2cvu Citations

Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation.

Proc Natl Acad Sci U S A 103 4022-7 (2006)
Related entries: 1zyz, 1zzd, 2cvs, 2cvt, 2cvv, 2cvw, 2cvx, 2cvy

Cited: 52 times
EuropePMC logo PMID: 16537479

Abstract

Ribonucleotide reductase catalyzes a crucial step in de novo DNA synthesis and is allosterically controlled by relative levels of dNTPs to maintain a balanced pool of deoxynucleoside triphosphates in the cell. In eukaryotes, the enzyme comprises a heterooligomer of alpha(2) and beta(2) subunits. The alpha subunit, Rnr1, contains catalytic and regulatory sites. Here, we report the only x-ray structures of the eukaryotic alpha subunit of ribonucleotide reductase from Saccharomyces cerevisiae. The structures of the apo-, AMPPNP only-, AMPPNP-CDP-, AMPPNP-UDP-, dGTP-ADP- and TTP-GDP-bound complexes give insight into substrate and effector binding and specificity cross-talk. These are Class I structures with the only fully ordered catalytic sites, including loop 2, a stretch of polypeptide that spans specificity and catalytic sites, conferring specificity. Binding of specificity effector rearranges loop 2; in our structures, this rearrangement moves P294, a residue unique to eukaryotes, out of the catalytic site, accommodating substrate binding. Substrate binding further rearranges loop 2. Cross-talk, by which effector binding regulates substrate preference, occurs largely through R293 and Q288 of loop 2, which are analogous to residues in Thermotoga maritima that mediate cross-talk. However loop-2 conformations and residue-substrate interactions differ substantially between yeast and T. maritima. In most effector-substrate complexes, water molecules help mediate substrate-loop 2 interactions. Finally, the substrate ribose binds with its 3' hydroxyl closer than its 2' hydroxyl to C218 of the catalytic redox pair. We also see a conserved water molecule at the catalytic site in all our structures, near the ribose 2' hydroxyl.

Articles - 2cvu mentioned but not cited (4)

  1. Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation. Xu H, Faber C, Uchiki T, Fairman JW, Racca J, Dealwis C. Proc Natl Acad Sci U S A 103 4022-4027 (2006)
  2. Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly. Xu H, Faber C, Uchiki T, Racca J, Dealwis C. Proc Natl Acad Sci U S A 103 4028-4033 (2006)
  3. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. Brignole EJ, Tsai KL, Chittuluru J, Li H, Aye Y, Penczek PA, Stubbe J, Drennan CL, Asturias F. Elife 7 e31502 (2018)
  4. Role of arginine 293 and glutamine 288 in communication between catalytic and allosteric sites in yeast ribonucleotide reductase. Ahmad MF, Kaushal PS, Wan Q, Wijerathna SR, An X, Huang M, Dealwis CG. J Mol Biol 419 315-329 (2012)


Reviews citing this publication (9)

  1. DNA building blocks: keeping control of manufacture. Hofer A, Crona M, Logan DT, Sjöberg BM. Crit Rev Biochem Mol Biol 47 50-63 (2012)
  2. Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Cotruvo JA, Stubbe J. Annu Rev Biochem 80 733-767 (2011)
  3. The use of thiols by ribonucleotide reductase. Holmgren A, Sengupta R, Sengupta R. Free Radic Biol Med 49 1617-1628 (2010)
  4. The origin and evolution of ribonucleotide reduction. Lundin D, Berggren G, Logan DT, Sjöberg BM. Life (Basel) 5 604-636 (2015)
  5. The structural basis for the allosteric regulation of ribonucleotide reductase. Ahmad MF, Dealwis CG. Prog Mol Biol Transl Sci 117 389-410 (2013)
  6. The prototypic class Ia ribonucleotide reductase from Escherichia coli: still surprising after all these years. Brignole EJ, Ando N, Zimanyi CM, Drennan CL. Biochem Soc Trans 40 523-530 (2012)
  7. Genomic Instability in Fungal Plant Pathogens. Covo S. Genes (Basel) 11 E421 (2020)
  8. Strengths and Weaknesses of Cell Synchronization Protocols Based on Inhibition of DNA Synthesis. Ligasová A, Koberna K. Int J Mol Sci 22 10759 (2021)
  9. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Huff SE, Winter JM, Dealwis CG. Biomolecules 12 815 (2022)

Articles citing this publication (39)

  1. Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A. Nucleic Acids Res 39 1360-1371 (2011)
  2. Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint. Kumar D, Viberg J, Nilsson AK, Chabes A. Nucleic Acids Res 38 3975-3983 (2010)
  3. Site-specific incorporation of 3-nitrotyrosine as a probe of pKa perturbation of redox-active tyrosines in ribonucleotide reductase. Yokoyama K, Uhlin U, Stubbe J. J Am Chem Soc 132 8385-8397 (2010)
  4. Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand replication infidelity. Buckland RJ, Watt DL, Chittoor B, Nilsson AK, Kunkel TA, Chabes A. PLoS Genet 10 e1004846 (2014)
  5. Tangled up in knots: structures of inactivated forms of E. coli class Ia ribonucleotide reductase. Zimanyi CM, Ando N, Brignole EJ, Asturias FJ, Stubbe J, Drennan CL. Structure 20 1374-1383 (2012)
  6. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli. Zimanyi CM, Chen PY, Kang G, Funk MA, Drennan CL. Elife 5 e07141 (2016)
  7. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events. Das M, Haberer G, Panda A, Das Laha S, Ghosh TC, Schäffner AR. Plant Physiol 171 2343-2357 (2016)
  8. Insight into the mechanism of inactivation of ribonucleotide reductase by gemcitabine 5'-diphosphate in the presence or absence of reductant. Artin E, Wang J, Lohman GJ, Yokoyama K, Yu G, Griffin RG, Bar G, Stubbe J. Biochemistry 48 11622-11629 (2009)
  9. Sequence-based prediction of protein binding mode landscapes. Horvath A, Miskei M, Ambrus V, Vendruscolo M, Fuxreiter M. PLoS Comput Biol 16 e1007864 (2020)
  10. Novel ATP-cone-driven allosteric regulation of ribonucleotide reductase via the radical-generating subunit. Rozman Grinberg I, Lundin D, Hasan M, Crona M, Jonna VR, Loderer C, Sahlin M, Markova N, Borovok I, Berggren G, Hofer A, Logan DT, Sjöberg BM. Elife 7 e31529 (2018)
  11. Novel mutator mutants of E. coli nrdAB ribonucleotide reductase: insight into allosteric regulation and control of mutation rates. Ahluwalia D, Bienstock RJ, Schaaper RM. DNA Repair (Amst) 11 480-487 (2012)
  12. Hypermutability and error catastrophe due to defects in ribonucleotide reductase. Ahluwalia D, Schaaper RM. Proc Natl Acad Sci U S A 110 18596-18601 (2013)
  13. Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1. Zhang Z, Yang K, Chen CC, Feser J, Huang M. Proc Natl Acad Sci U S A 104 2217-2222 (2007)
  14. Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones. Johansson R, Jonna VR, Kumar R, Nayeri N, Lundin D, Sjöberg BM, Hofer A, Logan DT. Structure 24 906-917 (2016)
  15. Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule. Ahmad MF, Alam I, Huff SE, Pink J, Flanagan SA, Shewach D, Misko TA, Oleinick NL, Harte WE, Viswanathan R, Harris ME, Dealwis CG. Proc Natl Acad Sci U S A 114 8241-8246 (2017)
  16. An endogenous dAMP ligand in Bacillus subtilis class Ib RNR promotes assembly of a noncanonical dimer for regulation by dATP. Parker MJ, Maggiolo AO, Thomas WC, Kim A, Meisburger SP, Ando N, Boal AK, Stubbe J. Proc Natl Acad Sci U S A 115 E4594-E4603 (2018)
  17. Cryo-EM structure of the EBV ribonucleotide reductase BORF2 and mechanism of APOBEC3B inhibition. Shaban NM, Yan R, Shi K, Moraes SN, Cheng AZ, Carpenter MA, McLellan JS, Yu Z, Harris RS. Sci Adv 8 eabm2827 (2022)
  18. The structural basis for peptidomimetic inhibition of eukaryotic ribonucleotide reductase: a conformationally flexible pharmacophore. Xu H, Fairman JW, Wijerathna SR, Kreischer NR, LaMacchia J, Helmbrecht E, Cooperman BS, Dealwis C. J Med Chem 51 4653-4659 (2008)
  19. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators. Ahmad MF, Huff SE, Pink J, Alam I, Zhang A, Perry K, Harris ME, Misko T, Porwal SK, Oleinick NL, Miyagi M, Viswanathan R, Dealwis CG. J Med Chem 58 9498-9509 (2015)
  20. Outliers in SAR and QSAR: 2. Is a flexible binding site a possible source of outliers? Kim KH. J Comput Aided Mol Des 21 421-435 (2007)
  21. Structure-Guided Synthesis and Mechanistic Studies Reveal Sweetspots on Naphthyl Salicyl Hydrazone Scaffold as Non-Nucleosidic Competitive, Reversible Inhibitors of Human Ribonucleotide Reductase. Huff SE, Mohammed FA, Yang M, Agrawal P, Pink J, Harris ME, Dealwis CG, Viswanathan R. J Med Chem 61 666-680 (2018)
  22. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance. Schmidt TT, Sharma S, Reyes GX, Gries K, Gross M, Zhao B, Yuan JH, Wade R, Chabes A, Hombauer H. Nucleic Acids Res 47 237-252 (2019)
  23. Structures of Class Id Ribonucleotide Reductase Catalytic Subunits Reveal a Minimal Architecture for Deoxynucleotide Biosynthesis. Rose HR, Maggiolo AO, McBride MJ, Palowitch GM, Pandelia ME, Davis KM, Yennawar NH, Boal AK. Biochemistry 58 1845-1860 (2019)
  24. Targeting the Large Subunit of Human Ribonucleotide Reductase for Cancer Chemotherapy. Wijerathna SR, Ahmad MF, Xu H, Fairman JW, Zhang A, Kaushal PS, Wan Q, Kiser J, Dealwis CG. Pharmaceuticals (Basel) 4 1328-1354 (2011)
  25. Comment Closing the circle on ribonucleotide reductases. Logan DT. Nat Struct Mol Biol 18 251-253 (2011)
  26. The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site. Aurelius O, Johansson R, Bågenholm V, Lundin D, Tholander F, Balhuizen A, Beck T, Sahlin M, Sjöberg BM, Mulliez E, Logan DT. PLoS One 10 e0128199 (2015)
  27. The Promiscuity of Allosteric Regulation of Nuclear Receptors by Retinoid X Receptor. Clark AK, Wilder JH, Grayson AW, Johnson QR, Lindsay RJ, Nellas RB, Fernandez EJ, Shen T. J Phys Chem B 120 8338-8345 (2016)
  28. Evaluating the therapeutic potential of a non-natural nucleotide that inhibits human ribonucleotide reductase. Ahmad MF, Wan Q, Jha S, Motea E, Berdis A, Dealwis C. Mol Cancer Ther 11 2077-2086 (2012)
  29. Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: an analysis of ATP-induced ribonucleotide reductase R1 hexamerization data. Radivoyevitch T. Biol Direct 4 50 (2009)
  30. Thymidine kinase 1 regulatory fine-tuning through tetramer formation. Mutahir Z, Clausen AR, Andersson KM, Wisen SM, Munch-Petersen B, Piškur J. FEBS J 280 1531-1541 (2013)
  31. Letter Inhibition of yeast ribonucleotide reductase by Sml1 depends on the allosteric state of the enzyme. Misko TA, Wijerathna SR, Radivoyevitch T, Berdis AJ, Ahmad MF, Harris ME, Dealwis CG. FEBS Lett 590 1704-1712 (2016)
  32. RRM1 variants cause a mitochondrial DNA maintenance disorder via impaired de novo nucleotide synthesis. Shintaku J, Pernice WM, Eyaid W, Gc JB, Brown ZP, Juanola-Falgarona M, Torres-Torronteras J, Sommerville EW, Hellebrekers DM, Blakely EL, Donaldson A, van de Laar I, Leu CS, Marti R, Frank J, Tanji K, Koolen DA, Rodenburg RJ, Chinnery PF, Smeets HJM, Gorman GS, Bonnen PE, Taylor RW, Hirano M. J Clin Invest 132 e145660 (2022)
  33. Structure-Based Design, Synthesis, and Evaluation of 2'-(2-Hydroxyethyl)-2'-deoxyadenosine and the 5'-Diphosphate Derivative as Ribonucleotide Reductase Inhibitors. Sun D, Xu H, Wijerathna SR, Dealwis C, Lee RE. ChemMedChem 4 1649-1656 (2009)
  34. Transgenic cardiac-targeted overexpression of human thymidylate kinase. Kohler JJ, Hosseini SH, Cucoranu I, Zhelyabovska O, Green E, Ivey K, Abuin A, Fields E, Hoying A, Russ R, Santoianni R, Raper CM, Yang Q, Lavie A, Lewis W. Lab Invest 90 383-390 (2010)
  35. Inhibition of chlamydial class Ic ribonucleotide reductase by C-terminal peptides from protein R2. Ohrström M, Popović-Bijelić A, Luo J, Stenmark P, Högbom M, Gräslund A. J Pept Sci 17 756-762 (2011)
  36. Nonself recognition through intermolecular disulfide bond formation of ribonucleotide reductase in neurospora. Smith RP, Wellman K, Haidari L, Masuda H, Smith ML. Genetics 193 1175-1183 (2013)
  37. Phylogenetic sequence analysis and functional studies reveal compensatory amino acid substitutions in loop 2 of human ribonucleotide reductase. Knappenberger AJ, Grandhi S, Sheth R, Ahmad MF, Viswanathan R, Harris ME. J Biol Chem 292 16463-16476 (2017)
  38. Structural determinants and distribution of phosphate specificity in ribonucleotide reductases. Schell E, Nouairia G, Steiner E, Weber N, Lundin D, Loderer C. J Biol Chem 297 101008 (2021)
  39. Trans-species activity of a nonself recognition domain. Smith RP, Wellman K, Smith ML. BMC Microbiol 13 63 (2013)