2bys Citations

Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations.

EMBO J 24 3635-46 (2005)
Related entries: 2byn, 2byp, 2byq, 2byr

Cited: 412 times
EuropePMC logo PMID: 16193063

Abstract

Upon ligand binding at the subunit interfaces, the extracellular domain of the nicotinic acetylcholine receptor undergoes conformational changes, and agonist binding allosterically triggers opening of the ion channel. The soluble acetylcholine-binding protein (AChBP) from snail has been shown to be a structural and functional surrogate of the ligand-binding domain (LBD) of the receptor. Yet, individual AChBP species display disparate affinities for nicotinic ligands. The crystal structure of AChBP from Aplysia californica in the apo form reveals a more open loop C and distinctive positions for other surface loops, compared with previous structures. Analysis of Aplysia AChBP complexes with nicotinic ligands shows that loop C, which does not significantly change conformation upon binding of the antagonist, methyllycaconitine, further opens to accommodate the peptidic antagonist, alpha-conotoxin ImI, but wraps around the agonists lobeline and epibatidine. The structures also reveal extended and nonoverlapping interaction surfaces for the two antagonists, outside the binding loci for agonists. This comprehensive set of structures reflects a dynamic template for delineating further conformational changes of the LBD of the nicotinic receptor.

Reviews - 2bys mentioned but not cited (2)

  1. Structure-guided drug design: conferring selectivity among neuronal nicotinic receptor and acetylcholine-binding protein subtypes. Taylor P, Talley TT, Radic' Z, Hansen SB, Hibbs RE, Shi J. Biochem Pharmacol 74 1164-1171 (2007)
  2. Size matters in activation/inhibition of ligand-gated ion channels. Du J, Dong H, Zhou HX. Trends Pharmacol Sci 33 482-493 (2012)

Articles - 2bys mentioned but not cited (18)

  1. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P, Bourne Y. EMBO J 24 3635-3646 (2005)
  2. Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal alpha7 nicotinic acetylcholine receptor. Hibbs RE, Sulzenbacher G, Shi J, Talley TT, Conrod S, Kem WR, Taylor P, Marchot P, Bourne Y. EMBO J 28 3040-3051 (2009)
  3. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. Forli S, Olson AJ. J Med Chem 55 623-638 (2012)
  4. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Richter L, de Graaf C, Sieghart W, Varagic Z, Mörzinger M, de Esch IJ, Ecker GF, Ernst M. Nat Chem Biol 8 455-464 (2012)
  5. A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cys-loop receptors. Brams M, Pandya A, Kuzmin D, van Elk R, Krijnen L, Yakel JL, Tsetlin V, Smit AB, Ulens C. PLoS Biol 9 e1001034 (2011)
  6. Molecular actions of smoking cessation drugs at α4β2 nicotinic receptors defined in crystal structures of a homologous binding protein. Billen B, Spurny R, Brams M, van Elk R, Valera-Kummer S, Yakel JL, Voets T, Bertrand D, Smit AB, Ulens C. Proc Natl Acad Sci U S A 109 9173-9178 (2012)
  7. An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors. Jadey S, Auerbach A. J Gen Physiol 140 17-28 (2012)
  8. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What? Puthenkalam R, Hieckel M, Simeone X, Suwattanasophon C, Feldbauer RV, Ecker GF, Ernst M. Front Mol Neurosci 9 44 (2016)
  9. Rational design of alpha-conotoxin analogues targeting alpha7 nicotinic acetylcholine receptors: improved antagonistic activity by incorporation of proline derivatives. Armishaw C, Jensen AA, Balle T, Clark RJ, Harpsøe K, Skonberg C, Liljefors T, Strømgaard K. J Biol Chem 284 9498-9512 (2009)
  10. Generation of candidate ligands for nicotinic acetylcholine receptors via in situ click chemistry with a soluble acetylcholine binding protein template. Grimster NP, Stump B, Fotsing JR, Weide T, Talley TT, Yamauchi JG, Nemecz Á, Kim C, Ho KY, Sharpless KB, Taylor P, Fokin VV. J Am Chem Soc 134 6732-6740 (2012)
  11. Design, synthesis, and structure-activity relationships of highly potent 5-HT₃ receptor ligands. Verheij MH, Thompson AJ, van Muijlwijk-Koezen JE, Lummis SC, Leurs R, de Esch IJ. J Med Chem 55 8603-8614 (2012)
  12. A virtual screening study of the acetylcholine binding protein using a relaxed-complex approach. Babakhani A, Talley TT, Taylor P, McCammon JA. Comput Biol Chem 33 160-170 (2009)
  13. Conformational changes in acetylcholine binding protein investigated by temperature accelerated molecular dynamics. Mohammad Hosseini Naveh Z, Malliavin TE, Maragliano L, Cottone G, Ciccotti G. PLoS One 9 e88555 (2014)
  14. Computational neural network analysis of the affinity of lobeline and tetrabenazine analogs for the vesicular monoamine transporter-2. Zheng F, Zheng G, Deaciuc AG, Zhan CG, Dwoskin LP, Crooks PA. Bioorg Med Chem 15 2975-2992 (2007)
  15. In vivo orientation of single myosin lever arms in zebrafish skeletal muscle. Sun X, Ekker SC, Shelden EA, Takubo N, Wang Y, Burghardt TP. Biophys J 107 1403-1414 (2014)
  16. Enhanced meta-analysis of acetylcholine binding protein structures reveals conformational signatures of agonism in nicotinic receptors. Stober ST, Abrams CF. Protein Sci 21 307-317 (2012)
  17. Structure-activity relationships of quinoxaline-based 5-HT3A and 5-HT3AB receptor-selective ligands. Thompson AJ, Verheij MH, van Muijlwijk-Koezen JE, Lummis SC, Leurs R, de Esch IJ. ChemMedChem 8 946-955 (2013)
  18. In Silico Finding of Key Interaction Mediated α3β4 and α7 Nicotinic Acetylcholine Receptor Ligand Selectivity of Quinuclidine-Triazole Chemotype. Arunrungvichian K, Chongruchiroj S, Sarasamkan J, Schüürmann G, Brust P, Vajragupta O. Int J Mol Sci 21 E6189 (2020)


Reviews citing this publication (75)

  1. Mammalian nicotinic acetylcholine receptors: from structure to function. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Physiol Rev 89 73-120 (2009)
  2. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Gotti C, Zoli M, Clementi F. Trends Pharmacol Sci 27 482-491 (2006)
  3. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP. Nat Rev Drug Discov 8 733-750 (2009)
  4. Recent advances in Cys-loop receptor structure and function. Sine SM, Engel AG. Nature 440 448-455 (2006)
  5. Structural and functional diversity of native brain neuronal nicotinic receptors. Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, Moretti M, Pedrazzi P, Pucci L, Zoli M. Biochem Pharmacol 78 703-711 (2009)
  6. Conus venom peptide pharmacology. Lewis RJ, Dutertre S, Vetter I, Christie MJ. Pharmacol Rev 64 259-298 (2012)
  7. The structural basis of function in Cys-loop receptors. Thompson AJ, Lester HA, Lummis SC. Q Rev Biophys 43 449-499 (2010)
  8. Binding, activation and modulation of Cys-loop receptors. Miller PS, Smart TG. Trends Pharmacol Sci 31 161-174 (2010)
  9. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. FEBS J 274 3799-3845 (2007)
  10. Discovery, synthesis, and structure-activity relationships of conotoxins. Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Chem Rev 114 5815-5847 (2014)
  11. Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Corringer PJ, Poitevin F, Prevost MS, Sauguet L, Delarue M, Changeux JP. Structure 20 941-956 (2012)
  12. Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Miwa JM, Freedman R, Lester HA. Neuron 70 20-33 (2011)
  13. Optochemical genetics. Fehrentz T, Schönberger M, Trauner D. Angew Chem Int Ed Engl 50 12156-12182 (2011)
  14. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors. Azam L, McIntosh JM. Acta Pharmacol Sin 30 771-783 (2009)
  15. Merging old and new perspectives on nicotinic acetylcholine receptors. Papke RL. Biochem Pharmacol 89 1-11 (2014)
  16. Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels. Nemecz Á, Prevost MS, Menny A, Corringer PJ. Neuron 90 452-470 (2016)
  17. Use of venom peptides to probe ion channel structure and function. Dutertre S, Lewis RJ. J Biol Chem 285 13315-13320 (2010)
  18. Insight in nAChR subtype selectivity from AChBP crystal structures. Rucktooa P, Smit AB, Sixma TK. Biochem Pharmacol 78 777-787 (2009)
  19. Structural insights into Cys-loop receptor function and ligand recognition. Nys M, Kesters D, Ulens C. Biochem Pharmacol 86 1042-1053 (2013)
  20. Conotoxins targeting nicotinic acetylcholine receptors: an overview. Lebbe EK, Peigneur S, Wijesekara I, Tytgat J. Mar Drugs 12 2970-3004 (2014)
  21. The gating isomerization of neuromuscular acetylcholine receptors. Auerbach A. J Physiol 588 573-586 (2010)
  22. Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. Corringer PJ, Baaden M, Bocquet N, Delarue M, Dufresne V, Nury H, Prevost M, Van Renterghem C. J Physiol 588 565-572 (2010)
  23. End-plate acetylcholine receptor: structure, mechanism, pharmacology, and disease. Sine SM. Physiol Rev 92 1189-1234 (2012)
  24. Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Jeschke P, Nauen R, Beck ME. Angew Chem Int Ed Engl 52 9464-9485 (2013)
  25. Allosteric receptors: from electric organ to cognition. Changeux JP. Annu Rev Pharmacol Toxicol 50 1-38 (2010)
  26. Regulation of neuronal nicotinic receptor traffic and expression. Gaimarri A, Moretti M, Riganti L, Zanardi A, Clementi F, Gotti C. Brain Res Rev 55 134-143 (2007)
  27. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Biochem Pharmacol 181 114096 (2020)
  28. Gating of pentameric ligand-gated ion channels: structural insights and ambiguities. daCosta CJ, Baenziger JE. Structure 21 1271-1283 (2013)
  29. Inside-out neuropharmacology of nicotinic drugs. Henderson BJ, Lester HA. Neuropharmacology 96 178-193 (2015)
  30. Diverse actions and target-site selectivity of neonicotinoids: structural insights. Matsuda K, Kanaoka S, Akamatsu M, Sattelle DB. Mol Pharmacol 76 1-10 (2009)
  31. 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Baenziger JE, Corringer PJ. Neuropharmacology 60 116-125 (2011)
  32. Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Tsetlin V, Utkin Y, Utkin Y, Kasheverov I. Biochem Pharmacol 78 720-731 (2009)
  33. Synaptic neurotransmitter-gated receptors. Smart TG, Paoletti P. Cold Spring Harb Perspect Biol 4 a009662 (2012)
  34. Structures of sea anemone toxins. Norton RS. Toxicon 54 1075-1088 (2009)
  35. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Dutertre S, Nicke A, Tsetlin VI. Neuropharmacology 127 196-223 (2017)
  36. The therapeutic potential of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. Beinat C, Banister SD, Herrera M, Law V, Kassiou M. CNS Drugs 29 529-542 (2015)
  37. The concept of allosteric modulation: an overview. Changeux JP. Drug Discov Today Technol 10 e223-8 (2013)
  38. The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Minor DL. Neuron 54 511-533 (2007)
  39. Gating of nicotinic ACh receptors; new insights into structural transitions triggered by agonist binding that induce channel opening. Gay EA, Yakel JL. J Physiol 584 727-733 (2007)
  40. Structural basis of activation of cys-loop receptors: the extracellular-transmembrane interface as a coupling region. Bartos M, Corradi J, Bouzat C. Mol Neurobiol 40 236-252 (2009)
  41. Diverse strategies targeting α7 homomeric and α6β2* heteromeric nicotinic acetylcholine receptors for smoking cessation. Brunzell DH, McIntosh JM, Papke RL. Ann N Y Acad Sci 1327 27-45 (2014)
  42. Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Abraham N, Lewis RJ. Mar Drugs 16 E208 (2018)
  43. Structural studies of conotoxins. Daly NL, Craik DJ. IUBMB Life 61 144-150 (2009)
  44. Progress in nicotinic receptor structural biology. Gharpure A, Noviello CM, Hibbs RE. Neuropharmacology 171 108086 (2020)
  45. Gating of nicotinic ACh receptors: latest insights into ligand binding and function. Yakel JL. J Physiol 588 597-602 (2010)
  46. Recent advances in understanding the structure of nicotinic acetylcholine receptors. Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. IUBMB Life 61 407-423 (2009)
  47. Functional probes of drug-receptor interactions implicated by structural studies: Cys-loop receptors provide a fertile testing ground. Van Arnam EB, Dougherty DA. J Med Chem 57 6289-6300 (2014)
  48. Principles of agonist recognition in Cys-loop receptors. Lynagh T, Pless SA. Front Physiol 5 160 (2014)
  49. Synthetic α-conotoxin mutants as probes for studying nicotinic acetylcholine receptors and in the development of novel drug leads. Armishaw CJ. Toxins (Basel) 2 1471-1499 (2010)
  50. What single-channel analysis tells us of the activation mechanism of ligand-gated channels: the case of the glycine receptor. Sivilotti LG. J Physiol 588 45-58 (2010)
  51. Therapeutic Targeting of α7 Nicotinic Acetylcholine Receptors. Papke RL, Horenstein NA. Pharmacol Rev 73 1118-1149 (2021)
  52. Glycine receptor mouse mutants: model systems for human hyperekplexia. Schaefer N, Langlhofer G, Kluck CJ, Villmann C. Br J Pharmacol 170 933-952 (2013)
  53. Structural answers and persistent questions about how nicotinic receptors work. Wells GB. Front Biosci 13 5479-5510 (2008)
  54. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate. Shahsavar A, Gajhede M, Kastrup JS, Balle T. Basic Clin Pharmacol Toxicol 118 399-407 (2016)
  55. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Ho TNT, Abraham N, Lewis RJ. Front Neurosci 14 609005 (2020)
  56. Allosteric activation mechanism of the cys-loop receptors. Chang YC, Wu W, Zhang JL, Huang Y. Acta Pharmacol Sin 30 663-672 (2009)
  57. The subunit arrangement and assembly of ionotropic receptors. Barrera NP, Edwardson JM. Trends Neurosci 31 569-576 (2008)
  58. Understanding structure-function relationships of the human neuronal acetylcholine receptor: insights from the first crystal structures of neuronal subunits. Giastas P, Zouridakis M, Tzartos SJ. Br J Pharmacol 175 1880-1891 (2018)
  59. Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins. Kudryavtsev D, Shelukhina I, Vulfius C, Makarieva T, Stonik V, Zhmak M, Ivanov I, Kasheverov I, Utkin Y, Utkin Y, Tsetlin V. Toxins (Basel) 7 1683-1701 (2015)
  60. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Iturriaga-Vásquez P, Alzate-Morales J, Bermudez I, Varas R, Reyes-Parada M. Pharmacol Res 101 9-17 (2015)
  61. The role of Loop F in the activation of the GABA receptor. Khatri A, Weiss DS. J Physiol 588 59-66 (2010)
  62. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Turner MW, Marquart LA, Phillips PD, McDougal OM. Toxins (Basel) 11 E113 (2019)
  63. Pore structure of the Cys-loop ligand-gated ion channels. Absalom NL, Schofield PR, Lewis TM. Neurochem Res 34 1805-1815 (2009)
  64. Recent advances in the synthesis of C-terminally modified peptides. Arbour CA, Mendoza LG, Stockdill JL. Org Biomol Chem 18 7253-7272 (2020)
  65. Molecular mechanisms of acetylcholine receptor-lipid interactions: from model membranes to human biology. Baenziger JE, daCosta CJB. Biophys Rev 5 1-9 (2013)
  66. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs. Lin B, Xiang S, Li M. Mar Drugs 14 E173 (2016)
  67. Mechanism of Allosteric Modulation of the Cys-loop Receptors. Chang Y, Huang Y, Whiteaker P. Pharmaceuticals (Basel) 3 2592-2609 (2010)
  68. Nicotinic receptor pharmacology in silico: Insights and challenges. Gulsevin A. Neuropharmacology 177 108257 (2020)
  69. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors. Molgó J, Aráoz R, Benoit E, Iorga BI. Expert Opin Drug Discov 8 1203-1223 (2013)
  70. EPR Studies of Gating Mechanisms in Ion Channels. Chakrapani S. Methods Enzymol 557 279-306 (2015)
  71. In Silico Modeling of the α7 Nicotinic Acetylcholine Receptor: New Pharmacological Challenges Associated with Multiple Modes of Signaling. Gulsevin A, Papke RL, Horenstein N. Mini Rev Med Chem 20 841-864 (2020)
  72. Modelling the interactions between animal venom peptides and membrane proteins. Hung A, Kuyucak S, Schroeder CI, Kaas Q. Neuropharmacology 127 20-31 (2017)
  73. Photopharmacology of Ion Channels through the Light of the Computational Microscope. Nin-Hill A, Mueller NPF, Molteni C, Rovira C, Alfonso-Prieto M. Int J Mol Sci 22 12072 (2021)
  74. Targeting Alpha7 Nicotinic Acetylcholine Receptors in Lung Cancer: Insights, Challenges, and Therapeutic Strategies. Arunrungvichian K, Vajragupta O, Hayakawa Y, Pongrakhananon V. ACS Pharmacol Transl Sci 7 28-41 (2024)
  75. What We Have Gained from Ibogaine: α3β4 Nicotinic Acetylcholine Receptor Inhibitors as Treatments for Substance Use Disorders. Straub CJ, Rusali LE, Kremiller KM, Riley AP. J Med Chem 66 107-121 (2023)

Articles citing this publication (317)

  1. Principles of activation and permeation in an anion-selective Cys-loop receptor. Hibbs RE, Gouaux E. Nature 474 54-60 (2011)
  2. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, Corringer PJ. Nature 457 111-114 (2009)
  3. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Hilf RJ, Dutzler R. Nature 452 375-379 (2008)
  4. Crystal structure of a human GABAA receptor. Miller PS, Aricescu AR. Nature 512 270-275 (2014)
  5. Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L. Nat Neurosci 10 953-962 (2007)
  6. On the nature of partial agonism in the nicotinic receptor superfamily. Lape R, Colquhoun D, Sivilotti LG. Nature 454 722-727 (2008)
  7. Glycine receptor mechanism elucidated by electron cryo-microscopy. Du J, Lü W, Wu S, Cheng Y, Gouaux E. Nature 526 224-229 (2015)
  8. X-ray structure of the mouse serotonin 5-HT3 receptor. Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB, Hovius R, Graff A, Stahlberg H, Tomizaki T, Desmyter A, Moreau C, Li XD, Poitevin F, Vogel H, Nury H. Nature 512 276-281 (2014)
  9. Nicotine binding to brain receptors requires a strong cation-pi interaction. Xiu X, Puskar NL, Shanata JA, Lester HA, Dougherty DA. Nature 458 534-537 (2009)
  10. X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Althoff T, Hibbs RE, Banerjee S, Gouaux E. Nature 512 333-337 (2014)
  11. Detection and trapping of intermediate states priming nicotinic receptor channel opening. Mukhtasimova N, Lee WY, Wang HL, Sine SM. Nature 459 451-454 (2009)
  12. Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Ulens C, Hogg RC, Celie PH, Bertrand D, Tsetlin V, Smit AB, Sixma TK. Proc Natl Acad Sci U S A 103 3615-3620 (2006)
  13. Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist. Li SX, Huang S, Bren N, Noridomi K, Dellisanti CD, Sine SM, Chen L. Nat Neurosci 14 1253-1259 (2011)
  14. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Huang X, Chen H, Michelsen K, Schneider S, Shaffer PL. Nature 526 277-280 (2015)
  15. Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Sauguet L, Shahsavar A, Poitevin F, Huon C, Menny A, Nemecz À, Haouz A, Changeux JP, Corringer PJ, Delarue M. Proc Natl Acad Sci U S A 111 966-971 (2014)
  16. AChBP-targeted alpha-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. Dutertre S, Ulens C, Büttner R, Fish A, van Elk R, Kendel Y, Hopping G, Alewood PF, Schroeder C, Nicke A, Smit AB, Sixma TK, Lewis RJ. EMBO J 26 3858-3867 (2007)
  17. Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors. Harpsøe K, Ahring PK, Christensen JK, Jensen ML, Peters D, Balle T. J Neurosci 31 10759-10766 (2011)
  18. Additional acetylcholine (ACh) binding site at alpha4/alpha4 interface of (alpha4beta2)2alpha4 nicotinic receptor influences agonist sensitivity. Mazzaferro S, Benallegue N, Carbone A, Gasparri F, Vijayan R, Biggin PC, Moroni M, Bermudez I. J Biol Chem 286 31043-31054 (2011)
  19. Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non-alpha-subunit interfaces of heteromeric neuronal nicotinic receptors. Hansen SB, Taylor P. J Mol Biol 369 895-901 (2007)
  20. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Tochitsky I, Banghart MR, Mourot A, Yao JZ, Gaub B, Kramer RH, Trauner D. Nat Chem 4 105-111 (2012)
  21. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism. Bourne Y, Radic Z, Aráoz R, Talley TT, Benoit E, Servent D, Taylor P, Molgó J, Marchot P. Proc Natl Acad Sci U S A 107 6076-6081 (2010)
  22. Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC. Zimmermann I, Dutzler R. PLoS Biol 9 e1001101 (2011)
  23. Atomic interactions of neonicotinoid agonists with AChBP: molecular recognition of the distinctive electronegative pharmacophore. Talley TT, Harel M, Hibbs RE, Radic Z, Tomizawa M, Casida JE, Taylor P. Proc Natl Acad Sci U S A 105 7606-7611 (2008)
  24. Binding to gating transduction in nicotinic receptors: Cys-loop energetically couples to pre-M1 and M2-M3 regions. Lee WY, Free CR, Sine SM. J Neurosci 29 3189-3199 (2009)
  25. Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine. Pan J, Chen Q, Willenbring D, Yoshida K, Tillman T, Kashlan OB, Cohen A, Kong XP, Xu Y, Tang P. Nat Commun 3 714 (2012)
  26. Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. Cheng X, Wang H, Grant B, Sine SM, McCammon JA. PLoS Comput Biol 2 e134 (2006)
  27. Nicotinic receptors, allosteric proteins and medicine. Changeux JP, Taly A. Trends Mol Med 14 93-102 (2008)
  28. Structure of the pentameric ligand-gated ion channel GLIC bound with anesthetic ketamine. Pan J, Chen Q, Willenbring D, Mowrey D, Kong XP, Cohen A, Divito CB, Xu Y, Tang P. Structure 20 1463-1469 (2012)
  29. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site. Shimomura M, Yokota M, Ihara M, Akamatsu M, Sattelle DB, Matsuda K. Mol Pharmacol 70 1255-1263 (2006)
  30. Alpha-RgIA, a novel conotoxin that blocks the alpha9alpha10 nAChR: structure and identification of key receptor-binding residues. Ellison M, Feng ZP, Park AJ, Zhang X, Olivera BM, McIntosh JM, Norton RS. J Mol Biol 377 1216-1227 (2008)
  31. Crystal structures of free and antagonist-bound states of human α9 nicotinic receptor extracellular domain. Zouridakis M, Giastas P, Zarkadas E, Chroni-Tzartou D, Bregestovski P, Tzartos SJ. Nat Struct Mol Biol 21 976-980 (2014)
  32. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor. Spurny R, Debaveye S, Farinha A, Veys K, Vos AM, Gossas T, Atack J, Bertrand S, Bertrand D, Danielson UH, Tresadern G, Ulens C. Proc Natl Acad Sci U S A 112 E2543-52 (2015)
  33. Non-agonist-binding subunit interfaces confer distinct functional signatures to the alternate stoichiometries of the alpha4beta2 nicotinic receptor: an alpha4-alpha4 interface is required for Zn2+ potentiation. Moroni M, Vijayan R, Carbone A, Zwart R, Biggin PC, Bermudez I. J Neurosci 28 6884-6894 (2008)
  34. A unified model of the GABA(A) receptor comprising agonist and benzodiazepine binding sites. Bergmann R, Kongsbak K, Sørensen PL, Sander T, Balle T. PLoS One 8 e52323 (2013)
  35. The marine phycotoxin gymnodimine targets muscular and neuronal nicotinic acetylcholine receptor subtypes with high affinity. Kharrat R, Servent D, Girard E, Ouanounou G, Amar M, Marrouchi R, Benoit E, Molgó J. J Neurochem 107 952-963 (2008)
  36. Identification of binding sites in the nicotinic acetylcholine receptor for TDBzl-etomidate, a photoreactive positive allosteric effector. Nirthanan S, Garcia G, Chiara DC, Husain SS, Cohen JB. J Biol Chem 283 22051-22062 (2008)
  37. Nicotinic pharmacophore: the pyridine N of nicotine and carbonyl of acetylcholine hydrogen bond across a subunit interface to a backbone NH. Blum AP, Lester HA, Dougherty DA. Proc Natl Acad Sci U S A 107 13206-13211 (2010)
  38. Structural requirements for eszopiclone and zolpidem binding to the gamma-aminobutyric acid type-A (GABAA) receptor are different. Hanson SM, Morlock EV, Satyshur KA, Czajkowski C. J Med Chem 51 7243-7252 (2008)
  39. Cryo-EM reveals two distinct serotonin-bound conformations of full-length 5-HT3A receptor. Basak S, Gicheru Y, Rao S, Sansom MSP, Chakrapani S. Nature 563 270-274 (2018)
  40. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Ihara M, Okajima T, Yamashita A, Oda T, Hirata K, Nishiwaki H, Morimoto T, Akamatsu M, Ashikawa Y, Kuroda S, Mega R, Kuramitsu S, Sattelle DB, Matsuda K. Invert Neurosci 8 71-81 (2008)
  41. Molecular basis for the differential sensitivity of rat and human α9α10 nAChRs to α-conotoxin RgIA. Azam L, McIntosh JM. J Neurochem 122 1137-1144 (2012)
  42. Main immunogenic region structure promotes binding of conformation-dependent myasthenia gravis autoantibodies, nicotinic acetylcholine receptor conformation maturation, and agonist sensitivity. Luo J, Taylor P, Losen M, de Baets MH, Shelton GD, Lindstrom J. J Neurosci 29 13898-13908 (2009)
  43. An ion selectivity filter in the extracellular domain of Cys-loop receptors reveals determinants for ion conductance. Hansen SB, Wang HL, Taylor P, Sine SM. J Biol Chem 283 36066-36070 (2008)
  44. Cryo-EM structure of 5-HT3A receptor in its resting conformation. Basak S, Gicheru Y, Samanta A, Molugu SK, Huang W, Fuente M, Hughes T, Taylor DJ, Nieman MT, Moiseenkova-Bell V, Chakrapani S. Nat Commun 9 514 (2018)
  45. A conserved salt bridge critical for GABA(A) receptor function and loop C dynamics. Venkatachalan SP, Czajkowski C. Proc Natl Acad Sci U S A 105 13604-13609 (2008)
  46. Toxin insights into nicotinic acetylcholine receptors. Dutertre S, Lewis RJ. Biochem Pharmacol 72 661-670 (2006)
  47. Blockade of neuronal α7-nAChR by α-conotoxin ImI explained by computational scanning and energy calculations. Yu R, Craik DJ, Kaas Q. PLoS Comput Biol 7 e1002011 (2011)
  48. Nanosecond-timescale conformational dynamics of the human alpha7 nicotinic acetylcholine receptor. Cheng X, Ivanov I, Wang H, Sine SM, McCammon JA. Biophys J 93 2622-2634 (2007)
  49. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain. Pless SA, Lynch JW. J Biol Chem 284 15847-15856 (2009)
  50. Mechanisms of activation and desensitization of full-length glycine receptor in lipid nanodiscs. Kumar A, Basak S, Rao S, Gicheru Y, Mayer ML, Sansom MSP, Chakrapani S. Nat Commun 11 3752 (2020)
  51. Alpha-conotoxin OmIA is a potent ligand for the acetylcholine-binding protein as well as alpha3beta2 and alpha7 nicotinic acetylcholine receptors. Talley TT, Olivera BM, Han KH, Christensen SB, Dowell C, Tsigelny I, Ho KY, Taylor P, McIntosh JM. J Biol Chem 281 24678-24686 (2006)
  52. Creating an α7 nicotinic acetylcholine recognition domain from the acetylcholine-binding protein: crystallographic and ligand selectivity analyses. Nemecz Á, Taylor P. J Biol Chem 286 42555-42565 (2011)
  53. Mechanism of gating and partial agonist action in the glycine receptor. Yu J, Zhu H, Lape R, Greiner T, Du J, Lü W, Sivilotti L, Gouaux E. Cell 184 957-968.e21 (2021)
  54. Desensitization mechanism in prokaryotic ligand-gated ion channel. Velisetty P, Chakrapani S. J Biol Chem 287 18467-18477 (2012)
  55. Loop C and the mechanism of acetylcholine receptor-channel gating. Purohit P, Auerbach A. J Gen Physiol 141 467-478 (2013)
  56. Acetylcholine receptor gating: movement in the alpha-subunit extracellular domain. Purohit P, Auerbach A. J Gen Physiol 130 569-579 (2007)
  57. Alpha-conotoxin AuIB isomers exhibit distinct inhibitory mechanisms and differential sensitivity to stoichiometry of alpha3beta4 nicotinic acetylcholine receptors. Grishin AA, Wang CI, Muttenthaler M, Alewood PF, Lewis RJ, Adams DJ. J Biol Chem 285 22254-22263 (2010)
  58. Aromatic residues at position 55 of rat alpha7 nicotinic acetylcholine receptors are critical for maintaining rapid desensitization. Gay EA, Giniatullin R, Skorinkin A, Yakel JL. J Physiol 586 1105-1115 (2008)
  59. Atypical alpha-conotoxin LtIA from Conus litteratus targets a novel microsite of the alpha3beta2 nicotinic receptor. Luo S, Akondi KB, Zhangsun D, Wu Y, Zhu X, Hu Y, Christensen S, Dowell C, Daly NL, Craik DJ, Wang CI, Lewis RJ, Alewood PF, Michael McIntosh J. J Biol Chem 285 12355-12366 (2010)
  60. Nicotine-modulated subunit stoichiometry affects stability and trafficking of α3β4 nicotinic receptor. Mazzo F, Pistillo F, Grazioso G, Clementi F, Borgese N, Gotti C, Colombo SF. J Neurosci 33 12316-12328 (2013)
  61. Single-channel study of the spasmodic mutation alpha1A52S in recombinant rat glycine receptors. Plested AJ, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG. J Physiol 581 51-73 (2007)
  62. The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. Williams DK, Stokes C, Horenstein NA, Papke RL. J Gen Physiol 137 369-384 (2011)
  63. Atypical nicotinic agonist bound conformations conferring subtype selectivity. Tomizawa M, Maltby D, Talley TT, Durkin KA, Medzihradszky KF, Burlingame AL, Taylor P, Casida JE. Proc Natl Acad Sci U S A 105 1728-1732 (2008)
  64. Mutagenesis and molecular modeling reveal the importance of the 5-HT3 receptor F-loop. Thompson AJ, Padgett CL, Lummis SC. J Biol Chem 281 16576-16582 (2006)
  65. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Lynagh T, Lynch JW. Front Mol Neurosci 5 60 (2012)
  66. Amino acid residues that confer high selectivity of the alpha6 nicotinic acetylcholine receptor subunit to alpha-conotoxin MII[S4A,E11A,L15A]. Azam L, Yoshikami D, McIntosh JM. J Biol Chem 283 11625-11632 (2008)
  67. Crystal structure of the extracellular domain of a bacterial ligand-gated ion channel. Nury H, Bocquet N, Le Poupon C, Raynal B, Haouz A, Corringer PJ, Delarue M. J Mol Biol 395 1114-1127 (2010)
  68. Spontaneous conformational change and toxin binding in alpha7 acetylcholine receptor: insight into channel activation and inhibition. Yi M, Tjong H, Zhou HX. Proc Natl Acad Sci U S A 105 8280-8285 (2008)
  69. An intersubunit hydrogen bond in the nicotinic acetylcholine receptor that contributes to channel gating. Gleitsman KR, Kedrowski SM, Lester HA, Dougherty DA. J Biol Chem 283 35638-35643 (2008)
  70. Pharmacological characterization of the allosteric modulator desformylflustrabromine and its interaction with alpha4beta2 neuronal nicotinic acetylcholine receptor orthosteric ligands. Weltzin MM, Schulte MK. J Pharmacol Exp Ther 334 917-926 (2010)
  71. Positional scanning mutagenesis of α-conotoxin PeIA identifies critical residues that confer potency and selectivity for α6/α3β2β3 and α3β2 nicotinic acetylcholine receptors. Hone AJ, Ruiz M, Scadden M, Christensen S, Gajewiak J, Azam L, McIntosh JM. J Biol Chem 288 25428-25439 (2013)
  72. Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation: SEPARATION OF DIRECT ALLOSTERIC ACTIVATION AND POSITIVE ALLOSTERIC MODULATION. Horenstein NA, Papke RL, Kulkarni AR, Chaturbhuj GU, Stokes C, Manther K, Thakur GA. J Biol Chem 291 5049-5067 (2016)
  73. Crystal structures of a cysteine-modified mutant in loop D of acetylcholine-binding protein. Brams M, Gay EA, Sáez JC, Guskov A, van Elk R, van der Schors RC, Peigneur S, Tytgat J, Strelkov SV, Smit AB, Yakel JL, Ulens C. J Biol Chem 286 4420-4428 (2011)
  74. Dynamics of heteropentameric nicotinic acetylcholine receptor: implications of the gating mechanism. Szarecka A, Xu Y, Tang P. Proteins 68 948-960 (2007)
  75. An intersubunit trigger of channel gating in the muscle nicotinic receptor. Mukhtasimova N, Sine SM. J Neurosci 27 4110-4119 (2007)
  76. Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models. Leffler AE, Kuryatov A, Zebroski HA, Powell SR, Filipenko P, Hussein AK, Gorson J, Heizmann A, Lyskov S, Tsien RW, Poget SF, Nicke A, Lindstrom J, Rudy B, Bonneau R, Holford M. Proc Natl Acad Sci U S A 114 E8100-E8109 (2017)
  77. Nicotinic receptor interloop proline anchors beta1-beta2 and Cys loops in coupling agonist binding to channel gating. Lee WY, Free CR, Sine SM. J Gen Physiol 132 265-278 (2008)
  78. Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. Hamouda AK, Kimm T, Cohen JB. J Neurosci 33 485-494 (2013)
  79. Structural characterization of binding mode of smoking cessation drugs to nicotinic acetylcholine receptors through study of ligand complexes with acetylcholine-binding protein. Rucktooa P, Haseler CA, van Elk R, Smit AB, Gallagher T, Sixma TK. J Biol Chem 287 23283-23293 (2012)
  80. Assembly of a π-π stack of ligands in the binding site of an acetylcholine-binding protein. Stornaiuolo M, De Kloe GE, Rucktooa P, Fish A, van Elk R, Edink ES, Bertrand D, Smit AB, de Esch IJ, Sixma TK. Nat Commun 4 1875 (2013)
  81. Comment Editorial: To channel or not to channel? Functioning of nicotinic acetylcholine receptors in leukocytes. Skok MV. J Leukoc Biol 86 1-3 (2009)
  82. In silico models for the human alpha4beta2 nicotinic acetylcholine receptor. Haddadian EJ, Cheng MH, Coalson RD, Xu Y, Tang P. J Phys Chem B 112 13981-13990 (2008)
  83. Spectroscopic analysis of benzylidene anabaseine complexes with acetylcholine binding proteins as models for ligand-nicotinic receptor interactions. Talley TT, Yalda S, Ho KY, Tor Y, Soti FS, Kem WR, Taylor P. Biochemistry 45 8894-8902 (2006)
  84. Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors. Zouridakis M, Papakyriakou A, Ivanov IA, Kasheverov IE, Tsetlin V, Tzartos S, Giastas P. Front Pharmacol 10 474 (2019)
  85. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer. Kouvatsos N, Giastas P, Chroni-Tzartou D, Poulopoulou C, Tzartos SJ. Proc Natl Acad Sci U S A 113 9635-9640 (2016)
  86. Cysteine modification reveals which subunits form the ligand binding site in human heteromeric 5-HT3AB receptors. Thompson AJ, Price KL, Lummis SC. J Physiol 589 4243-4257 (2011)
  87. Intramembrane proton binding site linked to activation of bacterial pentameric ion channel. Wang HL, Cheng X, Sine SM. J Biol Chem 287 6482-6489 (2012)
  88. Molecular-dynamics simulations of ELIC-a prokaryotic homologue of the nicotinic acetylcholine receptor. Cheng X, Ivanov I, Wang H, Sine SM, McCammon JA. Biophys J 96 4502-4513 (2009)
  89. NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites. Bondarenko V, Mowrey DD, Tillman TS, Seyoum E, Xu Y, Tang P. Biochim Biophys Acta 1838 1389-1395 (2014)
  90. Identifying key amino acid residues that affect α-conotoxin AuIB inhibition of α3β4 nicotinic acetylcholine receptors. Grishin AA, Cuny H, Hung A, Clark RJ, Brust A, Akondi K, Alewood PF, Craik DJ, Adams DJ. J Biol Chem 288 34428-34442 (2013)
  91. Structure of alpha-conotoxin BuIA: influences of disulfide connectivity on structural dynamics. Jin AH, Brandstaetter H, Nevin ST, Tan CC, Clark RJ, Adams DJ, Alewood PF, Craik DJ, Daly NL. BMC Struct Biol 7 28 (2007)
  92. Crystal structure of Lymnaea stagnalis AChBP complexed with the potent nAChR antagonist DHβE suggests a unique mode of antagonism. Shahsavar A, Kastrup JS, Nielsen EØ, Kristensen JL, Gajhede M, Balle T. PLoS One 7 e40757 (2012)
  93. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR. Lin B, Xu M, Zhu X, Wu Y, Liu X, Zhangsun D, Hu Y, Xiang SH, Kasheverov IE, Tsetlin VI, Wang X, Luo S. Sci Rep 6 22349 (2016)
  94. Magnitude of a conformational change in the glycine receptor beta1-beta2 loop is correlated with agonist efficacy. Pless SA, Lynch JW. J Biol Chem 284 27370-27376 (2009)
  95. Molecular interaction of α-conotoxin RgIA with the rat α9α10 nicotinic acetylcholine receptor. Azam L, Papakyriakou A, Zouridakis M, Giastas P, Tzartos SJ, McIntosh JM. Mol Pharmacol 87 855-864 (2015)
  96. Single-channel current through nicotinic receptor produced by closure of binding site C-loop. Wang HL, Toghraee R, Papke D, Cheng XL, McCammon JA, Ravaioli U, Sine SM. Biophys J 96 3582-3590 (2009)
  97. Structural rearrangements in loop F of the GABA receptor signal ligand binding, not channel activation. Khatri A, Sedelnikova A, Weiss DS. Biophys J 96 45-55 (2009)
  98. The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Williamson PT, Verhoeven A, Miller KW, Meier BH, Watts A. Proc Natl Acad Sci U S A 104 18031-18036 (2007)
  99. The three-dimensional structure of the analgesic alpha-conotoxin, RgIA. Clark RJ, Daly NL, Halai R, Nevin ST, Adams DJ, Craik DJ. FEBS Lett 582 597-602 (2008)
  100. Molecular determinants for competitive inhibition of alpha4beta2 nicotinic acetylcholine receptors. Iturriaga-Vásquez P, Carbone A, García-Beltrán O, Livingstone PD, Biggin PC, Cassels BK, Wonnacott S, Zapata-Torres G, Bermudez I. Mol Pharmacol 78 366-375 (2010)
  101. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors. daCosta CJ, Free CR, Sine SM. Nat Commun 6 8057 (2015)
  102. [(3)H]chlorpromazine photolabeling of the torpedo nicotinic acetylcholine receptor identifies two state-dependent binding sites in the ion channel. Chiara DC, Hamouda AK, Ziebell MR, Mejia LA, Garcia G, Cohen JB. Biochemistry 48 10066-10077 (2009)
  103. A molecular basis for agonist and antagonist actions at GABA(C) receptors. Abdel-Halim H, Hanrahan JR, Hibbs DE, Johnston GA, Chebib M. Chem Biol Drug Des 71 306-327 (2008)
  104. Inter-subunit disulfide cross-linking in homomeric and heteromeric P2X receptors. Marquez-Klaka B, Rettinger J, Nicke A. Eur Biophys J 38 329-338 (2009)
  105. Protein folding determinants: structural features determining alternative disulfide pairing in alpha- and chi/lambda-conotoxins. Kang TS, Radić Z, Talley TT, Jois SD, Taylor P, Kini RM. Biochemistry 46 3338-3355 (2007)
  106. Structural basis for allosteric coupling at the membrane-protein interface in Gloeobacter violaceus ligand-gated ion channel (GLIC). Velisetty P, Chalamalasetti SV, Chakrapani S. J Biol Chem 289 3013-3025 (2014)
  107. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine α4β2 receptors: unique role of halogen bonding revealed. Rohde LA, Ahring PK, Jensen ML, Nielsen EØ, Peters D, Helgstrand C, Krintel C, Harpsøe K, Gajhede M, Kastrup JS, Balle T. J Biol Chem 287 4248-4259 (2012)
  108. Solution NMR of acetylcholine binding protein reveals agonist-mediated conformational change of the C-loop. Gao F, Mer G, Tonelli M, Hansen SB, Burghardt TP, Taylor P, Sine SM. Mol Pharmacol 70 1230-1235 (2006)
  109. Alpha7 nicotinic acetylcholine receptor agonists: prediction of their binding affinity through a molecular mechanics Poisson-Boltzmann surface area approach. Grazioso G, Cavalli A, De Amici M, Recanatini M, De Micheli C. J Comput Chem 29 2593-2602 (2008)
  110. An allosteric modulator of alpha7 nicotinic receptors, N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea (PNU-120596), causes conformational changes in the extracellular ligand binding domain similar to those caused by acetylcholine. Barron SC, McLaughlin JT, See JA, Richards VL, Rosenberg RL. Mol Pharmacol 76 253-263 (2009)
  111. Cysteine accessibility analysis of the human alpha7 nicotinic acetylcholine receptor ligand-binding domain identifies L119 as a gatekeeper. Papke RL, Stokes C, Williams DK, Wang J, Horenstein NA. Neuropharmacology 60 159-171 (2011)
  112. The hydration of the neurotransmitter acetylcholine in aqueous solution. Hulme EC, Soper AK, McLain SE, Finney JL. Biophys J 91 2371-2380 (2006)
  113. A synthetic combinatorial strategy for developing alpha-conotoxin analogs as potent alpha7 nicotinic acetylcholine receptor antagonists. Armishaw CJ, Singh N, Medina-Franco JL, Clark RJ, Scott KC, Houghten RA, Jensen AA. J Biol Chem 285 1809-1821 (2010)
  114. An Update on GABAρ Receptors. Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. Curr Neuropharmacol 8 422-433 (2010)
  115. Bacterial expression, NMR, and electrophysiology analysis of chimeric short/long-chain alpha-neurotoxins acting on neuronal nicotinic receptors. Lyukmanova EN, Shenkarev ZO, Schulga AA, Ermolyuk YS, Mordvintsev DY, Utkin YN, Utkin YN, Shoulepko MA, Hogg RC, Bertrand D, Dolgikh DA, Tsetlin VI, Kirpichnikov MP. J Biol Chem 282 24784-24791 (2007)
  116. Mapping the elusive neonicotinoid binding site. Tomizawa M, Talley TT, Maltby D, Durkin KA, Medzihradszky KF, Burlingame AL, Taylor P, Casida JE. Proc Natl Acad Sci U S A 104 9075-9080 (2007)
  117. NMR structures of the transmembrane domains of the α4β2 nAChR. Bondarenko V, Mowrey D, Tillman T, Cui T, Liu LT, Xu Y, Tang P. Biochim Biophys Acta 1818 1261-1268 (2012)
  118. Nicotinic receptor transduction zone: invariant arginine couples to multiple electron-rich residues. Mukhtasimova N, Sine SM. Biophys J 104 355-367 (2013)
  119. Role of β4* Nicotinic Acetylcholine Receptors in the Habenulo-Interpeduncular Pathway in Nicotine Reinforcement in Mice. Harrington L, Viñals X, Herrera-Solís A, Flores A, Morel C, Tolu S, Faure P, Maldonado R, Maskos U, Robledo P. Neuropsychopharmacology 41 1790-1802 (2016)
  120. Agonist- and antagonist-induced conformational changes of loop F and their contributions to the rho1 GABA receptor function. Zhang J, Xue F, Chang Y. J Physiol 587 139-153 (2009)
  121. Differential regulation of receptor activation and agonist selectivity by highly conserved tryptophans in the nicotinic acetylcholine receptor binding site. Williams DK, Stokes C, Horenstein NA, Papke RL. J Pharmacol Exp Ther 330 40-53 (2009)
  122. Evolutionarily conserved allosteric network in the Cys loop family of ligand-gated ion channels revealed by statistical covariance analyses. Chen Y, Reilly K, Chang Y. J Biol Chem 281 18184-18192 (2006)
  123. Exploring ligand recognition and ion flow in comparative models of the human GABA type A receptor. Mokrab Y, Bavro VN, Mizuguchi K, Todorov NP, Martin IL, Dunn SM, Chan SL, Chau PL. J Mol Graph Model 26 760-774 (2007)
  124. Isomerization of the proline in the M2-M3 linker is not required for activation of the human 5-HT3A receptor. Paulsen IM, Martin IL, Dunn SM. J Neurochem 110 870-878 (2009)
  125. Marine Macrocyclic Imines, Pinnatoxins A and G: Structural Determinants and Functional Properties to Distinguish Neuronal α7 from Muscle α1(2)βγδ nAChRs. Bourne Y, Sulzenbacher G, Radić Z, Aráoz R, Reynaud M, Benoit E, Zakarian A, Servent D, Molgó J, Taylor P, Marchot P. Structure 23 1106-1115 (2015)
  126. Molecular modeling of the alpha9alpha10 nicotinic acetylcholine receptor subtype. Pérez EG, Cassels BK, Zapata-Torres G. Bioorg Med Chem Lett 19 251-254 (2009)
  127. New insights into the GABA(A) receptor structure and orthosteric ligand binding: receptor modeling guided by experimental data. Sander T, Frølund B, Bruun AT, Ivanov I, McCammon JA, Balle T. Proteins 79 1458-1477 (2011)
  128. Proximity-accelerated chemical coupling reaction in the benzodiazepine-binding site of gamma-aminobutyric acid type A receptors: superposition of different allosteric modulators. Tan KR, Gonthier A, Baur R, Ernst M, Goeldner M, Sigel E. J Biol Chem 282 26316-26325 (2007)
  129. Alpha-conotoxin analogs with additional positive charge show increased selectivity towards Torpedo californica and some neuronal subtypes of nicotinic acetylcholine receptors. Kasheverov IE, Zhmak MN, Vulfius CA, Gorbacheva EV, Mordvintsev DY, Utkin YN, Utkin YN, van Elk R, Smit AB, Tsetlin VI. FEBS J 273 4470-4481 (2006)
  130. Molecular determinants of subtype-selective efficacies of cytisine and the novel compound NS3861 at heteromeric nicotinic acetylcholine receptors. Harpsøe K, Hald H, Timmermann DB, Jensen ML, Dyhring T, Nielsen EØ, Peters D, Balle T, Gajhede M, Kastrup JS, Ahring PK. J Biol Chem 288 2559-2570 (2013)
  131. Molecular dynamics simulations of GABA binding to the GABAC receptor: the role of Arg104. Melis C, Lummis SC, Molteni C. Biophys J 95 4115-4123 (2008)
  132. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors. Lyukmanova EN, Shulepko MA, Shenkarev ZO, Bychkov ML, Paramonov AS, Chugunov AO, Kulbatskii DS, Arvaniti M, Dolejsi E, Schaer T, Arseniev AS, Efremov RG, Thomsen MS, Dolezal V, Bertrand D, Dolgikh DA, Kirpichnikov MP. Sci Rep 6 30698 (2016)
  133. Structural determinates for apolipoprotein E-derived peptide interaction with the alpha7 nicotinic acetylcholine receptor. Gay EA, Bienstock RJ, Lamb PW, Yakel JL. Mol Pharmacol 72 838-849 (2007)
  134. Three arginines in the GABAA receptor binding pocket have distinct roles in the formation and stability of agonist- versus antagonist-bound complexes. Goldschen-Ohm MP, Wagner DA, Jones MV. Mol Pharmacol 80 647-656 (2011)
  135. Design of new α-conotoxins: from computer modeling to synthesis of potent cholinergic compounds. Kasheverov IE, Zhmak MN, Khruschov AY, Tsetlin VI. Mar Drugs 9 1698-1714 (2011)
  136. Modeling binding modes of alpha7 nicotinic acetylcholine receptor with ligands: the roles of Gln117 and other residues of the receptor in agonist binding. Huang X, Zheng F, Stokes C, Papke RL, Zhan CG. J Med Chem 51 6293-6302 (2008)
  137. Modeling neuronal nicotinic and GABA receptors: important interface salt-links and protein dynamics. Law RJ, Lightstone FC. Biophys J 97 1586-1594 (2009)
  138. Molecular mechanism of setron-mediated inhibition of full-length 5-HT3A receptor. Basak S, Gicheru Y, Kapoor A, Mayer ML, Filizola M, Chakrapani S. Nat Commun 10 3225 (2019)
  139. Zinc potentiates neuronal nicotinic receptors by increasing burst duration. Hsiao B, Mihalak KB, Magleby KL, Luetje CW. J Neurophysiol 99 999-1007 (2008)
  140. An unusual pattern of ligand-receptor interactions for the α7 nicotinic acetylcholine receptor, with implications for the binding of varenicline. Van Arnam EB, Blythe EE, Lester HA, Dougherty DA. Mol Pharmacol 84 201-207 (2013)
  141. Computer modeling of binding of diverse weak toxins to nicotinic acetylcholine receptors. Mordvitsev DY, Polyak YL, Kuzmin DA, Levtsova OV, Tourleigh YV, Tourleigh YV, Utkin YN, Utkin YN, Shaitan KV, Tsetlin VI. Comput Biol Chem 31 72-81 (2007)
  142. Higher susceptibility to halothane modulation in open- than in closed-channel alpha4beta2 nAChR revealed by molecular dynamics simulations. Liu LT, Haddadian EJ, Willenbring D, Xu Y, Tang P. J Phys Chem B 114 626-632 (2010)
  143. Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor. Kasheverov IE, Zhmak MN, Fish A, Rucktooa P, Khruschov AY, Osipov AV, Ziganshin RH, D'hoedt D, Bertrand D, Sixma TK, Smit AB, Tsetlin VI. J Neurochem 111 934-944 (2009)
  144. Probing the reorganization of the nicotinic acetylcholine receptor during desensitization by time-resolved covalent labeling using [3H]AC5, a photoactivatable agonist. Mourot A, Rodrigo J, Kotzyba-Hibert F, Bertrand S, Bertrand D, Goeldner M. Mol Pharmacol 69 452-461 (2006)
  145. Stabilization of the GluCl ligand-gated ion channel in the presence and absence of ivermectin. Yoluk O, Brömstrup T, Bertaccini EJ, Trudell JR, Lindahl E. Biophys J 105 640-647 (2013)
  146. Structural mechanisms for α-conotoxin activity at the human α3β4 nicotinic acetylcholine receptor. Abraham N, Healy M, Ragnarsson L, Brust A, Alewood PF, Lewis RJ. Sci Rep 7 45466 (2017)
  147. Structural model for the binding sites of allosterically potentiating ligands on nicotinic acetylcholine receptors. Luttmann E, Ludwig J, Höffle-Maas A, Samochocki M, Maelicke A, Fels G. ChemMedChem 4 1874-1882 (2009)
  148. Acetylcholine-Binding Protein Engineered to Mimic the α4-α4 Binding Pocket in α4β2 Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity. Shahsavar A, Ahring PK, Olsen JA, Krintel C, Kastrup JS, Balle T, Gajhede M. Mol Pharmacol 88 697-707 (2015)
  149. Agonist-driven conformational changes in the inner beta-sheet of alpha7 nicotinic receptors. McLaughlin JT, Fu J, Rosenberg RL. Mol Pharmacol 71 1312-1318 (2007)
  150. High-resolution structures of multiple 5-HT3AR-setron complexes reveal a novel mechanism of competitive inhibition. Basak S, Kumar A, Ramsey S, Gibbs E, Kapoor A, Filizola M, Chakrapani S. Elife 9 e57870 (2020)
  151. Hydrophobic residues at position 10 of α-conotoxin PnIA influence subtype selectivity between α7 and α3β2 neuronal nicotinic acetylcholine receptors. Hopping G, Wang CI, Hogg RC, Nevin ST, Lewis RJ, Adams DJ, Alewood PF. Biochem Pharmacol 91 534-542 (2014)
  152. Myasthenogenicity of the main immunogenic region and endogenous muscle nicotinic acetylcholine receptors. Luo J, Lindstrom J. Autoimmunity 45 245-252 (2012)
  153. Photo-antagonism of the GABAA receptor. Mortensen M, Iqbal F, Pandurangan AP, Hannan S, Huckvale R, Topf M, Baker JR, Smart TG. Nat Commun 5 4454 (2014)
  154. Structural model of rho1 GABAC receptor based on evolutionary analysis: Testing of predicted protein-protein interactions involved in receptor assembly and function. Adamian L, Gussin HA, Tseng YY, Muni NJ, Feng F, Qian H, Pepperberg DR, Liang J. Protein Sci 18 2371-2383 (2009)
  155. Tethered agonist analogs as site-specific probes for domains of the human α7 nicotinic acetylcholine receptor that differentially regulate activation and desensitization. Wang J, Horenstein NA, Stokes C, Papke RL. Mol Pharmacol 78 1012-1025 (2010)
  156. A hypothesis to account for the selective and diverse actions of neonicotinoid insecticides at their molecular targets, nicotinic acetylcholine receptors: catch and release in hydrogen bond networks. Ihara M, Shimomura M, Ishida C, Nishiwaki H, Akamatsu M, Sattelle DB, Matsuda K. Invert Neurosci 7 47-51 (2007)
  157. Agonist- and competitive antagonist-induced movement of loop 5 on the alpha subunit of the neuronal alpha4beta4 nicotinic acetylcholine receptor. Mourot A, Bamberg E, Rettinger J. J Neurochem 105 413-424 (2008)
  158. Conformational remodeling of femtomolar inhibitor-acetylcholinesterase complexes in the crystalline state. Bourne Y, Radić Z, Taylor P, Marchot P. J Am Chem Soc 132 18292-18300 (2010)
  159. Methyllycaconitine alleviates amyloid-β peptides-induced cytotoxicity in SH-SY5Y cells. Zheng X, Xie Z, Zhu Z, Liu Z, Wang Y, Wei L, Yang H, Yang H, Liu Y, Bi J. PLoS One 9 e111536 (2014)
  160. Molecular modeling of sulfoxaflor and neonicotinoid binding in insect nicotinic acetylcholine receptors: impact of the Myzus β1 R81T mutation. Wang NX, Watson GB, Loso MR, Sparks TC. Pest Manag Sci 72 1467-1474 (2016)
  161. Myasthenia gravis and the tops and bottoms of AChRs: antigenic structure of the MIR and specific immunosuppression of EAMG using AChR cytoplasmic domains. Lindstrom J, Luo J, Kuryatov A. Ann N Y Acad Sci 1132 29-41 (2008)
  162. Role of the N-terminal alpha-helix in biogenesis of alpha7 nicotinic receptors. Castillo M, Mulet J, Aldea M, Gerber S, Sala S, Sala F, Criado M. J Neurochem 108 1399-1409 (2009)
  163. Structural link between γ-aminobutyric acid type A (GABAA) receptor agonist binding site and inner β-sheet governs channel activation and allosteric drug modulation. Venkatachalan SP, Czajkowski C. J Biol Chem 287 6714-6724 (2012)
  164. Binding interactions with the complementary subunit of nicotinic receptors. Blum AP, Van Arnam EB, German LA, Lester HA, Dougherty DA. J Biol Chem 288 6991-6997 (2013)
  165. Defining nicotinic agonist binding surfaces through photoaffinity labeling. Tomizawa M, Maltby D, Medzihradszky KF, Zhang N, Durkin KA, Presley J, Talley TT, Taylor P, Burlingame AL, Casida JE. Biochemistry 46 8798-8806 (2007)
  166. Effect of novel negative allosteric modulators of neuronal nicotinic receptors on cells expressing native and recombinant nicotinic receptors: implications for drug discovery. González-Cestari TF, Henderson BJ, Pavlovicz RE, McKay SB, El-Hajj RA, Pulipaka AB, Orac CM, Reed DD, Boyd RT, Zhu MX, Li C, Bergmeier SC, McKay DB. J Pharmacol Exp Ther 328 504-515 (2009)
  167. Molecular Basis for Differential Sensitivity of α-Conotoxin RegIIA at Rat and Human Neuronal Nicotinic Acetylcholine Receptors. Kompella SN, Cuny H, Hung A, Adams DJ. Mol Pharmacol 88 993-1001 (2015)
  168. Myasthenic syndrome AChRα C-loop mutant disrupts initiation of channel gating. Shen XM, Brengman JM, Sine SM, Engel AG. J Clin Invest 122 2613-2621 (2012)
  169. NMR structure determination of alpha-conotoxin BuIA, a novel neuronal nicotinic acetylcholine receptor antagonist with an unusual 4/4 disulfide scaffold. Chi SW, Kim DH, Olivera BM, McIntosh JM, Han KH. Biochem Biophys Res Commun 349 1228-1234 (2006)
  170. Rapid desensitization of the rat α7 nAChR is facilitated by the presence of a proline residue in the outer β-sheet. McCormack TJ, Melis C, Colón J, Gay EA, Mike A, Karoly R, Lamb PW, Molteni C, Yakel JL. J Physiol 588 4415-4429 (2010)
  171. Solution conformation of a neuronal nicotinic acetylcholine receptor antagonist alpha-conotoxin OmIA that discriminates alpha3 vs. alpha6 nAChR subtypes. Chi SW, Kim DH, Olivera BM, McIntosh JM, Han KH. Biochem Biophys Res Commun 345 248-254 (2006)
  172. α6 nAChR subunit residues that confer α-conotoxin BuIA selectivity. Kim HW, McIntosh JM. FASEB J 26 4102-4110 (2012)
  173. Combined roles of loops C and D in the interactions of a neonicotinoid insecticide imidacloprid with the alpha4beta2 nicotinic acetylcholine receptor. Toshima K, Kanaoka S, Yamada A, Tarumoto K, Akamatsu M, Sattelle DB, Matsuda K. Neuropharmacology 56 264-272 (2009)
  174. Identification of a negative allosteric site on human α4β2 and α3β4 neuronal nicotinic acetylcholine receptors. Pavlovicz RE, Henderson BJ, Bonnell AB, Boyd RT, McKay DB, Li C. PLoS One 6 e24949 (2011)
  175. Ligand- and subunit-specific conformational changes in the ligand-binding domain and the TM2-TM3 linker of {alpha}1 {beta}2 {gamma}2 GABAA receptors. Wang Q, Pless SA, Lynch JW. J Biol Chem 285 40373-40386 (2010)
  176. Molecular dissection of Cl--selective Cys-loop receptor points to components that are dispensable or essential for channel activity. Bar-Lev DD, Degani-Katzav N, Perelman A, Paas Y. J Biol Chem 286 43830-43841 (2011)
  177. Orthosteric and/or Allosteric Binding of α-Conotoxins to Nicotinic Acetylcholine Receptors and Their Models. Kryukova EV, Ivanov IA, Lebedev DS, Spirova EN, Egorova NS, Zouridakis M, Kasheverov IE, Tzartos SJ, Tsetlin VI. Mar Drugs 16 E460 (2018)
  178. The crystal structure of Ac-AChBP in complex with α-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes. Xu M, Zhu X, Yu J, Yu J, Luo S, Wang X. Protein Cell 8 675-685 (2017)
  179. A role for loop F in modulating GABA binding affinity in the GABA(A) receptor. Carpenter TS, Lau EY, Lightstone FC. J Mol Biol 422 310-323 (2012)
  180. Action of nicotine and analogs on acetylcholine receptors having mutations of transmitter-binding site residue αG153. Jadey S, Purohit P, Auerbach A. J Gen Physiol 141 95-104 (2013)
  181. Alpha4/3 conotoxins: phylogenetic distribution, functional properties, and structure-function insights. Ellison M, Olivera BM. Chem Rec 7 341-353 (2007)
  182. Different binding modes of tropeines mediating inhibition and potentiation of alpha1 glycine receptors. Maksay G, Laube B, Schemm R, Grudzinska J, Drwal M, Betz H. J Neurochem 109 1725-1732 (2009)
  183. New insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides. Le Questel JY, Graton J, Cerón-Carrasco JP, Jacquemin D, Planchat A, Thany SH. Bioorg Med Chem 19 7623-7634 (2011)
  184. Packing of the extracellular domain hydrophobic core has evolved to facilitate pentameric ligand-gated ion channel function. Dellisanti CD, Hanson SM, Chen L, Czajkowski C. J Biol Chem 286 3658-3670 (2011)
  185. The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold. Gonzalez-Gutierrez G, Grosman C. J Gen Physiol 146 15-36 (2015)
  186. Toxin binding reveals two open state structures for one acid-sensing ion channel. Gründer S, Augustinowski K. Channels (Austin) 6 409-413 (2012)
  187. Design and synthesis of α-conotoxin GID analogues as selective α4β2 nicotinic acetylcholine receptor antagonists. Banerjee J, Yongye AB, Chang YP, Gyanda R, Medina-Franco JL, Armishaw CJ. Biopolymers 102 78-87 (2014)
  188. Loop 3 of short neurotoxin II is an additional interaction site with membrane-bound nicotinic acetylcholine receptor as detected by solid-state NMR spectroscopy. Krabben L, van Rossum BJ, Jehle S, Bocharov E, Lyukmanova EN, Schulga AA, Arseniev A, Hucho F, Oschkinat H. J Mol Biol 390 662-671 (2009)
  189. Molecular determinants of α-conotoxin potency for inhibition of human and rat α6β4 nicotinic acetylcholine receptors. Hone AJ, Talley TT, Bobango J, Huidobro Melo C, Hararah F, Gajewiak J, Christensen S, Harvey PJ, Craik DJ, McIntosh JM. J Biol Chem 293 17838-17852 (2018)
  190. Studies on an acetylcholine binding protein identify a basic residue in loop G on the β1 strand as a new structural determinant of neonicotinoid actions. Ihara M, Okajima T, Yamashita A, Oda T, Asano T, Matsui M, Sattelle DB, Matsuda K. Mol Pharmacol 86 736-746 (2014)
  191. Subunit stoichiometry and arrangement in a heteromeric glutamate-gated chloride channel. Degani-Katzav N, Gortler R, Gorodetzki L, Paas Y. Proc Natl Acad Sci U S A 113 E644-53 (2016)
  192. Varenicline Interactions at the 5-HT3 Receptor Ligand Binding Site are Revealed by 5-HTBP. Price KL, Lillestol RK, Ulens C, Lummis SC. ACS Chem Neurosci 6 1151-1157 (2015)
  193. A chimeric prokaryotic pentameric ligand-gated channel reveals distinct pathways of activation. Schmandt N, Velisetty P, Chalamalasetti SV, Stein RA, Bonner R, Talley L, Parker MD, Mchaourab HS, Yee VC, Lodowski DT, Chakrapani S. J Gen Physiol 146 323-340 (2015)
  194. Acetylcholine promotes binding of α-conotoxin MII at α3 β2 nicotinic acetylcholine receptors. Sambasivarao SV, Roberts J, Bharadwaj VS, Slingsby JG, Rohleder C, Mallory C, Groome JR, McDougal OM, Maupin CM. Chembiochem 15 413-424 (2014)
  195. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits. Pless SA, Lynch JW. J Neurochem 108 1585-1594 (2009)
  196. Modification of the anabaseine pyridine nucleus allows achieving binding and functional selectivity for the α3β4 nicotinic acetylcholine receptor subtype. Matera C, Quadri M, Sciaccaluga M, Pomè DY, Fasoli F, De Amici M, Fucile S, Gotti C, Dallanoce C, Grazioso G. Eur J Med Chem 108 392-405 (2016)
  197. Structural basis for cooperative interactions of substituted 2-aminopyrimidines with the acetylcholine binding protein. Kaczanowska K, Harel M, Radić Z, Changeux JP, Finn MG, Taylor P. Proc Natl Acad Sci U S A 111 10749-10754 (2014)
  198. A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation. Chiodo L, Malliavin TE, Maragliano L, Cottone G, Ciccotti G. PLoS One 10 e0133011 (2015)
  199. A role for Leu118 of loop E in agonist binding to the alpha 7 nicotinic acetylcholine receptor. Amiri S, Shimomura M, Vijayan R, Nishiwaki H, Akamatsu M, Matsuda K, Jones AK, Sansom MS, Biggin PC, Sattelle DB. Mol Pharmacol 73 1659-1667 (2008)
  200. A single molecular distance predicts agonist binding energy in nicotinic receptors. Tripathy S, Zheng W, Auerbach A. J Gen Physiol 151 452-464 (2019)
  201. Energy for wild-type acetylcholine receptor channel gating from different choline derivatives. Bruhova I, Gregg T, Auerbach A. Biophys J 104 565-574 (2013)
  202. Identification of novel α7 nicotinic receptor ligands by in silico screening against the crystal structure of a chimeric α7 receptor ligand binding domain. Akdemir A, Edink E, Thompson AJ, Lummis SC, Kooistra AJ, de Graaf C, de Esch IJ. Bioorg Med Chem 20 5992-6002 (2012)
  203. Insights into docking and scoring neuronal alpha4beta2 nicotinic receptor agonists using molecular dynamics simulations and QM/MM calculations. Sgrignani J, Bonaccini C, Grazioso G, Chioccioli M, Cavalli A, Gratteri P. J Comput Chem 30 2443-2454 (2009)
  204. Mapping spatial relationships between residues in the ligand-binding domain of the 5-HT3 receptor using a molecular ruler. Nyce HL, Stober ST, Abrams CF, White MM. Biophys J 98 1847-1855 (2010)
  205. Molecular docking study on the α3β2 neuronal nicotinic acetylcholine receptor complexed with α-conotoxin GIC. Lee C, Lee SH, Kim DH, Han KH. BMB Rep 45 275-280 (2012)
  206. Molecular recognition at cholinergic synapses: acetylcholine versus choline. Bruhova I, Auerbach A. J Physiol 595 1253-1261 (2017)
  207. Photoaffinity labeling the agonist binding domain of alpha4beta4 and alpha4beta2 neuronal nicotinic acetylcholine receptors with [(125)I]epibatidine and 5[(125)I]A-85380. Hamouda AK, Jin X, Sanghvi M, Srivastava S, Pandhare A, Duddempudi PK, Steinbach JH, Blanton MP. Biochim Biophys Acta 1788 1987-1995 (2009)
  208. The kinetics of competitive antagonism of nicotinic acetylcholine receptors at physiological temperature. Demazumder D, Dilger JP. J Physiol 586 951-963 (2008)
  209. [(3)H]Epibatidine photolabels non-equivalent amino acids in the agonist binding site of Torpedo and alpha4beta2 nicotinic acetylcholine receptors. Srivastava S, Hamouda AK, Pandhare A, Duddempudi PK, Sanghvi M, Cohen JB, Blanton MP. J Biol Chem 284 24939-24947 (2009)
  210. A single point mutation of the GABA(A) receptor alpha5-subunit confers fluoxetine sensitivity. Derry JM, Paulsen IM, Davies M, Dunn SM. Neuropharmacology 52 497-505 (2007)
  211. Acetylcholine-binding protein in the hemolymph of the planorbid snail Biomphalaria glabrata is a pentagonal dodecahedron (60 subunits). Saur M, Moeller V, Kapetanopoulos K, Braukmann S, Gebauer W, Tenzer S, Markl J. PLoS One 7 e43685 (2012)
  212. Antigenic structure of the human muscle nicotinic acetylcholine receptor main immunogenic region. Luo J, Lindstrom J. J Mol Neurosci 40 217-220 (2010)
  213. Atomistic insights into human Cys-loop receptors by solution NMR. Mowrey DD, Kinde MN, Xu Y, Tang P. Biochim Biophys Acta 1848 307-314 (2015)
  214. Circular dichroism studies of extracellular domains of human nicotinic acetylcholine receptors provide an insight into their structure. Zouridakis M, Kostelidou K, Sotiriadis A, Stergiou C, Eliopoulos E, Poulas K, Tzartos SJ. Int J Biol Macromol 41 423-429 (2007)
  215. Covalent trapping of methyllycaconitine at the α4-α4 interface of the α4β2 nicotinic acetylcholine receptor: antagonist binding site and mode of receptor inhibition revealed. Absalom NL, Quek G, Lewis TM, Qudah T, von Arenstorff I, Ambrus JI, Harpsøe K, Karim N, Balle T, McLeod MD, Chebib M. J Biol Chem 288 26521-26532 (2013)
  216. Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease. Schaefer N, Berger A, van Brederode J, Zheng F, Zhang Y, Zhang Y, Leacock S, Littau L, Jablonka S, Malhotra S, Topf M, Winter F, Davydova D, Lynch JW, Paige CJ, Alzheimer C, Harvey RJ, Villmann C. J Neurosci 37 7948-7961 (2017)
  217. Epibatidine isomers and analogues: structure-activity relationships. White R, Malpass JR, Handa S, Richard Baker S, Broad LM, Folly L, Mogg A. Bioorg Med Chem Lett 16 5493-5497 (2006)
  218. Investigation of α-conotoxin unbinding using umbrella sampling. Yu R, Tabassum N, Jiang T. Bioorg Med Chem Lett 26 1296-1300 (2016)
  219. Molecular modeling of ligand-receptor interactions in GABA C receptor. Osolodkin DI, Chupakhin VI, Palyulin VA, Zefirov NS. J Mol Graph Model 27 813-821 (2009)
  220. Natural variation within the neuronal nicotinic acetylcholine receptor cluster on human chromosome 15q24: influence on heritable autonomic traits in twin pairs. Rana BK, Wessel J, Mahboubi V, Rao F, Haeller J, Gayen JR, Eskin E, Valle AM, Das M, Mahata SK, Taupenot L, Stridsberg M, Talley TT, Ziegler MG, Smith DW, Schork NJ, O'Connor DT, Taylor P. J Pharmacol Exp Ther 331 419-428 (2009)
  221. Overexpression and functional characterization of the extracellular domain of the human alpha1 glycine receptor. Liu Z, Ramanoudjame G, Liu D, Fox RO, Jayaraman V, Kurnikova M, Cascio M. Biochemistry 47 9803-9810 (2008)
  222. Probing pore constriction in a ligand-gated ion channel by trapping a metal ion in the pore upon agonist dissociation. Pittel I, Witt-Kehati D, Degani-Katzav N, Paas Y. J Biol Chem 285 26519-26531 (2010)
  223. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors. Nayak TK, Nayak TK, Chakraborty S, Zheng W, Auerbach A. Nat Commun 7 11352 (2016)
  224. Structure of the first transmembrane domain of the neuronal acetylcholine receptor beta2 subunit. Bondarenko V, Xu Y, Tang P. Biophys J 92 1616-1622 (2007)
  225. Synthesis of selective agonists for the α7 nicotinic acetylcholine receptor with in situ click-chemistry on acetylcholine-binding protein templates. Yamauchi JG, Gomez K, Grimster N, Dufouil M, Nemecz A, Fotsing JR, Ho KY, Talley TT, Sharpless KB, Fokin VV, Taylor P. Mol Pharmacol 82 687-699 (2012)
  226. A Functional Interaction Between Y674-R685 Region of the SARS-CoV-2 Spike Protein and the Human α7 Nicotinic Receptor. Chrestia JF, Oliveira AS, Mulholland AJ, Gallagher T, Bermúdez I, Bouzat C. Mol Neurobiol 59 6076-6090 (2022)
  227. Bis-neonicotinoid insecticides: Observed and predicted binding interactions with the nicotinic receptor. Ohno I, Tomizawa M, Durkin KA, Casida JE, Kagabu S. Bioorg Med Chem Lett 19 3449-3452 (2009)
  228. Chain length dependence of the interactions of bisquaternary ligands with the Torpedo nicotinic acetylcholine receptor. Carter CR, Cao L, Kawai H, Smith PA, Dryden WF, Raftery MA, Dunn SM. Biochem Pharmacol 73 417-426 (2007)
  229. Core modification of cytisine: a modular synthesis. Hirschhäuser C, Haseler CA, Gallagher T. Angew Chem Int Ed Engl 50 5162-5165 (2011)
  230. Dual effect of lobeline on α4β2 rat neuronal nicotinic receptors. Kaniaková M, Lindovský J, Krůšek J, Adámek S, Vyskočil F. Eur J Pharmacol 658 108-113 (2011)
  231. Epibatidine binds to four sites on the Torpedo nicotinic acetylcholine receptor. Kawai H, Dunn SM, Raftery MA. Biochem Biophys Res Commun 366 834-839 (2008)
  232. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs). Abraham N, Paul B, Ragnarsson L, Lewis RJ. PLoS One 11 e0157363 (2016)
  233. Genetic Algorithm Managed Peptide Mutant Screening: Optimizing Peptide Ligands for Targeted Receptor Binding. King MD, Long T, Andersen T, McDougal OM. J Chem Inf Model 56 2378-2387 (2016)
  234. Inhibition of cholinergic pathways in Drosophila melanogaster by α-conotoxins. Heghinian MD, Mejia M, Adams DJ, Godenschwege TA, Marí F. FASEB J 29 1011-1018 (2015)
  235. Investigating the hydrogen-bond acceptor site of the nicotinic pharmacophore model: a computational and experimental study using epibatidine-related molecular probes. Dallanoce C, Grazioso G, Pomè DY, Sciaccaluga M, Matera C, Gotti C, Fucile S, De Amici M. J Comput Aided Mol Des 27 975-987 (2013)
  236. Molecular modeling of the complex between Torpedo acetylcholine receptor and anti-MIR Fab198. Konstantakaki M, Tzartos SJ, Poulas K, Eliopoulos E. Biochem Biophys Res Commun 356 569-575 (2007)
  237. SPIDR: small-molecule peptide-influenced drug repurposing. King MD, Long T, Pfalmer DL, Andersen TL, McDougal OM. BMC Bioinformatics 19 138 (2018)
  238. Structural features and hydrogen-bond properties of galanthamine and codeine: an experimental and theoretical study. Atkinson AP, Baguet E, Galland N, Le Questel JY, Planchat A, Graton J. Chemistry 17 11637-11649 (2011)
  239. The binding orientation of epibatidine at α7 nACh receptors. Thompson AJ, Metzger S, Lochner M, Ruepp MD. Neuropharmacology 116 421-428 (2017)
  240. The energetic consequences of loop 9 gating motions in acetylcholine receptor-channels. Jha A, Gupta S, Zucker SN, Auerbach A. J Physiol 590 119-129 (2012)
  241. The net orientation of nicotinic receptor transmembrane alpha-helices in the resting and desensitized states. Hill DG, Baenziger JE. Biophys J 91 705-714 (2006)
  242. A novel halogen bond and a better-known hydrogen bond cooperation of neonicotinoid and insect nicotinic acetylcholine receptor recognition. Duan H, Zhang W, Zhao J, Liang D, Yang X, Jin S. J Mol Model 18 3867-3875 (2012)
  243. An Investigation of Three-Finger Toxin-nAChR Interactions through Rosetta Protein Docking. Gulsevin A, Meiler J. Toxins (Basel) 12 E598 (2020)
  244. Competitive antagonists facilitate the recovery from desensitization of α1β2γ2 GABAA receptors expressed in Xenopus oocytes. Xu XJ, Roberts D, Zhu GN, Chang YC. Acta Pharmacol Sin 37 1020-1030 (2016)
  245. Crosslinking constraints and computational models as complementary tools in modeling the extracellular domain of the glycine receptor. Liu Z, Szarecka A, Yonkunas M, Speranskiy K, Kurnikova M, Cascio M. PLoS One 9 e102571 (2014)
  246. Fast synaptic transmission in the goldfish CNS mediated by multiple nicotinic receptors. Grove CL, Szabo TM, McIntosh JM, Do SC, Waldeck RF, Faber DS. J Physiol 589 575-595 (2011)
  247. Full and partial agonists evoke distinct structural changes in opening the muscle acetylcholine receptor channel. Mukhtasimova N, Sine SM. J Gen Physiol 150 713-729 (2018)
  248. Human Three-Finger Protein Lypd6 Is a Negative Modulator of the Cholinergic System in the Brain. Kulbatskii D, Shenkarev Z, Bychkov M, Loktyushov E, Shulepko M, Koshelev S, Povarov I, Popov A, Peigneur S, Chugunov A, Kozlov S, Sharonova I, Efremov R, Skrebitsky V, Tytgat J, Kirpichnikov M, Lyukmanova E. Front Cell Dev Biol 9 662227 (2021)
  249. Identifying the binding site of novel methyllycaconitine (MLA) analogs at α4β2 nicotinic acetylcholine receptors. Quek GX, Lin D, Halliday JI, Absalom N, Ambrus JI, Thompson AJ, Lochner M, Lummis SC, McLeod MD, Chebib M. ACS Chem Neurosci 1 796-809 (2010)
  250. Interactions between loop 5 and beta-strand beta6' are involved in alpha7 nicotinic acetylcholine receptors channel gating. Criado M, Mulet J, Castillo M, Aldea M, Sala S, Sala F. J Neurochem 104 719-730 (2008)
  251. Interactions of acetylcholine binding site residues contributing to nicotinic acetylcholine receptor gating: role of residues Y93, Y190, K145 and D200. Mallipeddi PL, Pedersen SE, Briggs JM. J Mol Graph Model 44 145-154 (2013)
  252. Model of the extracellular domain of the human alpha7 nAChR based on the crystal structure of the mouse alpha1 nAChR extracellular domain. Konstantakaki M, Tzartos SJ, Poulas K, Eliopoulos E. J Mol Graph Model 26 1333-1337 (2008)
  253. Molecular basis of the selective binding of MDMA enantiomers to the alpha4beta2 nicotinic receptor subtype: synthesis, pharmacological evaluation and mechanistic studies. Llabrés S, García-Ratés S, Cristóbal-Lecina E, Riera A, Borrell JI, Camarasa J, Pubill D, Luque FJ, Escubedo E. Eur J Med Chem 81 35-46 (2014)
  254. Myasthenogenicity of the main immunogenic region. Lindstrom J, Luo J. Ann N Y Acad Sci 1274 9-13 (2012)
  255. New tools for targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster. Mejia M, Heghinian MD, Marí F, Godenschwege TA. PLoS One 8 e64685 (2013)
  256. Prorocentrolide-A from Cultured Prorocentrum lima Dinoflagellates Collected in Japan Blocks Sub-Types of Nicotinic Acetylcholine Receptors. Amar M, Aráoz R, Iorga BI, Yasumoto T, Servent D, Molgó J. Toxins (Basel) 10 E97 (2018)
  257. Regulatory molecules for the 5-HT3 receptor ion channel gating system. Yoshida S, Watanabe T, Sato Y. Bioorg Med Chem 15 3515-3523 (2007)
  258. Role of the extracellular transmembrane domain interface in gating and pharmacology of a heteromeric neuronal nicotinic receptor. Aldea M, Castillo M, Mulet J, Sala S, Criado M, Sala F. J Neurochem 113 1036-1045 (2010)
  259. Selectivity of Imidacloprid for fruit fly versus rat nicotinic acetylcholine receptors by molecular modeling. Liu GY, Ju XL, Cheng J. J Mol Model 16 993-1002 (2010)
  260. Theoretical study of the binding profile of an allosteric modulator NS-1738 with a chimera structure of the α7 nicotinic acetylcholine receptor. Kuang G, Wang X, Halldin C, Nordberg A, Långström B, Ågren H, Tu Y. Phys Chem Chem Phys 18 28003-28009 (2016)
  261. Virtual screening against acetylcholine binding protein. Utsintong M, Rojsanga P, Ho KY, Talley TT, Olson AJ, Matsumoto K, Vajragupta O. J Biomol Screen 17 204-215 (2012)
  262. 2-Aminoethyl methylphosphonate, a potent and rapidly acting antagonist of GABA(A)-ρ1 receptors. Xie A, Yan J, Yue L, Feng F, Mir F, Abdel-Halim H, Chebib M, Le Breton GC, Standaert RF, Qian H, Pepperberg DR. Mol Pharmacol 80 965-978 (2011)
  263. A comprehensive study on the 5-hydroxytryptamine(3A) receptor binding of agonists serotonin and m-chlorophenylbiguanidine. Hazai E, Joshi P, Skoviak EC, Suryanarayanan A, Schulte MK, Bikadi Z. Bioorg Med Chem 17 5796-5805 (2009)
  264. Absolute Configuration and Pharmacology of the Poison Frog Alkaloid Phantasmidine. Fitch RW, Snider BB, Zhou Q, Foxman BM, Pandya AA, Yakel JL, Olson TT, Al-Muhtasib N, Xiao Y, Welch KD, Panter KE. J Nat Prod 81 1029-1035 (2018)
  265. An Electrostatic Funnel in the GABA-Binding Pathway. Carpenter TS, Lightstone FC. PLoS Comput Biol 12 e1004831 (2016)
  266. Computational modeling study of human nicotinic acetylcholine receptor for developing new drugs in the treatment of alcoholism. Hu ZJ, Bai L, Tizabi Y, Southerland W. Interdiscip Sci 1 254-262 (2009)
  267. Efficient expression of acetylcholine-binding protein from Aplysia californica in Bac-to-Bac system. Lin B, Meng H, Bing H, Zhangsun D, Luo S. Biomed Res Int 2014 691480 (2014)
  268. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor. Tabassum N, Ma Q, Wu G, Jiang T, Yu R. J Mol Model 23 251 (2017)
  269. Imidacloprid and thiacloprid neonicotinoids bind more favourably to cockroach than to honeybee α6 nicotinic acetylcholine receptor: insights from computational studies. Selvam B, Graton J, Laurent AD, Alamiddine Z, Mathé-Allainmat M, Lebreton J, Coqueret O, Olivier C, Thany SH, Le Questel JY. J Mol Graph Model 55 1-12 (2015)
  270. Mechanism of calcium potentiation of the α7 nicotinic acetylcholine receptor. Natarajan K, Mukhtasimova N, Corradi J, Lasala M, Bouzat C, Sine SM. J Gen Physiol 152 e202012606 (2020)
  271. Mode of Action of Neonicotinoid Insecticides Imidacloprid and Thiacloprid to the Cockroach Pameα7 Nicotinic Acetylcholine Receptor. Cartereau A, Taillebois E, Le Questel JY, Thany SH. Int J Mol Sci 22 9880 (2021)
  272. Modeling and analysis of ligand-receptor interactions in the GABAc receptor. Osolodkin DI, Chupakhin VI, Palyulin VA, Zefirov NS. Dokl Biochem Biophys 412 25-28 (2007)
  273. Mutations causing congenital myasthenia reveal principal coupling pathway in the acetylcholine receptor ε-subunit. Shen XM, Brengman JM, Shen S, Durmus H, Preethish-Kumar V, Yuceyar N, Vengalil S, Nalini A, Deymeer F, Sine SM, Engel AG. JCI Insight 3 97826 (2018)
  274. Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models. Gipson CD, Fowler CD. Curr Top Behav Neurosci 45 101-121 (2020)
  275. The loop between beta-strands beta 2 and beta 3 and its interaction with the N-terminal alpha-helix is essential for biogenesis of alpha 7 nicotinic receptors. Criado M, Mulet J, Castillo M, Gerber S, Sala S, Sala F. J Neurochem 112 103-111 (2010)
  276. A computational investigation on the role of glycosylation in the binding of alpha1 nicotinic acetylcholine receptor with two alpha-neurotoxins. Dimitropoulos N, Papakyriakou A, Dalkas GA, Chasapis CT, Poulas K, Spyroulias GA. Proteins 79 142-152 (2011)
  277. Design and Synthesis of Nicotinic Acetylcholine Receptor Antagonists and their Effect on Cognitive Impairment. Jaikhan P, Boonyarat C, Arunrungvichian K, Taylor P, Vajragupta O. Chem Biol Drug Des 87 39-56 (2016)
  278. Differentiating enantioselective actions of GABOB: a possible role for threonine 244 in the binding site of GABA(C) ρ(1) receptors. Yamamoto I, Absalom N, Carland JE, Doddareddy MR, Gavande N, Johnston GA, Hanrahan JR, Chebib M. ACS Chem Neurosci 3 665-673 (2012)
  279. Instant Integrated Ultradeep Quantitative-structural Membrane Proteomics Discovered Post-translational Modification Signatures for Human Cys-loop Receptor Subunit Bias. Zhang X. Mol Cell Proteomics 15 3665-3684 (2016)
  280. Sequential purification and characterization of Torpedo californica nAChR-DC supplemented with CHS for high-resolution crystallization studies. Maldonado-Hernández R, Quesada O, Colón-Sáez JO, Lasalde-Dominicci JA. Anal Biochem 610 113887 (2020)
  281. Structural comparison of three crystalline complexes of a peptidic toxin with a synaptic acetylcholine recognition protein. Bourne Y, Hansen SB, Sulzenbacher G, Talley TT, Huxford T, Taylor P, Marchot P. J Mol Neurosci 30 103-104 (2006)
  282. The GlyR Extracellular β8-β9 Loop - A Functional Determinant of Agonist Potency. Janzen D, Schaefer N, Delto C, Schindelin H, Villmann C. Front Mol Neurosci 10 322 (2017)
  283. A residue close to α1 loop F disrupts modulation of GABAA receptors by benzodiazepines while their binding is maintained. Baur R, Lüscher BP, Richter L, Sigel E. J Neurochem 115 1478-1485 (2010)
  284. Covalent attachment of antagonists to the α7 nicotinic acetylcholine receptor: synthesis and reactivity of substituted maleimides. Ambrus JI, Halliday JI, Kanizaj N, Absalom N, Harpsøe K, Balle T, Chebib M, McLeod MD. Chem Commun (Camb) 48 6699-6701 (2012)
  285. Intra-subunit flexibility underlies activation and allosteric modulation of neuronal nicotinic acetylcholine receptors. Chrisman PA, Podair JI, Jobe EM, Levandoski MM. Neuropharmacology 79 420-431 (2014)
  286. Nicotinic agonist binding site mapped by methionine- and tyrosine-scanning coupled with azidochloropyridinyl photoaffinity labeling. Tomizawa M, Talley TT, Park JF, Maltby D, Medzihradszky KF, Durkin KA, Cornejo-Bravo JM, Burlingame AL, Casida JE, Taylor P. J Med Chem 52 3735-3741 (2009)
  287. Comment Nicotinic receptor structure emerging slowly. Sixma TK. Nat Neurosci 10 937-938 (2007)
  288. Partial activation of α7 nicotinic acetylcholine receptors: insights from molecular dynamics simulations. Shi C, Yu R, Shao S, Li Y. J Mol Model 19 871-878 (2013)
  289. Pharmacophore Mapping Combined with dbCICA Reveal New Structural Features for the Development of Novel Ligands Targeting α4β2 and α7 Nicotinic Acetylcholine Receptors. Batista VS, Gonçalves AM, Nascimento-Júnior NM. Molecules 27 8236 (2022)
  290. Qualitative Assay to Detect Dopamine Release by Ligand Action on Nicotinic Acetylcholine Receptors. Marquart LA, Turner MW, McDougal OM. Toxins (Basel) 11 E682 (2019)
  291. Rigidity of loop 1 contributes to equipotency of globular and ribbon isomers of α-conotoxin AusIA. Ho TNT, Abraham N, Lewis RJ. Sci Rep 11 21928 (2021)
  292. 1H and 13C NMR spectra of methylmaleimido- and methylsuccinimidoanthranilate esters of 1-hydroxymethyl-6-methoxy-3-azabicyclo[3.3.1]nonanes. Goodall KJ, Brimble MA, Barker D. Magn Reson Chem 45 695-699 (2007)
  293. A Computational Analysis of the Factors Governing the Dynamics of α7 nAChR and Its Homologs. Gulsevin A, Meiler J, Horenstein NA. Biophys J 119 1656-1669 (2020)
  294. A reversed phase HPLC method for the quantification of HIV gp145 glycoprotein levels from cell culture supernatants. González-Feliciano JA, Capó-Vélez CM, Akamine P, Delgado-Vélez M, Almodóvar R, Rivera J, Pino I, Morell G, Eichinger D, Rivera JH, Lasalde-Dominicci JA, Baerga-Ortiz A. J Chromatogr B Analyt Technol Biomed Life Sci 1167 122562 (2021)
  295. Defining the determinants of nicotine selectivity. Taylor P. Proc Natl Acad Sci U S A 107 13195-13196 (2010)
  296. Delineating the activity of the potent nicotinic acetylcholine receptor agonists (+)-anatoxin-a and (-)-hosieine-A. Parker HP, Dawson A, Jones MJ, Yan R, Ouyang J, Hong R, Hunter WN. Acta Crystallogr F Struct Biol Commun 78 313-323 (2022)
  297. Design, synthesis, and biological activity of 5'-phenyl-1,2,5,6-tetrahydro-3,3'-bipyridine analogues as potential antagonists of nicotinic acetylcholine receptors. Jin Y, Huang X, Papke RL, Jutkiewicz EM, Showalter HD, Zhan CG. Bioorg Med Chem Lett 27 4350-4353 (2017)
  298. Different effects of lobeline on neuronal and muscle nicotinic receptors. Kaniakova M, Skrenkova K, Adamek S, Vyskocil F, Krusek J. Eur J Pharmacol 738 352-359 (2014)
  299. Discovery, synthesis, biological evaluation and structure-based optimization of novel piperidine derivatives as acetylcholine-binding protein ligands. Shen J, Yang XC, Yu MC, Xiao L, Zhang XJ, Sun HJ, Chen H, Pan GX, Yan YR, Wang SC, Li W, Zhou L, Xie Q, Yu LQ, Wang YH, Shao LM. Acta Pharmacol Sin 38 146-155 (2017)
  300. From Crystal Structures of RgIA4 in Complex with Ac-AChBP to Molecular Determinants of Its High Potency of α9α10 nAChR. Pan S, Fan Y, Zhu X, Xue Y, Luo S, Wang X. Mar Drugs 19 709 (2021)
  301. Hydrocortisone inhibition of wild-type and αD200Q nicotinic acetylcholine receptors. Dworakowska B, Nurowska E, Dołowy K. Chem Biol Drug Des 92 1610-1617 (2018)
  302. Insights into a highly conserved network of hydrogen bonds in the agonist binding site of nicotinic acetylcholine receptors: a structural and theoretical study. Atkinson A, Graton J, Le Questel JY. Proteins 82 2303-2317 (2014)
  303. Interactions between 2'-fluoro-(carbamoylpyridinyl)deschloroepibatidine analogues and acetylcholine-binding protein inform on potent antagonist activity against nicotinic receptors. Bueno RV, Davis S, Dawson A, Ondachi PW, Carroll FI, Hunter WN. Acta Crystallogr D Struct Biol 78 353-362 (2022)
  304. Neurotransmitter GABA activates muscle but not α7 nicotinic receptors. Dionisio L, Bergé I, Bravo M, Esandi Mdel C, Bouzat C. Mol Pharmacol 87 391-400 (2015)
  305. Potentiation of acetylcholine receptors by divalent cations. Lindstrom J. Mol Pharmacol 70 5-7 (2006)
  306. Unique Pharmacological Properties of α-Conotoxin OmIA at α7 nAChRs. Ho TNT, Abraham N, Lewis RJ. Front Pharmacol 12 803397 (2021)
  307. 1H and 13C NMR spectra of C-6 and C-9 substituted 3-azabicyclco[3.3.1]nonanes. Goodall K, Brimble M, Barker D. Magn Reson Chem 46 75-79 (2008)
  308. Capturing state-dependent dynamic events of GABAA-receptors: a microscopic look into the structural and functional insights. Payghan PV, Bera I, Bhattacharyya D, Ghoshal N. J Biomol Struct Dyn 34 1818-1837 (2016)
  309. ConoMode, a database for conopeptide binding modes. Li X, Liu H, Gao C, Li Y, Jia D, Yang Y, Yang J, Wei Z, Jiang T, Yu R. Database (Oxford) 2020 baaa058 (2020)
  310. Discovery of fragments inducing conformational effects in dynamic proteins using a second-harmonic generation biosensor. FitzGerald EA, Butko MT, Boronat P, Cederfelt D, Abramsson M, Ludviksdottir H, van Muijlwijk-Koezen JE, de Esch IJP, Dobritzsch D, Young T, Danielson UH. RSC Adv 11 7527-7537 (2021)
  311. Kinetics of agonist-induced intrinsic fluorescence changes in the Torpedo acetylcholine receptor. Kawai H, Raftery MA. J Biochem 147 743-749 (2010)
  312. Mutants of β-strand β3 and the loop B in the interface between α7 subunits of a homomeric acetylcholine receptor show functional and pharmacological alterations. Criado M, Mulet J, Gerber S, Sala S, Sala F. J Neurochem 118 968-978 (2011)
  313. Origin of acetylcholine antagonism in ELIC, a bacterial pentameric ligand-gated ion channel. Slobodyanyuk M, Banda-Vázquez JA, Thompson MJ, Dean RA, Baenziger JE, Chica RA, daCosta CJB. Commun Biol 5 1264 (2022)
  314. Recent structural and mechanistic insights into endplate acetylcholine receptors. Sine SM, Gao F, Lee WY, Mukhtasimova N, Wang HL, Engel AG. Ann N Y Acad Sci 1132 53-60 (2008)
  315. Structural features and protonation site of epibatidine in the gas phase: an investigation through infrared multiphoton dissociation spectroscopy and computational chemistry. Atkinson AP, Planchat A, Graton J, Renault E, Grégoire G, Le Questel JY. Phys Chem Chem Phys 13 2272-2277 (2011)
  316. The neural γ2α1β2α1β2 gamma amino butyric acid ion channel receptor: structural analysis of the effects of the ivermectin molecule and disulfide bridges. Ayan M, Essiz S. J Mol Model 24 206 (2018)
  317. Unravelling the allosteric binding mode of αD-VxXXB at nicotinic acetylcholine receptors. Ho TN, Abraham N, Lewis RJ. Front Pharmacol 14 1170514 (2023)