285 (2024)
  164. Genome-Wide Identification of 14-3-3 gene family reveals their diverse responses to abiotic stress by interacting with StABI5 in Potato (Solanum tuberosum L.). Wang Q, Yan C, Fu Y, Wang Y, Jiang P, Ding Y, Liao H. Front Plant Sci 13 1090571 (2022)
  165. Genome-wide analysis of 14-3-3 gene family in four gramineae and its response to mycorrhizal symbiosis in maize. Wang Y, Xu Q, Shan H, Ni Y, Xu M, Xu Y, Cheng B, Li X. Front Plant Sci 14 1117879 (2023)
  166. Interacting domains of P14-3-3 and actin involved in protein-protein interactions of living cells. Luo D, Yang Y, Guo J, Zhang J, Guo Z, Liu S, Tian S. Arch Microbiol 193 651-663 (2011)
  167. MK2 nonenzymatically promotes nuclear translocation of caspase-3 and resultant apoptosis. Del Rosario O, Suresh K, Kallem M, Singh G, Shah A, Zheng L, Yun X, Philip NM, Putcha N, McClure MB, Jiang H, D'Alessio F, Srivastava M, Bera A, Shimoda LA, Merchant M, Rane MJ, Machamer CE, Mock J, Hagan R, Koch AL, Punjabi NM, Kolb TM, Damarla M. Am J Physiol Lung Cell Mol Physiol 324 L700-L711 (2023)
  168. Molecular analysis of the 14-3-3 genes in Panax ginseng and their responses to heat stress. Wang Q, Peng W, Rong J, Zhang M, Jia W, Lei X, Wang Y. PeerJ 11 e15331 (2023)
  169. Optimizing Phosphopeptide Structures That Target 14-3-3ε in Cutaneous Squamous Cell Carcinoma. Kamayirese S, Maity S, Dieckman LM, Hansen LA, Lovas S. ACS Omega 9 2719-2729 (2024)
  170. Case Reports Refining the Clinical Spectrum of the 17p13.3 Microduplication Syndrome: Case-Report of a Familial Small Microduplication. Da Silva JD, Gonzaga D, Barreta A, Correia H, Fortuna AM, Soares AR, Tkachenko N. Biomedicines 10 3078 (2022)
  171. Structural insights into regulation of the PEAK3 pseudokinase scaffold by 14-3-3. Torosyan H, Paul MD, Forget A, Lo M, Diwanji D, Pawłowski K, Krogan NJ, Jura N, Verba KA. Nat Commun 14 3543 (2023)
  172. Switchable Control of Scaffold Protein Activity via Engineered Phosphoregulated Autoinhibition. Hazegh Nikroo A, Lemmens LJM, Wezeman T, Ottmann C, Merkx M, Brunsveld L. ACS Synth Biol 11 2464-2472 (2022)
  173. 14-3-3 proteins regulate cullin 7-mediated Eag1 degradation. Hsieh CH, Chou CC, Fang YC, Hsu PH, Chiu YH, Yang CS, Jow GM, Tang CY, Jeng CJ. Cell Biosci 13 18 (2023)
  174. 14-3-3η Proteins as a Diagnostic Marker, Disease Activation Indicator, and Lymphoma Predictor in Patients with Primary Sjögren Syndrome. Kor A, Yalçın M, Erten Ş, Maraş Y, Oğuz EF, Doğan İ, Atalar E, Başer S, Erel Ö. Arch Iran Med 26 582-591 (2023)
  175. A heterozygous missense variant in the YWHAG gene causing developmental and epileptic encephalopathy 56 in a Chinese family. Yi Z, Song Z, Xue J, Yang C, Li F, Pan H, Feng X, Zhang Y, Pan H. BMC Med Genomics 15 216 (2022)
  176. A ubiquitination-mediated degradation system to target 14-3-3-binding phosphoproteins. Li Z, Huang X, Li M, Chen YE, Wang Z, Liu L. Heliyon 9 e16318 (2023)
  177. Arnicolide C Suppresses Tumor Progression by Targeting 14-3-3θ in Breast Cancer. Liu Z, Lyu X, Chen J, Zhang B, Xie S, Yuan Y, Sun L, Yuan S, Yu H, Ding J, Yang M. Pharmaceuticals (Basel) 17 224 (2024)
  178. Dissecting structure and function of the monovalent cation/H+ antiporters Mdm38 and Ylh47 in Saccharomyces cerevisiae. Tsujii M, Tanudjaja E, Zhang H, Shimizukawa H, Konishi A, Furuta T, Ishimaru Y, Uozumi N. J Bacteriol 206 e0018224 (2024)
  179. Evaluation of the relationship between the 14-3-3ε protein and LvRab11 in the shrimp Litopenaeus vannamei during WSSV infection. Boonyoung G, Panrat T, Phongdara A, Wanna W. Sci Rep 11 19188 (2021)
  180. Exploring the Binding Mechanism of a Supramolecular Tweezer CLR01 to 14-3-3σ Protein via Well-Tempered Metadynamics. Zhou X, Shi M, Wang X, Xu D. Front Chem 10 921695 (2022)
  181. Fragment-Based Interrogation of the 14-3-3/TAZ Protein-Protein Interaction. Andlovic B, Valenti D, Centorrino F, Picarazzi F, Hristeva S, Hiltmann M, Wolf A, Cantrelle FX, Mori M, Landrieu I, Levy LM, Klebl B, Tzalis D, Genski T, Eickhoff J, Ottmann C. Biochemistry 63 2196-2206 (2024)
  182. In Silico Studies on GCP-Lys-OMe as a Potential 14-3-3σ Homodimer Stabilizer. Aljabal G, Yap BK. Pharmaceuticals (Basel) 15 1290 (2022)
  183. MAPKAP Kinase-2 phosphorylation of PABPC1 controls its interaction with 14-3-3 proteins after DNA damage: A combined kinase and protein array approach. Stehn JR, Floyd SR, Wilker EW, Reinhardt HC, Clarke SM, Huang Q, Polakiewicz RD, Sonenberg N, Kong YW, Yaffe MB. Front Mol Biosci 10 1148933 (2023)
  184. Role of two modules controlling the interaction between SKAP1 and SRC kinases comparison with SKAP2 architecture and consequences for evolution. Levillayer L, Brighelli C, Demeret C, Sakuntabhai A, Bureau JF. PLoS One 19 e0296230 (2024)
  185. Target Identification of a Class of Pyrazolone Protein Aggregation Inhibitor Therapeutics for Amyotrophic Lateral Sclerosis. Weerawarna PM, Schiefer IT, Soares P, Fox S, Morimoto RI, Melani RD, Kelleher NL, Luan CH, Silverman RB. ACS Cent Sci 10 87-103 (2024)
  186. Temporal regulation of MDA5 inactivation by Caspase-3 dependent cleavage of 14-3-3η. Chan YJ, Liu NT, Hsin F, Lu JY, Lin JY, Liu HM. PLoS Pathog 20 e1012287 (2024)
  187. The dispensability of 14-3-3 proteins for the regulation of human cardiac sodium channel Nav1.5. Iamshanova O, Hämmerli AF, Ramaye E, Seljmani A, Ross-Kaschitza D, Schärz N, Essers M, Guichard S, Rougier JS, Abriel H. PLoS One 19 e0298820 (2024)
  188. Tracking the mechanism of covalent molecular glue stabilization using native mass spectrometry. Verhoef CJA, Kay DF, van Dijck L, Doveston RG, Brunsveld L, Leney AC, Cossar PJ. Chem Sci 14 6756-6762 (2023)