2crd Citations

Analysis of side-chain organization on a refined model of charybdotoxin: structural and functional implications.

Biochemistry 31 7756-64 (1992)
Cited: 103 times
EuropePMC logo PMID: 1380828

Abstract

The spatial organization of side chains on a refined model of charybdotoxin is presented. First, the structural role of two groups of well-defined, low-accessible side chains (Thr3, Val5, Val16, Leu20, Cys33 and Leu20, His21, Thr23, Cys17, Cys35) is discussed. These side chains are conserved in three out of the five known scorpion toxins acting on K+ channels. Interestingly, they are not conserved in scyllatoxin which presents a slightly different secondary structure organization. Second, the spatial organization of all positively charged residues is analyzed. Comparison with the results presented by Park and Miller [(1992) Biochemistry (preceding paper in this issue)] shows that all functionally important positive residues are located on the beta-sheet side of the toxin. These results are different from those obtained by Auguste et al. [(1992) Biochemistry 31, 648-654] on scyllatoxin, which blocks a different type of K+ channel. This study shows, in fact, that functionally important positive residues are located on the helix side of the toxin. Thus, charybdotoxin and scyllatoxin, which present the same global fold, interact with two different classes of K+ channels by two different parts of the motif.

Reviews - 2crd mentioned but not cited (11)

  1. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Frazão B, Vasconcelos V, Antunes A. Mar Drugs 10 1812-1851 (2012)
  2. From foe to friend: using animal toxins to investigate ion channel function. Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F, Bosmans F. J. Mol. Biol. 427 158-175 (2015)
  3. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Gordon D, Chen R, Chung SH. Physiol. Rev. 93 767-802 (2013)
  4. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits. Torres YP, Granados ST, Latorre R. Front Physiol 5 383 (2014)
  5. Peptide toxins and small-molecule blockers of BK channels. Yu M, Liu SL, Sun PB, Pan H, Tian CL, Zhang LH. Acta Pharmacol Sin 37 56-66 (2016)
  6. Miniproteins as phage display-scaffolds for clinical applications. Zoller F, Haberkorn U, Mier W. Molecules 16 2467-2485 (2011)
  7. Kv1.3 Channel as a Key Therapeutic Target for Neuroinflammatory Diseases: State of the Art and Beyond. Wang X, Li G, Guo J, Zhang Z, Zhang S, Zhu Y, Cheng J, Yu L, Ji Y, Tao J. Front Neurosci 13 1393 (2019)
  8. Computational Studies of Venom Peptides Targeting Potassium Channels. Chen R, Chung SH. Toxins (Basel) 7 5194-5211 (2015)
  9. Computational Studies of Snake Venom Toxins. Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Toxins (Basel) 10 (2017)
  10. Molecular Simulations of Disulfide-Rich Venom Peptides with Ion Channels and Membranes. Deplazes E. Molecules 22 (2017)
  11. Diverse Structural Features of Potassium Channels Characterized by Scorpion Toxins as Molecular Probes. Zhao Y, Chen Z, Cao Z, Li W, Wu Y. Molecules 24 (2019)

Articles - 2crd mentioned but not cited (26)

  1. Multidimensional signatures in antimicrobial peptides. Yount NY, Yeaman MR. Proc. Natl. Acad. Sci. U.S.A. 101 7363-7368 (2004)
  2. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K(+) channel. Banerjee A, Banerjee A, Lee A, Campbell E, Mackinnon R. Elife 2 e00594 (2013)
  3. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. BMC Struct. Biol. 7 44 (2007)
  4. A designer ligand specific for Kv1.3 channels from a scorpion neurotoxin-based library. Takacs Z, Toups M, Kollewe A, Johnson E, Cuello LG, Driessens G, Biancalana M, Koide A, Ponte CG, Perozo E, Gajewski TF, Suarez-Kurtz G, Koide S, Goldstein SA. Proc. Natl. Acad. Sci. U.S.A. 106 22211-22216 (2009)
  5. Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel. Yu K, Fu W, Liu H, Luo X, Chen KX, Ding J, Shen J, Jiang H. Biophys. J. 86 3542-3555 (2004)
  6. Accurate determination of the binding free energy for KcsA-charybdotoxin complex from the potential of mean force calculations with restraints. Chen PC, Kuyucak S. Biophys. J. 100 2466-2474 (2011)
  7. Structural basis for toxin resistance of beta4-associated calcium-activated potassium (BK) channels. Gan G, Yi H, Chen M, Sun L, Li W, Wu Y, Ding J. J. Biol. Chem. 283 24177-24184 (2008)
  8. Mechanism and energetics of charybdotoxin unbinding from a potassium channel from molecular dynamics simulations. Chen PC, Kuyucak S. Biophys. J. 96 2577-2588 (2009)
  9. New tricks of an old pattern: structural versatility of scorpion toxins with common cysteine spacing. Saucedo AL, Flores-Solis D, Rodríguez de la Vega RC, Ramírez-Cordero B, Hernández-López R, Cano-Sánchez P, Noriega Navarro R, García-Valdés J, Coronas-Valderrama F, de Roodt A, Brieba LG, Domingos Possani L, del Río-Portilla F. J. Biol. Chem. 287 12321-12330 (2012)
  10. Molecular diversity and functional evolution of scorpion potassium channel toxins. Zhu S, Peigneur S, Gao B, Luo L, Jin D, Zhao Y, Tytgat J. Mol. Cell Proteomics 10 M110.002832 (2011)
  11. Two conserved arginine residues from the SK3 potassium channel outer vestibule control selectivity of recognition by scorpion toxins. Feng J, Hu Y, Yi H, Yin S, Han S, Hu J, Chen Z, Yang W, Cao Z, De Waard M, Sabatier JM, Li W, Wu Y. J. Biol. Chem. 288 12544-12553 (2013)
  12. Motions and structural variability within toxins: implication for their use as scaffolds for protein engineering. Gilquin B, Bourgoin M, Ménez R, Le Du MH, Servent D, Zinn-Justin S, Ménez A. Protein Sci. 12 266-277 (2003)
  13. Scorpion Potassium Channel-blocking Defensin Highlights a Functional Link with Neurotoxin. Meng L, Xie Z, Zhang Q, Li Y, Yang F, Chen Z, Li W, Cao Z, Wu Y. J. Biol. Chem. 291 7097-7106 (2016)
  14. Sizing the protein translocation pathway of colicin Ia channels. Kienker PK, Jakes KS, Blaustein RO, Miller C, Finkelstein A. J. Gen. Physiol. 122 161-176 (2003)
  15. Insights into Antimicrobial Peptides from Spiders and Scorpions. Wang X, Wang G. Protein Pept. Lett. 23 707-721 (2016)
  16. Kv Channel S1-S2 Linker Working as a Binding Site of Human β-Defensin 2 for Channel Activation Modulation. Feng J, Yang W, Xie Z, Xiang F, Cao Z, Li W, Hu H, Chen Z, Wu Y. J. Biol. Chem. 290 15487-15495 (2015)
  17. Miniaturization of scorpion beta-toxins uncovers a putative ancestral surface of interaction with voltage-gated sodium channels. Cohen L, Lipstein N, Karbat I, Ilan N, Gilles N, Kahn R, Gordon D, Gurevitz M. J. Biol. Chem. 283 15169-15176 (2008)
  18. Plectasin, first animal toxin-like fungal defensin blocking potassium channels through recognizing channel pore region. Xiang F, Xie Z, Feng J, Yang W, Cao Z, Li W, Chen Z, Wu Y. Toxins (Basel) 7 34-42 (2015)
  19. Solution structure of Pi4, a short four-disulfide-bridged scorpion toxin specific of potassium channels. Guijarro JI, M'Barek S, Gómez-Lagunas F, Garnier D, Rochat H, Sabatier JM, Possani L, Delepierre M. Protein Sci. 12 1844-1854 (2003)
  20. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides. Sawhney N, Crooks C, Chow V, Preston JF, St John FJ. BMC Genomics 17 131 (2016)
  21. Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. Coronado MA, Gabdulkhakov A, Georgieva D, Sankaran B, Murakami MT, Arni RK, Betzel C. Acta Crystallogr. D Biol. Crystallogr. 69 1958-1964 (2013)
  22. Chemical synthesis and 1H-NMR 3D structure determination of AgTx2-MTX chimera, a new potential blocker for Kv1.2 channel, derived from MTX and AgTx2 scorpion toxins. Pimentel C, M'Barek S, Visan V, Grissmer S, Sampieri F, Sabatier JM, Darbon H, Fajloun Z. Protein Sci. 17 107-118 (2008)
  23. Establishing a reference array for the CS-αβ superfamily of defensive peptides. Tarr DE. BMC Res Notes 9 490 (2016)
  24. Anti-inflammatory effects of FS48, the first potassium channel inhibitor from the salivary glands of the flea Xenopsylla cheopis. Deng Z, Zeng Q, Tang J, Zhang B, Chai J, Andersen JF, Chen X, Xu X. J Biol Chem 296 100670 (2021)
  25. Modeling of the Binding of Peptide Blockers to Voltage-Gated Potassium Channels: Approaches and Evidence. Novoseletsky VN, Volyntseva AD, Shaitan KV, Kirpichnikov MP, Feofanov AV. Acta Naturae 8 35-46 (2016)
  26. Molecular Dynamics Simulation Reveals Specific Interaction Sites between Scorpion Toxins and Kv1.2 Channel: Implications for Design of Highly Selective Drugs. Yuan S, Gao B, Zhu S. Toxins (Basel) 9 (2017)


Reviews citing this publication (13)

  1. High-conductance calcium-activated potassium channels; structure, pharmacology, and function. Kaczorowski GJ, Knaus HG, Leonard RJ, McManus OB, Garcia ML. J. Bioenerg. Biomembr. 28 255-267 (1996)
  2. Strategies for targeting protein-protein interactions with synthetic agents. Yin H, Hamilton AD. Angew. Chem. Int. Ed. Engl. 44 4130-4163 (2005)
  3. Diversity of folds in animal toxins acting on ion channels. Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier JM. Biochem. J. 378 717-726 (2004)
  4. Potassium channels: from scorpion venoms to high-resolution structure. Garcia ML, Gao Y, McManus OB, Kaczorowski GJ. Toxicon 39 739-748 (2001)
  5. Oxidative folding of cystine-rich peptides vs regioselective cysteine pairing strategies. Moroder L, Besse D, Musiol HJ, Rudolph-Böhner S, Siedler F. Biopolymers 40 207-234 (1996)
  6. Plant peptides and peptidomics. Farrokhi N, Whitelegge JP, Brusslan JA. Plant Biotechnol. J. 6 105-134 (2008)
  7. Structures of sea anemone toxins. Norton RS. Toxicon 54 1075-1088 (2009)
  8. Molecular Determinants of BK Channel Functional Diversity and Functioning. Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Physiol. Rev. 97 39-87 (2017)
  9. Pharmacology and structure of high conductance calcium-activated potassium channels. Knaus HG, Eberhart A, Glossmann H, Munujos P, Kaczorowski GJ, Garcia ML. Cell. Signal. 6 861-870 (1994)
  10. Toxin determinants required for interaction with voltage-gated K+ channels. Jouirou B, Mouhat S, Andreotti N, De Waard M, Sabatier JM. Toxicon 43 909-914 (2004)
  11. Chlorotoxin-A Multimodal Imaging Platform for Targeting Glioma Tumors. Cohen G, Burks SR, Frank JA. Toxins (Basel) 10 (2018)
  12. Peptide Toxins Targeting KV Channels. Matsumura K, Yokogawa M, Osawa M. Handb Exp Pharmacol 267 481-505 (2021)
  13. Plant Defensins from a Structural Perspective. Kovaleva V, Bukhteeva I, Kit OY, Nesmelova IV. Int J Mol Sci 21 (2020)

Articles citing this publication (53)

  1. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Ben-Tal N, Honig B, Peitzsch RM, Denisov G, McLaughlin S. Biophys. J. 71 561-575 (1996)
  2. Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Aiyar J, Withka JM, Rizzi JP, Singleton DH, Andrews GC, Lin W, Boyd J, Hanson DC, Simon M, Dethlefs B. Neuron 15 1169-1181 (1995)
  3. Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel. Park CS, Miller C. Neuron 9 307-313 (1992)
  4. Mechanism of charybdotoxin block of a voltage-gated K+ channel. Goldstein SA, Miller C. Biophys. J. 65 1613-1619 (1993)
  5. Scorpion toxins as natural scaffolds for protein engineering. Vita C, Roumestand C, Toma F, Ménez A. Proc. Natl. Acad. Sci. U.S.A. 92 6404-6408 (1995)
  6. Letter Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Tudor JE, Pallaghy PK, Pennington MW, Norton RS. Nat. Struct. Biol. 3 317-320 (1996)
  7. Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles. Eriksson MA, Roux B. Biophys. J. 83 2595-2609 (2002)
  8. Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. Fant F, Vranken W, Broekaert W, Borremans F. J. Mol. Biol. 279 257-270 (1998)
  9. Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Ben-Tal N, Honig B, Miller C, McLaughlin S. Biophys. J. 73 1717-1727 (1997)
  10. Solution structure of the potassium channel inhibitor agitoxin 2: caliper for probing channel geometry. Krezel AM, Kasibhatla C, Hidalgo P, MacKinnon R, Wagner G. Protein Sci. 4 1478-1489 (1995)
  11. kappa-Hefutoxin1, a novel toxin from the scorpion Heterometrus fulvipes with unique structure and function. Importance of the functional diad in potassium channel selectivity. Srinivasan KN, Sivaraja V, Huys I, Sasaki T, Cheng B, Kumar TK, Sato K, Tytgat J, Yu C, San BC, Ranganathan S, Bowie HJ, Kini RM, Gopalakrishnakone P. J. Biol. Chem. 277 30040-30047 (2002)
  12. Maurotoxin, a four disulfide bridge toxin from Scorpio maurus venom: purification, structure and action on potassium channels. Kharrat R, Mansuelle P, Sampieri F, Crest M, Oughideni R, Van Rietschoten J, Martin-Eauclaire MF, Rochat H, El Ayeb M. FEBS Lett. 406 284-290 (1997)
  13. ZmES genes encode peptides with structural homology to defensins and are specifically expressed in the female gametophyte of maize. Cordts S, Bantin J, Wittich PE, Kranz E, Lörz H, Dresselhaus T. Plant J. 25 103-114 (2001)
  14. Solution structure of maurotoxin, a scorpion toxin from Scorpio maurus, with high affinity for voltage-gated potassium channels. Blanc E, Sabatier JM, Kharrat R, Meunier S, el Ayeb M, Van Rietschoten J, Darbon H. Proteins 29 321-333 (1997)
  15. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels. Gao YD, Garcia ML. Proteins 52 146-154 (2003)
  16. Electrostatic distance geometry in a K+ channel vestibule. Stocker M, Miller C. Proc. Natl. Acad. Sci. U.S.A. 91 9509-9513 (1994)
  17. Characterization of a new leiurotoxin I-like scorpion toxin. PO5 from Androctonus mauretanicus mauretanicus. Zerrouk H, Mansuelle P, Benslimane A, Rochat H, Martin-Eauclaire MF. FEBS Lett. 320 189-192 (1993)
  18. Changing the structural context of a functional beta-hairpin. Synthesis and characterization of a chimera containing the curaremimetic loop of a snake toxin in the scorpion alpha/beta scaffold. Drakopoulou E, Zinn-Justin S, Guenneugues M, Gilqin B, Ménez A, Vita C. J. Biol. Chem. 271 11979-11987 (1996)
  19. Dimerization of plant defensin NaD1 enhances its antifungal activity. Lay FT, Mills GD, Poon IK, Cowieson NP, Kirby N, Baxter AA, van der Weerden NL, Dogovski C, Perugini MA, Anderson MA, Kvansakul M, Hulett MD. J. Biol. Chem. 287 19961-19972 (2012)
  20. The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance. Fant F, Vranken WF, Borremans FA. Proteins 37 388-403 (1999)
  21. Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels. Fu W, Cui M, Briggs JM, Huang X, Xiong B, Zhang Y, Luo X, Shen J, Ji R, Jiang H, Chen K. Biophys. J. 83 2370-2385 (2002)
  22. Structural and functional consequences of the presence of a fourth disulfide bridge in the scorpion short toxins: solution structure of the potassium channel inhibitor HsTX1. Savarin P, Romi-Lebrun R, Zinn-Justin S, Lebrun B, Nakajima T, Gilquin B, Menez A. Protein Sci. 8 2672-2685 (1999)
  23. Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel. Durell SR, Guy HR. Neuropharmacology 35 761-773 (1996)
  24. Jaburetox-2Ec: an insecticidal peptide derived from an isoform of urease from the plant Canavalia ensiformis. Mulinari F, Stanisçuaski F, Bertholdo-Vargas LR, Postal M, Oliveira-Neto OB, Rigden DJ, Grossi-de-Sá MF, Carlini CR. Peptides 28 2042-2050 (2007)
  25. 1H NMR structure of an antifungal gamma-thionin protein SIalpha1: similarity to scorpion toxins. Bloch C, Patel SU, Baud F, Zvelebil MJ, Carr MD, Sadler PJ, Thornton JM. Proteins 32 334-349 (1998)
  26. Novel K(+)-channel-blocking toxins from the venom of the scorpion Centruroides limpidus limpidus Karsch. Martin BM, Ramirez AN, Gurrola GB, Nobile M, Prestipino G, Possani LD. Biochem. J. 304 ( Pt 1) 51-56 (1994)
  27. TsTX-IV, a short chain four-disulfide-bridged neurotoxin from Tityus serrulatus venom which acts on Ca2+-activated K+ channels. Novello JC, Arantes EC, Varanda WA, Oliveira B, Giglio JR, Marangoni S. Toxicon 37 651-660 (1999)
  28. Molecular mechanism underlying the thermal stability and pH-induced unfolding of CHABII. Wei Z, Song J. J. Mol. Biol. 348 205-218 (2005)
  29. NMR structure of bacterial ribosomal protein l20: implications for ribosome assembly and translational control. Raibaud S, Lebars I, Guillier M, Chiaruttini C, Bontems F, Rak A, Garber M, Allemand F, Springer M, Dardel F. J. Mol. Biol. 323 143-151 (2002)
  30. Solution structure of TsKapa, a charybdotoxin-like scorpion toxin from Tityus serrulatus with high affinity for apamin-sensitive Ca(2+)-activated K+ channels. Blanc E, Lecomte C, Rietschoten JV, Sabatier JM, Darbon H. Proteins 29 359-369 (1997)
  31. Inhibition of single Shaker K channels by kappa-conotoxin-PVIIA. Naranjo D. Biophys. J. 82 3003-3011 (2002)
  32. Neuromuscular effects of some potassium channel blocking toxins from the venom of the scorpion Leiurus quinquestriatus hebreus. Marshall DL, Vatanpour H, Harvey AL, Boyot P, Pinkasfeld S, Doljansky Y, Bouet F, Ménez A. Toxicon 32 1433-1443 (1994)
  33. Purification, characterization and biosynthesis of parabutoxin 3, a component of Parabuthus transvaalicus venom. Huys I, Dyason K, Waelkens E, Verdonck F, van Zyl J, du Plessis J, Müller GJ, van der Walt J, Clynen E, Schoofs L, Tytgat J. Eur. J. Biochem. 269 1854-1865 (2002)
  34. Synthesis of charybdotoxin and of two N-terminal truncated analogues. Structural and functional characterisation. Vita C, Bontems F, Bouet F, Tauc M, Poujeol P, Vatanpour H, Harvey AL, Menez A, Toma F. Eur. J. Biochem. 217 157-169 (1993)
  35. A novel short-chain peptide BmKX from the Chinese scorpion Buthus martensi Karsch, sequencing, gene cloning and structure determination. Wang CG, Cai Z, Lu W, Wu J, Xu Y, Shi Y, Chi CW. Toxicon 45 309-319 (2005)
  36. Charybdotoxin unbinding from the mKv1.3 potassium channel: a combined computational and experimental study. Khabiri M, Nikouee A, Cwiklik L, Grissmer S, Ettrich R. J Phys Chem B 115 11490-11500 (2011)
  37. Glycine 30 in iberiotoxin is a critical determinant of its specificity for maxi-K versus K(V) channels. Schroeder N, Mullmann TJ, Schmalhofer WA, Gao YD, Garcia ML, Giangiacomo KM. FEBS Lett. 527 298-302 (2002)
  38. Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K(+) channels. Thompson J, Begenisich T. Biophys. J. 78 2382-2391 (2000)
  39. Solution structure of potassium channel-inhibiting scorpion toxin Lq2. Renisio JG, Lu Z, Blanc E, Jin W, Lewis JH, Bornet O, Darbon H. Proteins 34 417-426 (1999)
  40. Canavalia ensiformis urease, Jaburetox and derived peptides form ion channels in planar lipid bilayers. Piovesan AR, Martinelli AH, Ligabue-Braun R, Schwartz JL, Carlini CR. Arch. Biochem. Biophys. 547 6-17 (2014)
  41. Molecular dynamics simulations of a K+ channel blocker: Tc1 toxin from Tityus cambridgei. Grottesi A, Sansom MS. FEBS Lett. 535 29-33 (2003)
  42. Novel alpha-KTx sites in the BK channel and comparative sequence analysis reveal distinguishing features of the BK and KV channel outer pore. Giangiacomo KM, Becker J, Garsky C, Schmalhofer W, Garcia ML, Mullmann TJ. Cell Biochem. Biophys. 52 47-58 (2008)
  43. Synthesis of a biotin derivative of iberiotoxin: binding interactions with streptavidin and the BK Ca2+-activated K+ channel expressed in a human cell line. Bingham JP, Bian S, Tan ZY, Takacs Z, Moczydlowski E. Bioconjug. Chem. 17 689-699 (2006)
  44. BTK-2, a new inhibitor of the Kv1.1 potassium channel purified from Indian scorpion Buthus tamulus. Dhawan R, Varshney A, Mathew MK, Lala AK. FEBS Lett. 539 7-13 (2003)
  45. The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels. García-Fernández R, Peigneur S, Pons T, Alvarez C, González L, Chávez MA, Tytgat J. Toxins (Basel) 8 110 (2016)
  46. The solution structure of BmTx3B, a member of the scorpion toxin subfamily alpha-KTx 16. Wang Y, Chen X, Zhang N, Wu G, Wu H. Proteins 58 489-497 (2005)
  47. Design strategies for the construction of independently folded polypeptide motifs. Imperiali B, Ottesen JJ. Biopolymers 47 23-29 (1998)
  48. Recursive inverse factorization. Rubensson EH, Bock N, Holmström E, Niklasson AM. J Chem Phys 128 104105 (2008)
  49. Synthesis of a metal binding protein designed on the alpha/beta scaffold of charybdotoxin. Pierret B, Virelizier H, Vita C. Int J Pept Protein Res 46 471-479 (1995)
  50. Maurotoxin and the Kv1.1 channel: voltage-dependent binding upon enantiomerization of the scorpion toxin disulfide bridge Cys31-Cys34. Lecomte C, Ben Khalifa R, Martin-Eauclaire MF, Kharrat R, El Ayeb M, Darbon H, Rochat H, Crest M, Sabatier JM. J. Pept. Res. 55 246-254 (2000)
  51. Characterization of the internal motions of a chimeric protein by 13C NMR highlights the important dynamic consequences of the engineering on a millisecond time scale. Wolff N, Guenneugues M, Gilquin B, Drakopoulou E, Vita C, Ménez A, Zinn-Justin S. Eur. J. Biochem. 267 6519-6533 (2000)
  52. Scorpion toxins prefer salt solutions. Nikouee A, Khabiri M, Cwiklik L. J Mol Model 21 287 (2015)
  53. Characterization of a Family of Scorpion Toxins Modulating Ca2+-Activated Cl- Current in Vascular Myocytes. Morel JL, Mokrzycki N, Lippens G, Drobecq H, Sautière P, Hugues M. Toxins (Basel) 14 780 (2022)


Related citations provided by authors (1)

  1. Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins.. Bontems F, Roumestand C, Gilquin B, Ménez A, Toma F Science 254 1521-3 (1991)