2co6 Citations

Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism.

Mol Cell 22 831-842 (2006)
Related entries: 2cny, 2cnz, 2co1, 2co2, 2co3, 2co4, 2co7

Cited: 113 times
EuropePMC logo PMID: 16793551

Abstract

Gram-negative pathogens commonly use the chaperone-usher pathway to assemble adhesive multisubunit fibers on their surface. In the periplasm, subunits are stabilized by a chaperone that donates a beta strand to complement the subunits' truncated immunoglobulin-like fold. Pilus assembly proceeds through a "donor-strand exchange" (DSE) mechanism whereby this complementary beta strand is replaced by the N-terminal extension (Nte) of an incoming pilus subunit. Using X-ray crystallography and real-time electrospray ionization mass spectrometry (ESI-MS), we demonstrate that DSE requires the formation of a transient ternary complex between the chaperone-subunit complex and the Nte of the next subunit to be assembled. The process is crucially dependent on an initiation site (the P5 pocket) needed to recruit the incoming Nte. The data also suggest a capping reaction displacing DSE toward product formation. These results support a zip-in-zip-out mechanism for DSE and a catalytic role for the usher, the molecular platform at which pili are assembled.

Articles - 2co6 mentioned but not cited (1)

  1. Structural and functional characterization of Pseudomonas aeruginosa CupB chaperones. Cai X, Wang R, Filloux A, Waksman G, Meng G. PLoS One 6 e16583 (2011)


Reviews citing this publication (30)

  1. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. Nat Rev Microbiol 13 343-359 (2015)
  2. Bacterial adhesins in host-microbe interactions. Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B. Cell Host Microbe 5 580-592 (2009)
  3. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Sharon M, Robinson CV. Annu Rev Biochem 76 167-193 (2007)
  4. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Hospenthal MK, Costa TRD, Waksman G. Nat Rev Microbiol 15 365-379 (2017)
  5. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. Fronzes R, Remaut H, Waksman G. EMBO J 27 2271-2280 (2008)
  6. Chaperone-usher pathways: diversity and pilus assembly mechanism. Busch A, Waksman G. Philos Trans R Soc Lond B Biol Sci 367 1112-1122 (2012)
  7. Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. Dalbey RE, Kuhn A. FEMS Microbiol Rev 36 1023-1045 (2012)
  8. Contractile injection systems of bacteriophages and related systems. Taylor NMI, van Raaij MJ, Leiman PG. Mol Microbiol 108 6-15 (2018)
  9. Immunoglobulin domains in Escherichia coli and other enterobacteria: from pathogenesis to applications in antibody technologies. Bodelón G, Palomino C, Fernández LÁ. FEMS Microbiol Rev 37 204-250 (2013)
  10. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. Zav'yalov V, Zavialov A, Zav'yalova G, Korpela T. FEMS Microbiol Rev 34 317-378 (2010)
  11. FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. Zavialov A, Zav'yalova G, Korpela T, Zav'yalov V. FEMS Microbiol Rev 31 478-514 (2007)
  12. Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Rêgo AT, Chandran V, Waksman G. Biochem J 425 475-488 (2010)
  13. Adhesive Pili in UTI Pathogenesis and Drug Development. Spaulding CN, Hultgren SJ. Pathogens 5 E30 (2016)
  14. Classical chaperone-usher (CU) adhesive fimbriome: uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Behzadi P. Folia Microbiol (Praha) 65 45-65 (2020)
  15. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Mydock-McGrane LK, Hannan TJ, Janetka JW. Expert Opin Drug Discov 12 711-731 (2017)
  16. Engineering and exploiting protein assemblies in synthetic biology. Papapostolou D, Howorka S. Mol Biosyst 5 723-732 (2009)
  17. Biogenesis and adhesion of type 1 and P pili. Lillington J, Geibel S, Waksman G. Biochim Biophys Acta 1840 2783-2793 (2014)
  18. The molecular dissection of the chaperone-usher pathway. Geibel S, Waksman G. Biochim Biophys Acta 1843 1559-1567 (2014)
  19. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. Werneburg GT, Thanassi DG. EcoSal Plus 8 (2018)
  20. Everything You Always Wanted to Know About Salmonella Type 1 Fimbriae, but Were Afraid to Ask. Kolenda R, Ugorski M, Grzymajlo K. Front Microbiol 10 1017 (2019)
  21. Development of antivirulence compounds: a biochemical review. Zambelloni R, Marquez R, Roe AJ. Chem Biol Drug Des 85 43-55 (2015)
  22. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Chahales P, Thanassi DG. Microbiol Spectr 3 (2015)
  23. The Rich Tapestry of Bacterial Protein Translocation Systems. Christie PJ. Protein J 38 389-408 (2019)
  24. Bacterial surface appendages as targets for novel antibacterial therapeutics. Steadman D, Lo A, Waksman G, Remaut H. Future Microbiol 9 887-900 (2014)
  25. Chemical attenuation of pilus function and assembly in Gram-negative bacteria. Lo AW, Moonens K, Remaut H. Curr Opin Microbiol 16 85-92 (2013)
  26. Virulence regulons of enterotoxigenic Escherichia coli. Munson GP. Immunol Res 57 229-236 (2013)
  27. Structural and Molecular Biology of a Protein-Polymerizing Nanomachine for Pilus Biogenesis. Waksman G. J Mol Biol 429 2654-2666 (2017)
  28. Therapeutic Approaches Targeting the Assembly and Function of Chaperone-Usher Pili. Psonis JJ, Thanassi DG. EcoSal Plus 8 (2019)
  29. Use of a combined cryo-EM and X-ray crystallography approach to reveal molecular details of bacterial pilus assembly by the chaperone/usher pathway. Li H, Thanassi DG. Curr Opin Microbiol 12 326-332 (2009)
  30. Glycomimetics for the inhibition and modulation of lectins. Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Chem Soc Rev 52 3663-3740 (2023)

Articles citing this publication (82)

  1. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Hernández H, Robinson CV. Nat Protoc 2 715-726 (2007)
  2. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Pinkner JS, Remaut H, Buelens F, Miller E, Aberg V, Pemberton N, Hedenström M, Larsson A, Seed P, Waksman G, Hultgren SJ, Almqvist F. Proc Natl Acad Sci U S A 103 17897-17902 (2006)
  3. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Remaut H, Tang C, Henderson NS, Pinkner JS, Wang T, Hultgren SJ, Thanassi DG, Waksman G, Li H. Cell 133 640-652 (2008)
  4. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MB, Pinkner JS, Ford B, Kay CW, Li H, Hultgren SJ, Thanassi DG, Waksman G. Nature 474 49-53 (2011)
  5. Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst. Nishiyama M, Ishikawa T, Rechsteiner H, Glockshuber R. Science 320 376-379 (2008)
  6. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. Verger D, Miller E, Remaut H, Waksman G, Hultgren S. EMBO Rep 7 1228-1232 (2006)
  7. The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae. Giraud C, Bernard CS, Calderon V, Yang L, Filloux A, Molin S, Fichant G, Bordi C, de Bentzmann S. Environ Microbiol 13 666-683 (2011)
  8. How far can we go with structural mass spectrometry of protein complexes? Sharon M. J Am Soc Mass Spectrom 21 487-500 (2010)
  9. Structural insights into the biogenesis and biofilm formation by the Escherichia coli common pilus. Garnett JA, Martínez-Santos VI, Saldaña Z, Pape T, Hawthorne W, Chan J, Simpson PJ, Cota E, Puente JL, Girón JA, Matthews S. Proc Natl Acad Sci U S A 109 3950-3955 (2012)
  10. Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry. Rose RJ, Verger D, Daviter T, Remaut H, Paci E, Waksman G, Ashcroft AE, Radford SE. Proc Natl Acad Sci U S A 105 12873-12878 (2008)
  11. Crystal structure of the P pilus rod subunit PapA. Verger D, Bullitt E, Hultgren SJ, Waksman G. PLoS Pathog 3 e73 (2007)
  12. Human Urine Decreases Function and Expression of Type 1 Pili in Uropathogenic Escherichia coli. Greene SE, Hibbing ME, Janetka J, Chen SL, Hultgren SJ. mBio 6 e00820 (2015)
  13. Structure, folding and stability of FimA, the main structural subunit of type 1 pili from uropathogenic Escherichia coli strains. Puorger C, Vetsch M, Wider G, Glockshuber R. J Mol Biol 412 520-535 (2011)
  14. Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Crespo MD, Puorger C, Schärer MA, Eidam O, Grütter MG, Capitani G, Glockshuber R. Nat Chem Biol 8 707-713 (2012)
  15. Structure of a Chaperone-Usher Pilus Reveals the Molecular Basis of Rod Uncoiling. Hospenthal MK, Redzej A, Dodson K, Ukleja M, Frenz B, Rodrigues C, Hultgren SJ, DiMaio F, Egelman EH, Waksman G. Cell 164 269-278 (2016)
  16. Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions. Kalas V, Pinkner JS, Hannan TJ, Hibbing ME, Dodson KW, Holehouse AS, Zhang H, Tolia NH, Gross ML, Pappu RV, Janetka J, Hultgren SJ. Sci Adv 3 e1601944 (2017)
  17. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Kim YE, Kim YN, Kim JA, Kim HM, Jung Y. Nat Commun 6 7134 (2015)
  18. Mass spectrometry reveals the missing links in the assembly pathway of the bacterial 20 S proteasome. Sharon M, Witt S, Glasmacher E, Baumeister W, Robinson CV. J Biol Chem 282 18448-18457 (2007)
  19. Donor-strand exchange in chaperone-assisted pilus assembly revealed in atomic detail by molecular dynamics. Rose RJ, Welsh TS, Waksman G, Ashcroft AE, Radford SE, Paci E. J Mol Biol 375 908-919 (2008)
  20. Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1. Khare B, Krishnan V, Rajashankar KR, I-Hsiu H, Xin M, Ton-That H, Narayana SV. PLoS One 6 e22995 (2011)
  21. Structural insight into host recognition by aggregative adherence fimbriae of enteroaggregative Escherichia coli. Berry AA, Yang Y, Pakharukova N, Garnett JA, Lee WC, Cota E, Marchant J, Roy S, Tuittila M, Liu B, Inman KG, Ruiz-Perez F, Mandomando I, Nataro JP, Zavialov AV, Matthews S. PLoS Pathog 10 e1004404 (2014)
  22. Adaptive mutations in the signal peptide of the type 1 fimbrial adhesin of uropathogenic Escherichia coli. Ronald LS, Yakovenko O, Yazvenko N, Chattopadhyay S, Aprikian P, Thomas WE, Sokurenko EV. Proc Natl Acad Sci U S A 105 10937-10942 (2008)
  23. Mechanical architecture and folding of E. coli type 1 pilus domains. Alonso-Caballero A, Schönfelder J, Poly S, Corsetti F, De Sancho D, Artacho E, Perez-Jimenez R. Nat Commun 9 2758 (2018)
  24. Structural analysis of the Saf pilus by electron microscopy and image processing. Salih O, Remaut H, Waksman G, Orlova EV. J Mol Biol 379 174-187 (2008)
  25. Suppression of type 1 pilus assembly in uropathogenic Escherichia coli by chemical inhibition of subunit polymerization. Lo AW, Van de Water K, Gane PJ, Chan AW, Steadman D, Stevens K, Selwood DL, Waksman G, Remaut H. J Antimicrob Chemother 69 1017-1026 (2014)
  26. The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine. Sadana P, Geyer R, Pezoldt J, Helmsing S, Huehn J, Hust M, Dersch P, Scrima A. J Biol Chem 293 8672-8690 (2018)
  27. Binding of Myomesin to Obscurin-Like-1 at the Muscle M-Band Provides a Strategy for Isoform-Specific Mechanical Protection. Pernigo S, Fukuzawa A, Beedle AEM, Holt M, Round A, Pandini A, Garcia-Manyes S, Gautel M, Steiner RA. Structure 25 107-120 (2017)
  28. Enteroaggregative E. coli Adherence to Human Heparan Sulfate Proteoglycans Drives Segment and Host Specific Responses to Infection. Rajan A, Robertson MJ, Carter HE, Poole NM, Clark JR, Green SI, Criss ZK, Zhao B, Karandikar U, Xing Y, Margalef-Català M, Jain N, Wilson RL, Bai F, Hyser JM, Petrosino J, Shroyer NF, Blutt SE, Coarfa C, Song X, Prasad BV, Amieva MR, Grande-Allen J, Estes MK, Okhuysen PC, Maresso AW. PLoS Pathog 16 e1008851 (2020)
  29. Evidence for an elongated dimeric structure of heparin-binding hemagglutinin from Mycobacterium tuberculosis. Esposito C, Pethoukov MV, Svergun DI, Ruggiero A, Pedone C, Pedone E, Berisio R. J Bacteriol 190 4749-4753 (2008)
  30. Function of the usher N-terminus in catalysing pilus assembly. Henderson NS, Ng TW, Talukder I, Thanassi DG. Mol Microbiol 79 954-967 (2011)
  31. Impairment of the biomechanical compliance of P pili: a novel means of inhibiting uropathogenic bacterial infections? Klinth JE, Pinkner JS, Hultgren SJ, Almqvist F, Uhlin BE, Axner O. Eur Biophys J 41 285-295 (2012)
  32. Crystal structure of enterotoxigenic Escherichia coli colonization factor CS6 reveals a novel type of functional assembly. Roy SP, Rahman MM, Yu XD, Tuittila M, Knight SD, Zavialov AV. Mol Microbiol 86 1100-1115 (2012)
  33. Maturation of the Mfa1 Fimbriae in the Oral Pathogen Porphyromonas gingivalis. Lee JY, Miller DP, Wu L, Casella CR, Hasegawa Y, Lamont RJ. Front Cell Infect Microbiol 8 137 (2018)
  34. Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. Piatek R, Zalewska-Piatek B, Dzierzbicka K, Makowiec S, Pilipczuk J, Szemiako K, Cyranka-Czaja A, Wojciechowski M. BMC Microbiol 13 131 (2013)
  35. Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis. Pakharukova N, Garnett JA, Tuittila M, Paavilainen S, Diallo M, Xu Y, Matthews SJ, Zavialov AV. PLoS Pathog 11 e1005269 (2015)
  36. Structural determinants of polymerization reactivity of the P pilus adaptor subunit PapF. Verger D, Rose RJ, Paci E, Costakes G, Daviter T, Hultgren S, Remaut H, Ashcroft AE, Radford SE, Waksman G. Structure 16 1724-1731 (2008)
  37. New supercharging reagents produce highly charged protein ions in native mass spectrometry. Going CC, Xia Z, Williams ER. Analyst 140 7184-7194 (2015)
  38. Allosteric mechanism controls traffic in the chaperone/usher pathway. Di Yu X, Dubnovitsky A, Pudney AF, Macintyre S, Knight SD, Zavialov AV. Structure 20 1861-1871 (2012)
  39. Dissection of pilus tip assembly by the FimD usher monomer. Allen WJ, Phan G, Hultgren SJ, Waksman G. J Mol Biol 425 958-967 (2013)
  40. NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits. Gossert AD, Bettendorff P, Puorger C, Vetsch M, Herrmann T, Glockshuber R, Wüthrich K. J Mol Biol 375 752-763 (2008)
  41. Hybrid Structure of the Type 1 Pilus of Uropathogenic Escherichia coli. Habenstein B, Loquet A, Hwang S, Giller K, Vasa SK, Becker S, Habeck M, Lange A. Angew Chem Int Ed Engl 54 11691-11695 (2015)
  42. Molecular mechanism of bacterial type 1 and P pili assembly. Busch A, Phan G, Waksman G. Philos Trans A Math Phys Eng Sci 373 20130153 (2015)
  43. Structural basis of host recognition and biofilm formation by Salmonella Saf pili. Zeng L, Zhang L, Wang P, Meng G. Elife 6 e28619 (2017)
  44. The structure of the CS1 pilus of enterotoxigenic Escherichia coli reveals structural polymorphism. Galkin VE, Kolappan S, Ng D, Zong Z, Li J, Yu X, Egelman EH, Craig L. J Bacteriol 195 1360-1370 (2013)
  45. The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket. Ford B, Verger D, Dodson K, Volkan E, Kostakioti M, Elam J, Pinkner J, Waksman G, Hultgren S. J Bacteriol 194 6390-6397 (2012)
  46. A molecular dynamics study of pilus subunits: insights into pilus biogenesis. Vitagliano L, Ruggiero A, Pedone C, Berisio R. J Mol Biol 367 935-941 (2007)
  47. Mutations in the periplasmic chaperone leading to loss of surface expression of the colonization factor CS6 in enterotoxigenic Escherichia coli (ETEC) clinical isolates. Nicklasson M, Sjöling A, Lebens M, Tobias J, Janzon A, Brive L, Svennerholm AM. Microb Pathog 44 246-254 (2008)
  48. Specific residues in the N-terminal domain of FimH stimulate type 1 fimbriae assembly in Escherichia coli following the initial binding of the adhesin to FimD usher. Munera D, Palomino C, Fernández LA. Mol Microbiol 69 911-925 (2008)
  49. The polymeric stability of the Escherichia coli F4 (K88) fimbriae enhances its mucosal immunogenicity following oral immunization. Verdonck F, Joensuu JJ, Stuyven E, De Meyer J, Muilu M, Pirhonen M, Goddeeris BM, Mast J, Niklander-Teeri V, Cox E. Vaccine 26 5728-5735 (2008)
  50. Large is fast, small is tight: determinants of speed and affinity in subunit capture by a periplasmic chaperone. Yu XD, Fooks LJ, Moslehi-Mohebi E, Tischenko VM, Askarieh G, Knight SD, Macintyre S, Zavialov AV. J Mol Biol 417 294-308 (2012)
  51. Structural and thermodynamic characterization of pre- and postpolymerization states in the F4 fimbrial subunit FaeG. Van Molle I, Moonens K, Garcia-Pino A, Buts L, De Kerpel M, Wyns L, Bouckaert J, De Greve H. J Mol Biol 394 957-967 (2009)
  52. The outer membrane usher guarantees the formation of functional pili by selectively catalyzing donor-strand exchange between subunits that are adjacent in the mature pilus. Nishiyama M, Glockshuber R. J Mol Biol 396 1-8 (2010)
  53. Structure of polymerized type V pilin reveals assembly mechanism involving protease-mediated strand exchange. Shibata S, Shoji M, Okada K, Matsunami H, Matthews MM, Imada K, Nakayama K, Wolf M. Nat Microbiol 5 830-837 (2020)
  54. Intramolecular donor strand complementation in the E. coli type 1 pilus subunit FimA explains the existence of FimA monomers as off-pathway products of pilus assembly that inhibit host cell apoptosis. Walczak MJ, Puorger C, Glockshuber R, Wider G. J Mol Biol 426 542-549 (2014)
  55. Second order rate constants of donor-strand exchange reveal individual amino acid residues important in determining the subunit specificity of pilus biogenesis. Leney AC, Phan G, Allen W, Verger D, Waksman G, Radford SE, Ashcroft AE. J Am Soc Mass Spectrom 22 1214-1223 (2011)
  56. Structural and adhesive properties of the long polar fimbriae protein LpfD from adherent-invasive Escherichia coli. Coppens F, Iyyathurai J, Ruer S, Fioravanti A, Taganna J, Vereecke L, De Greve H, Remaut H. Acta Crystallogr D Biol Crystallogr 71 1615-1626 (2015)
  57. Structural and functional studies of Escherichia coli aggregative adherence fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding. Jønsson R, Liu B, Struve C, Yang Y, Jørgensen R, Xu Y, Jenssen H, Krogfelt KA, Matthews S. Biochim Biophys Acta Proteins Proteom 1865 304-311 (2017)
  58. Toward Computationally Designed Self-Reporting Biosensors Using Leave-One-Out Green Fluorescent Protein. Huang YM, Banerjee S, Crone DE, Schenkelberg CD, Pitman DJ, Buck PM, Bystroff C. Biochemistry 54 6263-6273 (2015)
  59. Conformational states and association mechanism of Yersinia pestis Caf1 subunits. Vitagliano L, Ruggiero A, Pedone C, Berisio R. Biochem Biophys Res Commun 372 804-810 (2008)
  60. Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms. Böhning J, Ghrayeb M, Pedebos C, Abbas DK, Khalid S, Chai L, Bharat TAM. Nat Commun 13 7082 (2022)
  61. Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis. Du M, Yuan Z, Werneburg GT, Henderson NS, Chauhan H, Kovach A, Zhao G, Johl J, Li H, Thanassi DG. Nat Commun 12 5207 (2021)
  62. Structural basis for usher activation and intramolecular subunit transfer in P pilus biogenesis in Escherichia coli. Omattage NS, Deng Z, Pinkner JS, Dodson KW, Almqvist F, Yuan P, Hultgren SJ. Nat Microbiol 3 1362-1368 (2018)
  63. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria. Shanmugasundarasamy T, Karaiyagowder Govindarajan D, Kandaswamy K. Cell Surf 8 100077 (2022)
  64. Ordered and ushered; the assembly and translocation of the adhesive type I and p pili. Lillington J, Waksman G. Biology (Basel) 2 841-860 (2013)
  65. Solubility and Aggregation of Selected Proteins Interpreted on the Basis of Hydrophobicity Distribution. Ptak-Kaczor M, Banach M, Stapor K, Fabian P, Konieczny L, Roterman I. Int J Mol Sci 22 5002 (2021)
  66. Structure of CfaA suggests a new family of chaperones essential for assembly of class 5 fimbriae. Bao R, Fordyce A, Chen YX, McVeigh A, Savarino SJ, Xia D. PLoS Pathog 10 e1004316 (2014)
  67. Archaic chaperone-usher pili self-secrete into superelastic zigzag springs. Pakharukova N, Malmi H, Tuittila M, Dahlberg T, Ghosal D, Chang YW, Myint SL, Paavilainen S, Knight SD, Lamminmäki U, Uhlin BE, Andersson M, Jensen G, Zavialov AV. Nature 609 335-340 (2022)
  68. The Fis Nucleoid Protein Negatively Regulates the Phase Variation fimS Switch of the Type 1 Pilus Operon in Enteropathogenic Escherichia coli. Saldaña-Ahuactzi Z, Soria-Bustos J, Martínez-Santos VI, Yañez-Santos JA, Martínez-Laguna Y, Cedillo-Ramirez ML, Puente JL, Girón JA. Front Microbiol 13 882563 (2022)
  69. Promoting crystallisation of the Salmonella enteritidis fimbriae 14 pilin SefD using deuterium oxide. Liu B, Garnett JA, Lee WC, Lin J, Salgado P, Taylor J, Xu Y, Lambert S, Cota E, Matthews S. Biochem Biophys Res Commun 421 208-213 (2012)
  70. Congress Structures and diseases. Wendt KU, Weiss MS, Cramer P, Heinz DW. Nat Struct Mol Biol 15 117-120 (2008)
  71. Archaic and alternative chaperones preserve pilin folding energy by providing incomplete structural information. Pakharukova N, McKenna S, Tuittila M, Paavilainen S, Malmi H, Xu Y, Parilova O, Matthews S, Zavialov AV. J Biol Chem 293 17070-17080 (2018)
  72. Electron cryo-microscopy reveals the structure of the archaeal thread filament. Gaines MC, Isupov MN, Sivabalasarma S, Haque RU, McLaren M, Mollat CL, Tripp P, Neuhaus A, Gold VAM, Albers SV, Daum B. Nat Commun 13 7411 (2022)
  73. Chaperone-tip adhesin complex is vital for synergistic activation of CFA/I fimbriae biogenesis. He LH, Wang H, Liu Y, Kang M, Li T, Li CC, Tong AP, Zhu YB, Song YJ, Savarino SJ, Prouty MG, Xia D, Bao R. PLoS Pathog 16 e1008848 (2020)
  74. Crystal structure and analysis of HdaB: The enteroaggregative Escherichia coli AAF/IV pilus tip protein. Lee WC, Matthews S, Garnett JA. Protein Sci 25 1898-1905 (2016)
  75. Growth kinetics of bacterial pili from pairwise pilin association rates. Monteiro DC, Kamdoum WV, Paci E. PLoS One 8 e63065 (2013)
  76. HIV-1 reverse transcriptase dissociates during strand transfer. Muchiri JM, Rigby ST, Nguyen LA, Kim B, Bambara RA. J Mol Biol 412 354-364 (2011)
  77. Molecular dynamics studies of the P pilus rod subunit PapA. Vitagliano L, Ruggiero A, Pedone C, Berisio R. J Pept Sci 15 192-199 (2009)
  78. Off-pathway assembly of fimbria subunits is prevented by chaperone CfaA of CFA/I fimbriae from enterotoxigenic E. coli. Bao R, Liu Y, Savarino SJ, Xia D. Mol Microbiol 102 975-991 (2016)
  79. Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function. Zhang L, Liu H. J Comput Aided Mol Des 37 463-478 (2023)
  80. Functional Role of N- and C-Terminal Amino Acids in the Structural Subunits of Colonization Factor CS6 Expressed by Enterotoxigenic Escherichia coli. Debnath A, Sabui S, Wajima T, Hamabata T, Banerjee R, Chatterjee NS. J Bacteriol 198 1429-1441 (2016)
  81. Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth. Massier S, Robin B, Mégroz M, Wright A, Harper M, Hayes B, Cosette P, Broutin I, Boyce JD, Dé E, Hardouin J. Front Microbiol 12 738780 (2021)
  82. Stochastic chain termination in bacterial pilus assembly. Giese C, Puorger C, Ignatov O, Bečárová Z, Weber ME, Schärer MA, Capitani G, Glockshuber R. Nat Commun 14 7718 (2023)