2dys Citations

Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase.

Abstract

All 13 lipids, including two cardiolipins, one phosphatidylcholine, three phosphatidylethanolamines, four phosphatidylglycerols and three triglycerides, were identified in a crystalline bovine heart cytochrome c oxidase (CcO) preparation. The chain lengths and unsaturated bond positions of the fatty acid moieties determined by mass spectrometry suggest that each lipid head group identifies its specific binding site within CcOs. The X-ray structure demonstrates that the flexibility of the fatty acid tails facilitates their effective space-filling functions and that the four phospholipids stabilize the CcO dimer. Binding of dicyclohexylcarbodiimide to the O(2) transfer pathway of CcO causes two palmitate tails of phosphatidylglycerols to block the pathway, suggesting that the palmitates control the O(2) transfer process.The phosphatidylglycerol with vaccenate (cis-Delta(11)-octadecenoate) was found in CcOs of bovine and Paracoccus denitrificans, the ancestor of mitochondrion, indicating that the vaccenate is conserved in bovine CcO in spite of the abundance of oleate (cis-Delta(9)-octadecenoate). The X-ray structure indicates that the protein moiety selects cis-vaccenate near the O(2) transfer pathway against trans-vaccenate. These results suggest that vaccenate plays a critical role in the O(2) transfer mechanism.

Reviews - 2dys mentioned but not cited (1)

  1. Copper active sites in biology. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem Rev 114 3659-3853 (2014)

Articles - 2dys mentioned but not cited (2)

  1. MitImpact 3: modeling the residue interaction network of the Respiratory Chain subunits. Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T. Nucleic Acids Res 49 D1282-D1288 (2021)
  2. Automatic structure classification of small proteins using random forest. Jain P, Hirst JD. BMC Bioinformatics 11 364 (2010)


Reviews citing this publication (69)

  1. Making heads or tails of phospholipids in mitochondria. Osman C, Voelker DR, Langer T. J Cell Biol 192 7-16 (2011)
  2. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Mol Neurobiol 47 9-23 (2013)
  3. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Vance JE, Tasseva G. Biochim Biophys Acta 1831 543-554 (2013)
  4. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. Schlame M. J Lipid Res 49 1607-1620 (2008)
  5. Cardiolipin membrane domains in prokaryotes and eukaryotes. Mileykovskaya E, Dowhan W. Biochim Biophys Acta 1788 2084-2091 (2009)
  6. Role of Cardiolipin in Mitochondrial Signaling Pathways. Dudek J. Front Cell Dev Biol 5 90 (2017)
  7. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Møller JV, Olesen C, Winther AM, Nissen P. Q Rev Biophys 43 501-566 (2010)
  8. Cytochrome c oxidase: exciting progress and remaining mysteries. Brzezinski P, Gennis RB. J Bioenerg Biomembr 40 521-531 (2008)
  9. Metabolism and function of mitochondrial cardiolipin. Ren M, Phoon CK, Schlame M. Prog Lipid Res 55 1-16 (2014)
  10. The styrene-maleic acid copolymer: a versatile tool in membrane research. Dörr JM, Scheidelaar S, Koorengevel MC, Dominguez JJ, Schäfer M, van Walree CA, Killian JA. Eur Biophys J 45 3-21 (2016)
  11. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Chaban Y, Boekema EJ, Dudkina NV. Biochim Biophys Acta 1837 418-426 (2014)
  12. The role of cardiolipin in the structural organization of mitochondrial membranes. Schlame M, Ren M. Biochim Biophys Acta 1788 2080-2083 (2009)
  13. Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Mileykovskaya E, Dowhan W. Chem Phys Lipids 179 42-48 (2014)
  14. Phosphatidylethanolamine Metabolism in Health and Disease. Calzada E, Onguka O, Claypool SM. Int Rev Cell Mol Biol 321 29-88 (2016)
  15. Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Claypool SM. Biochim Biophys Acta 1788 2059-2068 (2009)
  16. Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. Patel D, Witt SN. Oxid Med Cell Longev 2017 4829180 (2017)
  17. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Wikström M, Krab K, Sharma V. Chem Rev 118 2469-2490 (2018)
  18. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Rainbolt TK, Saunders JM, Wiseman RL. Trends Endocrinol Metab 25 528-537 (2014)
  19. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Lu YW, Claypool SM. Front Genet 6 3 (2015)
  20. Mitochondrial phospholipids: role in mitochondrial function. Mejia EM, Hatch GM. J Bioenerg Biomembr 48 99-112 (2016)
  21. Lipid interaction sites on channels, transporters and receptors: Recent insights from molecular dynamics simulations. Hedger G, Sansom MSP. Biochim Biophys Acta 1858 2390-2400 (2016)
  22. The assembly, regulation and function of the mitochondrial respiratory chain. Vercellino I, Sazanov LA. Nat Rev Mol Cell Biol 23 141-161 (2022)
  23. Ceramide and the mitochondrial respiratory chain. Kogot-Levin A, Saada A. Biochimie 100 88-94 (2014)
  24. Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. Bogdanov M, Mileykovskaya E, Dowhan W. Subcell Biochem 49 197-239 (2008)
  25. The role of nonbilayer phospholipids in mitochondrial structure and function. Basu Ball W, Neff JK, Gohil VM. FEBS Lett 592 1273-1290 (2018)
  26. Non-covalent binding of membrane lipids to membrane proteins. Yeagle PL. Biochim Biophys Acta 1838 1548-1559 (2014)
  27. Specificity of intramembrane protein-lipid interactions. Contreras FX, Ernst AM, Wieland F, Brügger B. Cold Spring Harb Perspect Biol 3 a004705 (2011)
  28. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Carquin M, D'Auria L, Pollet H, Bongarzone ER, Tyteca D. Prog Lipid Res 62 1-24 (2016)
  29. Structure-function of the cytochrome b6f complex. Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA. Photochem Photobiol 84 1349-1358 (2008)
  30. Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus. Ekici S, Pawlik G, Lohmeyer E, Koch HG, Daldal F. Biochim Biophys Acta 1817 898-910 (2012)
  31. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Dowhan W. Biochim Biophys Acta 1831 471-494 (2013)
  32. Membrane rafting: from apical sorting to phase segregation. Coskun U, Simons K. FEBS Lett 584 1685-1693 (2010)
  33. Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function. Ye C, Shen Z, Greenberg ML. J Bioenerg Biomembr 48 113-123 (2016)
  34. Cardiolipin, Mitochondria, and Neurological Disease. Falabella M, Vernon HJ, Hanna MG, Claypool SM, Pitceathly RDS. Trends Endocrinol Metab 32 224-237 (2021)
  35. Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Monteiro JP, Oliveira PJ, Jurado AS. Prog Lipid Res 52 513-528 (2013)
  36. Mitochondrial biology, targets, and drug delivery. Milane L, Trivedi M, Singh A, Talekar M, Amiji M. J Control Release 207 40-58 (2015)
  37. Gating and regulation of the cytochrome c oxidase proton pump. Ferguson-Miller S, Hiser C, Liu J. Biochim Biophys Acta 1817 489-494 (2012)
  38. Conserved lipid-binding sites in membrane proteins: a focus on cytochrome c oxidase. Qin L, Sharpe MA, Garavito RM, Ferguson-Miller S. Curr Opin Struct Biol 17 444-450 (2007)
  39. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Koelmel JP, Ulmer CZ, Jones CM, Yost RA, Bowden JA. Biochim Biophys Acta Mol Cell Biol Lipids 1862 766-770 (2017)
  40. Phospholipid ebb and flow makes mitochondria go. Acoba MG, Senoo N, Claypool SM. J Cell Biol 219 e202003131 (2020)
  41. Determinants of specificity at the protein-lipid interface in membranes. Ernst AM, Contreras FX, Brügger B, Wieland F. FEBS Lett 584 1713-1720 (2010)
  42. Phosphoregulation on mitochondria: Integration of cell and organelle responses. Lucero M, Suarez AE, Chambers JW. CNS Neurosci Ther 25 837-858 (2019)
  43. The power of yeast to model diseases of the powerhouse of the cell. Baile MG, Claypool SM. Front Biosci (Landmark Ed) 18 241-278 (2013)
  44. Reign in the membrane: How common lipids govern mitochondrial function. Funai K, Summers SA, Rutter J. Curr Opin Cell Biol 63 162-173 (2020)
  45. Lipidomic profiling of model organisms and the world's major pathogens. Layre E, Layre E, Moody DB. Biochimie 95 109-115 (2013)
  46. Subunit III-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins. Varanasi L, Hosler JP. Biochim Biophys Acta 1817 545-551 (2012)
  47. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. J Biol Chem 296 100557 (2021)
  48. Proteome-wide detection of phospholipid-protein interactions in mitochondria by photocrosslinking and click chemistry. Gubbens J, de Kroon AI. Mol Biosyst 6 1751-1759 (2010)
  49. HIGD-Driven Regulation of Cytochrome c Oxidase Biogenesis and Function. Timón-Gómez A, Bartley-Dier EL, Fontanesi F, Barrientos A. Cells 9 E2620 (2020)
  50. How lipids modulate mitochondrial protein import. Böttinger L, Ellenrieder L, Becker T. J Bioenerg Biomembr 48 125-135 (2016)
  51. Mitochondria and the thermal limits of ectotherms. Chung DJ, Schulte PM. J Exp Biol 223 jeb227801 (2020)
  52. The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Sandvig K, Kavaliauskiene S, Skotland T. Toxins (Basel) 13 377 (2021)
  53. Current advances in research of cytochrome c oxidase. Popović DM. Amino Acids 45 1073-1087 (2013)
  54. How bilayer properties influence membrane protein folding. Corin K, Bowie JU. Protein Sci 29 2348-2362 (2020)
  55. Life at the border: adaptation of proteins to anisotropic membrane environment. Pogozheva ID, Mosberg HI, Lomize AL. Protein Sci 23 1165-1196 (2014)
  56. The Role of Phosphatidylethanolamine Adducts in Modification of the Activity of Membrane Proteins under Oxidative Stress. Pohl EE, Jovanovic O. Molecules 24 E4545 (2019)
  57. The road to the structure of the mitochondrial respiratory chain supercomplex. Caruana NJ, Stroud DA. Biochem Soc Trans 48 621-629 (2020)
  58. Barth syndrome cardiomyopathy: targeting the mitochondria with elamipretide. Sabbah HN. Heart Fail Rev 26 237-253 (2021)
  59. Specific roles of phosphatidylglycerols in hosts and microbes. Dugail I, Kayser BD, Lhomme M. Biochimie 141 47-53 (2017)
  60. Mitochondrion as a Target of Astaxanthin Therapy in Heart Failure. Krestinina O, Baburina Y, Krestinin R. Int J Mol Sci 22 7964 (2021)
  61. How physical forces drive the process of helical membrane protein folding. Corin K, Bowie JU. EMBO Rep 23 e53025 (2022)
  62. Mitochondrial cholesterol: Metabolism and impact on redox biology and disease. Goicoechea L, Conde de la Rosa L, Torres S, García-Ruiz C, Fernández-Checa JC. Redox Biol 61 102643 (2023)
  63. The Interplay among Subunit Composition, Cardiolipin Content, and Aggregation State of Bovine Heart Cytochrome c Oxidase. Sedlák E, Kožár T, Musatov A. Cells 9 E2588 (2020)
  64. Chicken or Egg? Mitochondrial Phospholipids and Oxidative Stress in Disuse-Induced Skeletal Muscle Atrophy. Miranda ER, Shahtout JL, Funai K. Antioxid Redox Signal 38 338-351 (2023)
  65. Crosstalk between Mitochondrial Protein Import and Lipids. Hoffmann JJ, Becker T. Int J Mol Sci 23 5274 (2022)
  66. A Comprehensive Insight and Mechanistic Understanding of the Lipidomic Alterations Associated With DCM. Saha S, Singh P, Dutta A, Vaidya H, Negi PC, Sengupta S, Seth S, Basak T. JACC Asia 3 539-555 (2023)
  67. Interaction of Terminal Oxidases with Amphipathic Molecules. Azarkina NV, Borisov VB, Oleynikov IP, Sudakov RV, Vygodina TV. Int J Mol Sci 24 6428 (2023)
  68. Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A2A Adenosine Receptor. Tzortzini E, Kolocouris A. Biomolecules 13 957 (2023)
  69. Pathology-supported genetic testing as a method for disability prevention in multiple sclerosis (MS). Part I. Targeting a metabolic model rather than autoimmunity. van Rensburg SJ, van Toorn R, Erasmus RT, Hattingh C, Johannes C, Moremi KE, Kemp MC, Engel-Hills P, Kotze MJ. Metab Brain Dis 36 1151-1167 (2021)

Articles citing this publication (136)

  1. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Nat Struct Mol Biol 16 334-342 (2009)
  2. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G. Cell Metab 9 265-276 (2009)
  3. Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. Tasseva G, Bai HD, Davidescu M, Haromy A, Michelakis E, Vance JE. J Biol Chem 288 4158-4173 (2013)
  4. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. J Lipid Res 49 2545-2556 (2008)
  5. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Tsushima K, Bugger H, Wende AR, Soto J, Jenson GA, Tor AR, McGlauflin R, Kenny HC, Zhang Y, Souvenir R, Hu XX, Sloan CL, Pereira RO, Lira VA, Spitzer KW, Sharp TL, Shoghi KI, Sparagna GC, Rog-Zielinska EA, Kohl P, Khalimonchuk O, Schaffer JE, Abel ED. Circ Res 122 58-73 (2018)
  6. Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. Kuramoto K, Okamura T, Yamaguchi T, Nakamura TY, Wakabayashi S, Morinaga H, Nomura M, Yanase T, Otsu K, Usuda N, Matsumura S, Inoue K, Fushiki T, Kojima Y, Hashimoto T, Sakai F, Hirose F, Osumi T. J Biol Chem 287 23852-23863 (2012)
  7. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. Böttinger L, Horvath SE, Kleinschroth T, Hunte C, Daum G, Pfanner N, Becker T. J Mol Biol 423 677-686 (2012)
  8. Genetic ablation of calcium-independent phospholipase A2gamma leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype. Mancuso DJ, Sims HF, Han X, Jenkins CM, Guan SP, Yang K, Moon SH, Pietka T, Abumrad NA, Schlesinger PH, Gross RW. J Biol Chem 282 34611-34622 (2007)
  9. Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. Potting C, Wilmes C, Engmann T, Osman C, Langer T. EMBO J 29 2888-2898 (2010)
  10. Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Hirata K, Shinzawa-Itoh K, Yano N, Takemura S, Kato K, Hatanaka M, Muramoto K, Kawahara T, Tsukihara T, Yamashita E, Tono K, Ueno G, Hikima T, Murakami H, Inubushi Y, Yabashi M, Ishikawa T, Yamamoto M, Ogura T, Sugimoto H, Shen JR, Yoshikawa S, Ago H. Nat Methods 11 734-736 (2014)
  11. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Dudek J, Cheng IF, Balleininger M, Vaz FM, Streckfuss-Bömeke K, Hübscher D, Vukotic M, Wanders RJ, Rehling P, Guan K. Stem Cell Res 11 806-819 (2013)
  12. Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. Bazán S, Mileykovskaya E, Mallampalli VK, Heacock P, Sparagna GC, Dowhan W. J Biol Chem 288 401-411 (2013)
  13. Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Arnarez C, Marrink SJ, Periole X. Sci Rep 3 1263 (2013)
  14. A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. Osman C, Haag M, Wieland FT, Brügger B, Langer T. EMBO J 29 1976-1987 (2010)
  15. Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria. Kiebish MA, Han X, Cheng H, Lunceford A, Clarke CF, Moon H, Chuang JH, Seyfried TN. J Neurochem 106 299-312 (2008)
  16. Bovine cytochrome c oxidase structures enable O2 reduction with minimization of reactive oxygens and provide a proton-pumping gate. Muramoto K, Ohta K, Shinzawa-Itoh K, Kanda K, Taniguchi M, Nabekura H, Yamashita E, Tsukihara T, Yoshikawa S. Proc Natl Acad Sci U S A 107 7740-7745 (2010)
  17. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases. Duncan AL, Robinson AJ, Walker JE. Proc Natl Acad Sci U S A 113 8687-8692 (2016)
  18. Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy. Mileykovskaya E, Penczek PA, Fang J, Mallampalli VK, Sparagna GC, Dowhan W. J Biol Chem 287 23095-23103 (2012)
  19. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment. Tiefenbrunn T, Liu W, Chen Y, Katritch V, Stout CD, Fee JA, Cherezov V. PLoS One 6 e22348 (2011)
  20. Structural characterization of glycerophospholipids by combinations of ozone- and collision-induced dissociation mass spectrometry: the next step towards "top-down" lipidomics. Pham HT, Maccarone AT, Thomas MC, Campbell JL, Mitchell TW, Blanksby SJ. Analyst 139 204-214 (2014)
  21. Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs. Broecker J, Eger BT, Ernst OP. Structure 25 384-392 (2017)
  22. Lipidomics: a tool for studies of atherosclerosis. Ekroos K, Jänis M, Tarasov K, Hurme R, Laaksonen R. Curr Atheroscler Rep 12 273-281 (2010)
  23. Phosphorylation and kinetics of mammalian cytochrome c oxidase. Helling S, Vogt S, Rhiel A, Ramzan R, Wen L, Marcus K, Kadenbach B. Mol Cell Proteomics 7 1714-1724 (2008)
  24. Photocrosslinking and click chemistry enable the specific detection of proteins interacting with phospholipids at the membrane interface. Gubbens J, Ruijter E, de Fays LE, Damen JM, de Kruijff B, Slijper M, Rijkers DT, Liskamp RM, de Kroon AI. Chem Biol 16 3-14 (2009)
  25. Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli. Bogdanov M, Heacock P, Guan Z, Dowhan W. Proc Natl Acad Sci U S A 107 15057-15062 (2010)
  26. Characterization of acyl chain position in unsaturated phosphatidylcholines using differential mobility-mass spectrometry. Maccarone AT, Duldig J, Mitchell TW, Blanksby SJ, Duchoslav E, Campbell JL. J Lipid Res 55 1668-1677 (2014)
  27. Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode. Shimada S, Shinzawa-Itoh K, Baba J, Aoe S, Shimada A, Yamashita E, Kang J, Tateno M, Yoshikawa S, Tsukihara T. EMBO J 36 291-300 (2017)
  28. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. Yoshimura K, Kouyama T. J Mol Biol 375 1267-1281 (2008)
  29. Cold-Activated Lipid Dynamics in Adipose Tissue Highlights a Role for Cardiolipin in Thermogenic Metabolism. Lynes MD, Shamsi F, Sustarsic EG, Leiria LO, Wang CH, Su SC, Huang TL, Gao F, Narain NR, Chen EY, Cypess AM, Schulz TJ, Gerhart-Hines Z, Kiebish MA, Tseng YH. Cell Rep 24 781-790 (2018)
  30. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle. Yano N, Muramoto K, Shimada A, Takemura S, Baba J, Fujisawa H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Tsukihara T, Yoshikawa S. J Biol Chem 291 23882-23894 (2016)
  31. Functional hydration and conformational gating of proton uptake in cytochrome c oxidase. Henry RM, Yu CH, Rodinger T, Pomès R. J Mol Biol 387 1165-1185 (2009)
  32. Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes. Arnarez C, Marrink SJ, Periole X. Chem Sci 7 4435-4443 (2016)
  33. Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and life span defects in the tafazzin mutant: implications for Barth syndrome. Ye C, Lou W, Li Y, Chatzispyrou IA, Hüttemann M, Lee I, Houtkooper RH, Vaz FM, Chen S, Greenberg ML. J Biol Chem 289 3114-3125 (2014)
  34. Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity. Heden TD, Johnson JM, Ferrara PJ, Eshima H, Verkerke ARP, Wentzler EJ, Siripoksup P, Narowski TM, Coleman CB, Lin CT, Ryan TE, Reidy PT, de Castro Brás LE, Karner CM, Burant CF, Maschek JA, Cox JE, Mashek DG, Kardon G, Boudina S, Zeczycki TN, Rutter J, Shaikh SR, Vance JE, Drummond MJ, Neufer PD, Funai K. Sci Adv 5 eaax8352 (2019)
  35. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids. Stinson CA, Xia Y. Analyst 141 3696-3704 (2016)
  36. Cardiolipin-based respiratory complex activation in bacteria. Arias-Cartin R, Grimaldi S, Pommier J, Lanciano P, Schaefer C, Arnoux P, Giordano G, Guigliarelli B, Magalon A. Proc Natl Acad Sci U S A 108 7781-7786 (2011)
  37. Molecular driving forces defining lipid positions around aquaporin-0. Aponte-Santamaría C, Briones R, Schenk AD, Walz T, de Groot BL. Proc Natl Acad Sci U S A 109 9887-9892 (2012)
  38. Phylogenomic reconstruction of archaeal fatty acid metabolism. Dibrova DV, Galperin MY, Mulkidjanian AY. Environ Microbiol 16 907-918 (2014)
  39. Letter Desorption Electrospray Ionization Coupled with Ultraviolet Photodissociation for Characterization of Phospholipid Isomers in Tissue Sections. Klein DR, Feider CL, Garza KY, Lin JQ, Eberlin LS, Brodbelt JS. Anal Chem 90 10100-10104 (2018)
  40. Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. Degli Esposti M, Chouaia B, Comandatore F, Crotti E, Sassera D, Lievens PM, Daffonchio D, Bandi C. PLoS One 9 e96566 (2014)
  41. Barth syndrome cardiomyopathy. Dudek J, Maack C. Cardiovasc Res 113 399-410 (2017)
  42. A conserved steroid binding site in cytochrome C oxidase. Qin L, Mills DA, Buhrow L, Hiser C, Ferguson-Miller S. Biochemistry 47 9931-9933 (2008)
  43. Assembly of the complexes of oxidative phosphorylation triggers the remodeling of cardiolipin. Xu Y, Anjaneyulu M, Donelian A, Yu W, Greenberg ML, Ren M, Owusu-Ansah E, Schlame M. Proc Natl Acad Sci U S A 116 11235-11240 (2019)
  44. Molecular mechanisms for the induction of peroxidase activity of the cytochrome c-cardiolipin complex. Abe M, Niibayashi R, Koubori S, Moriyama I, Miyoshi H. Biochemistry 50 8383-8391 (2011)
  45. Import of phosphatidylserine to and export of phosphatidylethanolamine molecular species from mitochondria. Kainu V, Hermansson M, Hänninen S, Hokynar K, Somerharju P. Biochim Biophys Acta 1831 429-437 (2013)
  46. Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. Sugitani R, Medvedev ES, Stuchebrukhov AA. Biochim Biophys Acta 1777 1129-1139 (2008)
  47. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding. Liko I, Degiacomi MT, Mohammed S, Yoshikawa S, Schmidt C, Robinson CV. Proc Natl Acad Sci U S A 113 8230-8235 (2016)
  48. Loss of hepatic LRPPRC alters mitochondrial bioenergetics, regulation of permeability transition and trans-membrane ROS diffusion. Cuillerier A, Honarmand S, Cadete VJJ, Ruiz M, Forest A, Deschênes S, Beauchamp C, LSFC Consortium, Charron G, Rioux JD, Des Rosiers C, Shoubridge EA, Burelle Y. Hum Mol Genet 26 3186-3201 (2017)
  49. Mitochondria targeting of non-peroxidizable triphenylphosphonium conjugated oleic acid protects mouse embryonic cells against apoptosis: role of cardiolipin remodeling. Tyurina YY, Tungekar MA, Jung MY, Tyurin VA, Greenberger JS, Stoyanovsky DA, Kagan VE. FEBS Lett 586 235-241 (2012)
  50. Modulation of the respiratory supercomplexes in yeast: enhanced formation of cytochrome oxidase increases the stability and abundance of respiratory supercomplexes. Cui TZ, Conte A, Fox JL, Zara V, Winge DR. J Biol Chem 289 6133-6141 (2014)
  51. Brain mitochondrial lipid abnormalities in mice susceptible to spontaneous gliomas. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN. Lipids 43 951-959 (2008)
  52. Conservation of lipid functions in cytochrome bc complexes. Hasan SS, Yamashita E, Ryan CM, Whitelegge JP, Cramer WA. J Mol Biol 414 145-162 (2011)
  53. Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex. Hasan SS, Cramer WA. Structure 22 1008-1015 (2014)
  54. Proper fatty acid composition rather than an ionizable lipid amine is required for full transport function of lactose permease from Escherichia coli. Vitrac H, Bogdanov M, Dowhan W. J Biol Chem 288 5873-5885 (2013)
  55. Phosphatidylcholine Affects Inner Membrane Protein Translocases of Mitochondria. Schuler MH, Di Bartolomeo F, Mårtensson CU, Daum G, Becker T. J Biol Chem 291 18718-18729 (2016)
  56. The Mitochondrial Transacylase, Tafazzin, Regulates for AML Stemness by Modulating Intracellular Levels of Phospholipids. Seneviratne AK, Xu M, Henao JJA, Fajardo VA, Hao Z, Voisin V, Xu GW, Hurren R, Kim S, MacLean N, Wang X, Gronda M, Jeyaraju D, Jitkova Y, Ketela T, Mullokandov M, Sharon D, Thomas G, Chouinard-Watkins R, Hawley JR, Schafer C, Yau HL, Khuchua Z, Aman A, Al-Awar R, Gross A, Claypool SM, Bazinet RP, Lupien M, Chan S, De Carvalho DD, Minden MD, Bader GD, Stark KD, LeBlanc P, Schimmer AD. Cell Stem Cell 24 621-636.e16 (2019)
  57. Monomeric structure of an active form of bovine cytochrome c oxidase. Shinzawa-Itoh K, Sugimura T, Misaki T, Tadehara Y, Yamamoto S, Hanada M, Yano N, Nakagawa T, Uene S, Yamada T, Aoyama H, Yamashita E, Tsukihara T, Yoshikawa S, Muramoto K. Proc Natl Acad Sci U S A 116 19945-19951 (2019)
  58. Mutational Analysis of the QRRQ Motif in the Yeast Hig1 Type 2 Protein Rcf1 Reveals a Regulatory Role for the Cytochrome c Oxidase Complex. Garlich J, Strecker V, Wittig I, Stuart RA. J Biol Chem 292 5216-5226 (2017)
  59. Purification of Active Respiratory Supercomplex from Bovine Heart Mitochondria Enables Functional Studies. Shinzawa-Itoh K, Shimomura H, Yanagisawa S, Shimada S, Takahashi R, Oosaki M, Ogura T, Tsukihara T. J Biol Chem 291 4178-4184 (2016)
  60. In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours. Kiebish MA, Han X, Cheng H, Seyfried TN. ASN Neuro 1 e00011 (2009)
  61. Obesity-Dependent Adipokine Chemerin Suppresses Fatty Acid Oxidation to Confer Ferroptosis Resistance. Tan SK, Mahmud I, Fontanesi F, Puchowicz M, Neumann CKA, Griswold AJ, Patel R, Dispagna M, Ahmed HH, Gonzalgo ML, Brown JM, Garrett TJ, Welford SM. Cancer Discov 11 2072-2093 (2021)
  62. Pathway for unfolding of ubiquitin in sodium dodecyl sulfate, studied by capillary electrophoresis. Schneider GF, Shaw BF, Lee A, Carillho E, Whitesides GM. J Am Chem Soc 130 17384-17393 (2008)
  63. Cardiolipin, conformation, and respiratory complex-dependent oligomerization of the major mitochondrial ADP/ATP carrier in yeast. Senoo N, Kandasamy S, Ogunbona OB, Baile MG, Lu Y, Claypool SM. Sci Adv 6 eabb0780 (2020)
  64. Mass Spectrometry Imaging of Lipids with Isomer Resolution Using High-Pressure Ozone-Induced Dissociation. Claes BSR, Bowman AP, Poad BLJ, Young RSE, Heeren RMA, Blanksby SJ, Ellis SR. Anal Chem 93 9826-9834 (2021)
  65. The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. Subramani S, Perdreau-Dahl H, Morth JP. Elife 5 e11407 (2016)
  66. A conserved amphipathic ligand binding region influences k-path-dependent activity of cytochrome C oxidase. Hiser C, Buhrow L, Liu J, Kuhn L, Ferguson-Miller S. Biochemistry 52 1385-1396 (2013)
  67. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane. Tong S, Lin Y, Lu S, Wang M, Bogdanov M, Zheng L. J Biol Chem 291 18342-18352 (2016)
  68. Computer simulations of protein-membrane systems. Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Prog Mol Biol Transl Sci 170 273-403 (2020)
  69. Time to face the fats: what can mass spectrometry reveal about the structure of lipids and their interactions with proteins? Brown SH, Mitchell TW, Oakley AJ, Pham HT, Blanksby SJ. J Am Soc Mass Spectrom 23 1441-1449 (2012)
  70. Bound cardiolipin is essential for cytochrome c oxidase proton translocation. Musatov A, Robinson NC. Biochimie 105 159-164 (2014)
  71. Depletion of acidic phospholipids influences chromosomal replication in Escherichia coli. Fingland N, Flåtten I, Downey CD, Fossum-Raunehaug S, Skarstad K, Crooke E. Microbiologyopen 1 450-466 (2012)
  72. New Frontiers in Lipidomics Analyses using Structurally Selective Ion Mobility-Mass Spectrometry. Harris RA, Leaptrot KL, May JC, McLean JA. Trends Analyt Chem 116 316-323 (2019)
  73. Phosphatidylserine decarboxylase 1 autocatalysis and function does not require a mitochondrial-specific factor. Onguka O, Calzada E, Ogunbona OB, Claypool SM. J Biol Chem 290 12744-12752 (2015)
  74. Structure and function at the lipid-protein interface of a pentameric ligand-gated ion channel. Kumar P, Cymes GD, Grosman C. Proc Natl Acad Sci U S A 118 e2100164118 (2021)
  75. Cardiolipin molecular species with shorter acyl chains accumulate in Saccharomyces cerevisiae mutants lacking the acyl coenzyme A-binding protein Acb1p: new insights into acyl chain remodeling of cardiolipin. Rijken PJ, Houtkooper RH, Akbari H, Brouwers JF, Koorengevel MC, de Kruijff B, Frentzen M, Vaz FM, de Kroon AI. J Biol Chem 284 27609-27619 (2009)
  76. Mitochondrial DNA sequence variation is associated with free-living activity energy expenditure in the elderly. Tranah GJ, Lam ET, Katzman SM, Nalls MA, Zhao Y, Evans DS, Yokoyama JS, Pawlikowska L, Kwok PY, Mooney S, Kritchevsky S, Goodpaster BH, Newman AB, Harris TB, Manini TM, Cummings SR, Health, Aging and Body Composition Study. Biochim Biophys Acta 1817 1691-1700 (2012)
  77. Mitochondrial modulators improve lipid composition and attenuate memory deficits in experimental model of Huntington's disease. Mehrotra A, Sood A, Sandhir R. Mol Cell Biochem 410 281-292 (2015)
  78. The kinetic stability of cytochrome C oxidase: effect of bound phospholipid and dimerization. Sedlák E, Varhač R, Musatov A, Robinson NC. Biophys J 107 2941-2949 (2014)
  79. X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms. Shimada A, Etoh Y, Kitoh-Fujisawa R, Sasaki A, Shinzawa-Itoh K, Hiromoto T, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. J Biol Chem 295 5818-5833 (2020)
  80. All the O2 Consumed by Thermus thermophilus Cytochrome ba3 Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer. Mahinthichaichan P, Gennis RB, Tajkhorshid E. Biochemistry 55 1265-1278 (2016)
  81. Letter Inactivation of cardiolipin synthase triggers changes in mitochondrial morphology. Matsumura A, Higuchi J, Watanabe Y, Kato M, Aoki K, Akabane S, Endo T, Oka T. FEBS Lett 592 209-218 (2018)
  82. Isoproterenol-Induced Permeability Transition Pore-Related Dysfunction of Heart Mitochondria Is Attenuated by Astaxanthin. Krestinin R, Baburina Y, Odinokova I, Kruglov A, Fadeeva I, Zvyagina A, Sotnikova L, Krestinina O. Biomedicines 8 E437 (2020)
  83. Ligand access to the active site in Thermus thermophilus ba(3) and bovine heart aa(3) cytochrome oxidases. McDonald W, Funatogawa C, Li Y, Szundi I, Chen Y, Fee JA, Stout CD, Einarsdóttir Ó. Biochemistry 52 640-652 (2013)
  84. Mitochondrial phosphatidylethanolamine level modulates Cyt c oxidase activity to maintain respiration capacity in Arabidopsis thaliana rosette leaves. Otsuru M, Yu Y, Mizoi J, Kawamoto-Fujioka M, Wang J, Fujiki Y, Nishida I. Plant Cell Physiol 54 1612-1619 (2013)
  85. The yeast mitochondrial proteins Rcf1 and Rcf2 support the enzymology of the cytochrome c oxidase complex and generation of the proton motive force. Strogolova V, Hoang NH, Hosler J, Stuart RA. J Biol Chem 294 4867-4877 (2019)
  86. Lipidomics Characterization of Biosynthetic and Remodeling Pathways of Cardiolipins in Genetically and Nutritionally Manipulated Yeast Cells. Tyurina YY, Lou W, Qu F, Tyurin VA, Mohammadyani D, Liu J, Hüttemann M, Frasso MA, Wipf P, Bayir H, Greenberg ML, Kagan VE. ACS Chem Biol 12 265-281 (2017)
  87. Distinguishing between Cl- and O2(2-) as the bridging element between Fe3+ and Cu2+ in resting-oxidized cytochrome c oxidase. Suga M, Yano N, Muramoto K, Shinzawa-Itoh K, Maeda T, Yamashita E, Tsukihara T, Yoshikawa S. Acta Crystallogr D Biol Crystallogr 67 742-744 (2011)
  88. Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system. Kubo M, Nakashima S, Yamaguchi S, Ogura T, Mochizuki M, Kang J, Tateno M, Shinzawa-Itoh K, Kato K, Yoshikawa S. J Biol Chem 288 30259-30269 (2013)
  89. The Role of Cardiolipin as a Scaffold Mitochondrial Phospholipid in Autophagosome Formation: In Vitro Evidence. Manganelli V, Capozzi A, Recalchi S, Riitano G, Mattei V, Longo A, Misasi R, Garofalo T, Sorice M. Biomolecules 11 222 (2021)
  90. X-ray structural analyses of azide-bound cytochrome c oxidases reveal that the H-pathway is critically important for the proton-pumping activity. Shimada A, Hatano K, Tadehara H, Yano N, Shinzawa-Itoh K, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. J Biol Chem 293 14868-14879 (2018)
  91. Basic residues R260 and K357 affect the conformational dynamics of the major facilitator superfamily multidrug transporter LmrP. Wang W, van Veen HW. PLoS One 7 e38715 (2012)
  92. Cell-free synthesis of cytochrome c oxidase, a multicomponent membrane protein. Katayama Y, Shimokata K, Suematsu M, Ogura T, Tsukihara T, Yoshikawa S, Shimada H. J Bioenerg Biomembr 42 235-240 (2010)
  93. How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase. Jancura D, Stanicova J, Palmer G, Fabian M. Biochemistry 53 3564-3575 (2014)
  94. Regulation of the Ca(2+)-ATPase by cholesterol: a specific or non-specific effect? Autzen HE, Siuda I, Sonntag Y, Nissen P, Møller JV, Thøgersen L. Mol Membr Biol 32 75-87 (2015)
  95. True wild type and recombinant wild type cytochrome c oxidase from Paracoccus denitrificans show a 20-fold difference in their catalase activity. Hilbers F, von der Hocht I, Ludwig B, Michel H. Biochim Biophys Acta 1827 319-327 (2013)
  96. Letter Two-dimensional crystallization of monomeric bovine cytochrome c oxidase with bound cytochrome c in reconstituted lipid membranes. Osuda Y, Shinzawa-Itoh K, Tani K, Maeda S, Yoshikawa S, Tsukihara T, Gerle C. Microscopy (Oxf) 65 263-267 (2016)
  97. Hypoxia-inducible gene domain 1 proteins in yeast mitochondria protect against proton leak through complex IV. Hoang NH, Strogolova V, Mosley JJ, Stuart RA, Hosler J. J Biol Chem 294 17669-17677 (2019)
  98. Lipid functions in cytochrome bc complexes: an odd evolutionary transition in a membrane protein structure. Hasan SS, Cramer WA. Philos Trans R Soc Lond B Biol Sci 367 3406-3411 (2012)
  99. Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. Giachini L, Veronesi G, Francia F, Venturoli G, Boscherini F. J Synchrotron Radiat 17 41-52 (2010)
  100. The K-path entrance in cytochrome c oxidase is defined by mutation of E101 and controlled by an adjacent ligand binding domain. Hiser C, Liu J, Ferguson-Miller S. Biochim Biophys Acta Bioenerg 1859 725-733 (2018)
  101. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. Renne MF, Bao X, Hokken MW, Bierhuizen AS, Hermansson M, Sprenger RR, Ewing TA, Ma X, Cox RC, Brouwers JF, De Smet CH, Ejsing CS, de Kroon AI. EMBO J 41 e106837 (2022)
  102. Oxygen additions in serial femtosecond crystallographic protein structures. Wang J. Protein Sci 25 1797-1802 (2016)
  103. Single mutations that redirect internal proton transfer in the ba3 oxidase from Thermus thermophilus. Smirnova I, Chang HY, von Ballmoos C, Ädelroth P, Gennis RB, Brzezinski P. Biochemistry 52 7022-7030 (2013)
  104. Substitutions into amino acids that are pathogenic in human mitochondrial proteins are more frequent in lineages closely related to human than in distant lineages. Klink GV, Golovin AV, Bazykin GA. PeerJ 5 e4143 (2017)
  105. The pentatricopeptide repeat protein MEF26 participates in RNA editing in mitochondrial cox3 and nad4 transcripts. Arenas-M A, Zehrmann A, Moreno S, Takenaka M, Jordana X. Mitochondrion 19 Pt B 126-134 (2014)
  106. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. Mahinthichaichan P, Gennis RB, Tajkhorshid E. Biochim Biophys Acta Bioenerg 1859 712-724 (2018)
  107. Biophysical and biochemical characterization of reconstituted and purified Rhodobacter sphaeroides cytochrome c oxidase in phospholipid vesicles sheds insight into its functional oligomeric structure. Cvetkov TL, Prochaska LJ. Protein Expr Purif 56 189-196 (2007)
  108. Contribution of both positive selection and relaxation of selective constraints to degeneration of flyability during geese domestication. Wang Y, Hu Y, He D, Chen S, Li S, Lan D, Ren P, Lin Z, Liu Y. PLoS One 12 e0185328 (2017)
  109. Dietary supplementation of old rats with hydrogenated peanut oil restores activities of mitochondrial respiratory complexes in skeletal muscles. Bronnikov GE, Kulagina TP, Aripovsky AV. Biochemistry (Mosc) 75 1491-1497 (2010)
  110. Dilution of protein-surfactant complexes: a fluorescence study. Azadi G, Chauhan A, Tripathi A. Protein Sci 22 1258-1265 (2013)
  111. Evaluation of ion activation strategies and mechanisms for the gas-phase fragmentation of sulfoquinovosyldiacylglycerol lipids from Rhodobacter sphaeroides. Zhang X, Fhaner CJ, Ferguson-Miller SM, Reid GE. Int J Mass Spectrom 316-318 100-107 (2012)
  112. Structural basis of mammalian complex IV inhibition by steroids. Di Trani JM, Moe A, Riepl D, Saura P, Kaila VRI, Brzezinski P, Rubinstein JL. Proc Natl Acad Sci U S A 119 e2205228119 (2022)
  113. Infrared spectra of phosphatidylethanolamine-cardiolipin binary system. Lupi S, Perla A, Maselli P, Bordi F, Sennato S. Colloids Surf B Biointerfaces 64 56-64 (2008)
  114. Molecular cloning and expression analysis of cytochrome c oxidase subunit II from Sitophilus zeamais. Hou CL, Wang JB, Wu H, Liu JY, Ma ZQ, Feng JT, Zhang X. Biochem Biophys Res Commun 478 1660-1666 (2016)
  115. SMAC/Diablo controls proliferation of cancer cells by regulating phosphatidylethanolamine synthesis. Pandey SK, Paul A, Shteinfer-Kuzmine A, Zalk R, Bunz U, Shoshan-Barmatz V. Mol Oncol 15 3037-3061 (2021)
  116. Structural characterization of neutral glycosphingolipids using high-performance liquid chromatography-electrospray ionization mass spectrometry with a repeated high-speed polarity and MSn switching system. Ito E, Waki H, Miseki K, Shimada T, Sato TA, Kakehi K, Suzuki M, Suzuki A. Glycoconj J 30 881-888 (2013)
  117. Cardiolipin Supports Respiratory Enzymes in Plants in Different Ways. Petereit J, Katayama K, Lorenz C, Ewert L, Schertl P, Kitsche A, Wada H, Frentzen M, Braun HP, Eubel H. Front Plant Sci 8 72 (2017)
  118. Cryo-EM structure of Neurospora crassa respiratory complex IV. Bausewein T, Nussberger S, Kühlbrandt W. IUCrJ 6 773-780 (2019)
  119. Cytochrome aa3 Oxygen Reductase Utilizes the Tunnel Observed in the Crystal Structures To Deliver O2 for Catalysis. Mahinthichaichan P, Gennis RB, Tajkhorshid E. Biochemistry 57 2150-2161 (2018)
  120. Dietary fatty acid composition and the homeostatic regulation of mitochondrial phospholipid classes in red muscle of rainbow trout (Oncorhynchus mykiss). Martin N, Kraffe E, Le Grand F, Marty Y, Bureau DP, Guderley H. J Exp Zool A Ecol Genet Physiol 323 60-71 (2015)
  121. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome c oxidase. Shinzawa-Itoh K, Muramoto K. Biophys Physicobiol 18 186-195 (2021)
  122. Crystallographic studies of cytochrome c and cytochrome c oxidase. Tsukihara T. J Biochem 171 13-15 (2022)
  123. Cytochrome c oxidase structures suggest a four-state stochastic pump mechanism. Palese LL. Phys Chem Chem Phys 21 4822-4830 (2019)
  124. Destruction-and-diffraction by X-ray free-electron laser. Wang J. Protein Sci 25 1585-1592 (2016)
  125. Formation and fragmentation of unsaturated fatty acid [M - 2H + Na]- ions: stabilized carbanions for charge-directed fragmentation. Thomas MC, Kirk BB, Altvater J, Blanksby SJ, Nette GW. J Am Soc Mass Spectrom 25 237-247 (2014)
  126. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. Geiger O, Sanchez-Flores A, Padilla-Gomez J, Degli Esposti M. Sci Adv 9 eadh0066 (2023)
  127. NO and O2 reactivities of synthetic functional models of nitric oxide reductase and cytochrome c oxidase. Dey SG, Dey A. Dalton Trans 40 12633-12647 (2011)
  128. The 1.3-Å resolution structure of bovine cytochrome c oxidase suggests a dimerization mechanism. Shinzawa-Itoh K, Hatanaka M, Fujita K, Yano N, Ogasawara Y, Iwata J, Yamashita E, Tsukihara T, Yoshikawa S, Muramoto K. BBA Adv 1 100009 (2021)
  129. Cardiolipin, and not monolysocardiolipin, preferentially binds to the interface of complexes III and IV. Corey RA, Harrison N, Stansfeld PJ, Sansom MSP, Duncan AL. Chem Sci 13 13489-13498 (2022)
  130. Cryo-EM structure and function of S. pombe complex IV with bound respiratory supercomplex factor. Moe A, Ädelroth P, Brzezinski P, Näsvik Öjemyr L. Commun Chem 6 32 (2023)
  131. Delipidation of cytochrome c oxidase from Rhodobacter sphaeroides destabilizes its quaternary structure. Musatov A, Varhač R, Hosler JP, Sedlák E. Biochimie 125 23-31 (2016)
  132. Isomer-Resolved Mass Spectrometry Imaging of Acidic Phospholipids. Claes BSR, Bowman AP, Poad BLJ, Heeren RMA, Blanksby SJ, Ellis SR. J Am Soc Mass Spectrom 34 2269-2277 (2023)
  133. Metabolic Labeling-Based Chemoproteomics Establishes Choline Metabolites as Protein Function Modulators. Dixit A, Jose GP, Shanbhag C, Tagad N, Kalia J. ACS Chem Biol 17 2272-2283 (2022)
  134. Methods for studying interactions of detergents and lipids with α-helical and β-barrel integral membrane proteins. Saif Hasan S, Baniulis D, Yamashita E, Zhalnina MV, Zakharov SD, Stofleth JT, Cramer WA. Curr Protoc Protein Sci 74 29.7.1-29.7.30 (2013)
  135. StaR-related lipid transfer-like domain-containing protein CLDP43 affects cardiolipin synthesis and mitochondrial function in Trypanosoma brucei. Loffreda A, Schlame M, Bütikofer P. PLoS One 17 e0259752 (2022)
  136. The oxygen-oxygen distance of water in crystallographic data sets. Palese LL. Data Brief 28 105076 (2020)