2eyy Citations

Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK.

Nat Struct Mol Biol 14 503-10 (2007)
Related entries: 2dvj, 2eyv, 2eyw, 2eyx, 2eyz

Cited: 83 times
EuropePMC logo PMID: 17515907

Abstract

CRKI (SH2-SH3) and CRKII (SH2-SH3-SH3) are splicing isoforms of the oncoprotein CRK that regulate transcription and cytoskeletal reorganization for cell growth and motility by linking tyrosine kinases to small G proteins. CRKI shows substantial transforming activity, whereas the activity of CRKII is low, and phosphorylated CRKII has no biological activity whatsoever. The molecular mechanisms underlying the distinct biological activities of the CRK proteins remain elusive. We determined the solution structures of CRKI, CRKII and phosphorylated CRKII by NMR and identified the molecular mechanism that gives rise to their activities. Results from mutational analysis using rodent 3Y1 fibroblasts were consistent with those from the structural studies. Together, these data suggest that the linker region modulates the binding of CRKII to its targets, thus regulating cell growth and motility.

Articles - 2eyy mentioned but not cited (3)

  1. Verification of alternative splicing variants based on domain integrity, truncation length and intrinsic protein disorder. Hegyi H, Kalmar L, Horvath T, Tompa P. Nucleic Acids Res 39 1208-1219 (2011)
  2. Binding cavities and druggability of intrinsically disordered proteins. Zhang Y, Cao H, Liu Z. Protein Sci 24 688-705 (2015)
  3. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (18)

  1. The ErbB/HER family of protein-tyrosine kinases and cancer. Roskoski R. Pharmacol Res 79 34-74 (2014)
  2. Integrin signalling adaptors: not only figurants in the cancer story. Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P. Nat Rev Cancer 10 858-870 (2010)
  3. SH3 domains: modules of protein-protein interactions. Kurochkina N, Guha U. Biophys Rev 5 29-39 (2013)
  4. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Wagner MJ, Stacey MM, Liu BA, Pawson T. Cold Spring Harb Perspect Biol 5 a008987 (2013)
  5. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. Liu BA, Engelmann BW, Nash PD. FEBS Lett 586 2597-2605 (2012)
  6. Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level. Zuo G, Kang SG, Xiu P, Zhao Y, Zhou R. Small 9 1546-1556 (2013)
  7. microRNAs and lung cancer: tumors and 22-mers. Du L, Pertsemlidis A. Cancer Metastasis Rev 29 109-122 (2010)
  8. Emerging roles of Abl family tyrosine kinases in microbial pathogenesis. Backert S, Feller SM, Wessler S. Trends Biochem Sci 33 80-90 (2008)
  9. Prolyl isomerization and its catalysis in protein folding and protein function. Schmidpeter PA, Schmid FX. J Mol Biol 427 1609-1631 (2015)
  10. Role of Exosomal Noncoding RNAs in Lung Carcinogenesis. Sun T, Kalionis B, Lv G, Xia S, Gao W. Biomed Res Int 2015 125807 (2015)
  11. The adaptor protein Crk in immune response. Liu D. Immunol Cell Biol 92 80-89 (2014)
  12. The Tumor Cytosol miRNAs, Fluid miRNAs, and Exosome miRNAs in Lung Cancer. Qin X, Xu H, Gong W, Deng W. Front Oncol 4 357 (2014)
  13. Crk and CrkL as Therapeutic Targets for Cancer Treatment. Park T. Cells 10 739 (2021)
  14. A new twist to adaptor proteins contributes to regulation of lymphocyte cell signaling. Isakov N. Trends Immunol 29 388-396 (2008)
  15. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration. Braiman A, Isakov N. Front Immunol 6 509 (2015)
  16. MicroRNAs in non-small cell lung cancer invasion and metastasis: from the perspective of the radiation oncologist. Verma V, Lautenschlaeger T. Expert Rev Anticancer Ther 16 767-774 (2016)
  17. Commentary: The carboxyl-terminal Crk SH3 domain: Regulatory strategies and new perspectives. Sriram G, Birge RB. FEBS Lett 586 2615-2618 (2012)
  18. Contribution of Crk adaptor proteins to host cell and bacteria interactions. Martinez-Quiles N, Feuerbacher LA, Benito-León M, Hardwidge PR. Biomed Res Int 2014 372901 (2014)

Articles citing this publication (62)

  1. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Crawford M, Brawner E, Batte K, Yu L, Hunter MG, Otterson GA, Nuovo G, Marsh CB, Nana-Sinkam SP. Biochem Biophys Res Commun 373 607-612 (2008)
  2. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Birge RB, Kalodimos C, Inagaki F, Tanaka S. Cell Commun Signal 7 13 (2009)
  3. Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. Kobashigawa Y, Kumeta H, Ogura K, Inagaki F. J Biomol NMR 43 145-150 (2009)
  4. The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts. Vives V, Laurin M, Cres G, Larrousse P, Morichaud Z, Noel D, Côté JF, Blangy A. J Bone Miner Res 26 1099-1110 (2011)
  5. Structural basis for regulation of the Crk signaling protein by a proline switch. Sarkar P, Saleh T, Tzeng SR, Birge RB, Kalodimos CG. Nat Chem Biol 7 51-57 (2011)
  6. The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD. Sci Signal 4 ra83 (2011)
  7. Emerging roles for crk in human cancer. Sriram G, Birge RB. Genes Cancer 1 1132-1139 (2010)
  8. Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. Antoku S, Mayer BJ. J Cell Sci 122 4228-4238 (2009)
  9. OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields. Wang L, Sauer UH. Bioinformatics 24 1401-1402 (2008)
  10. A crucial role in cell spreading for the interaction of Abl PxxP motifs with Crk and Nck adaptors. Antoku S, Saksela K, Rivera GM, Mayer BJ. J Cell Sci 121 3071-3082 (2008)
  11. Domain organization differences explain Bcr-Abl's preference for CrkL over CrkII. Jankowski W, Saleh T, Pai MT, Sriram G, Birge RB, Kalodimos CG. Nat Chem Biol 8 590-596 (2012)
  12. Models of crk adaptor proteins in cancer. Bell ES, Park M. Genes Cancer 3 341-352 (2012)
  13. Atomic view of the energy landscape in the allosteric regulation of Abl kinase. Saleh T, Rossi P, Kalodimos CG. Nat Struct Mol Biol 24 893-901 (2017)
  14. CRK proteins selectively regulate T cell migration into inflamed tissues. Huang Y, Clarke F, Karimi M, Roy NH, Williamson EK, Okumura M, Mochizuki K, Chen EJ, Park TJ, Debes GF, Zhang Y, Curran T, Kambayashi T, Burkhardt JK. J Clin Invest 125 1019-1032 (2015)
  15. The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization. Titz B, Low T, Komisopoulou E, Chen SS, Rubbi L, Graeber TG. Oncogene 29 5895-5910 (2010)
  16. A specific need for CRKL in p210BCR-ABL-induced transformation of mouse hematopoietic progenitors. Seo JH, Wood LJ, Agarwal A, O'Hare T, Elsea CR, Griswold IJ, Deininger MW, Imamoto A, Druker BJ. Cancer Res 70 7325-7335 (2010)
  17. Signaling adaptor protein Crk is indispensable for malignant feature of glioblastoma cell line KMG4. Wang L, Tabu K, Kimura T, Tsuda M, Linghu H, Tanino M, Kaneko S, Nishihara H, Tanaka S. Biochem Biophys Res Commun 362 976-981 (2007)
  18. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration. Watanabe T, Tsuda M, Makino Y, Konstantinou T, Nishihara H, Majima T, Minami A, Feller SM, Tanaka S. Cell Res 19 638-650 (2009)
  19. Exosomes containing ErbB2/CRK induce vascular growth in premetastatic niches and promote metastasis of bladder cancer. Yoshida K, Tsuda M, Matsumoto R, Semba S, Wang L, Sugino H, Tanino M, Kondo T, Tanabe K, Tanaka S. Cancer Sci 110 2119-2132 (2019)
  20. Crk and ABI1: binary molecular switches that regulate abl tyrosine kinase and signaling to the cytoskeleton. Hossain S, Dubielecka PM, Sikorski AF, Birge RB, Kotula L. Genes Cancer 3 402-413 (2012)
  21. Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Saleh T, Jankowski W, Sriram G, Rossi P, Shah S, Lee KB, Cruz LA, Rodriguez AJ, Birge RB, Kalodimos CG. Nat Chem Biol 12 117-123 (2016)
  22. Platelet-Derived Growth Factor Receptor α Contributes to Human Hepatic Stellate Cell Proliferation and Migration. Kikuchi A, Pradhan-Sundd T, Singh S, Nagarajan S, Loizos N, Monga SP. Am J Pathol 187 2273-2287 (2017)
  23. Essential roles of Crk and CrkL in fibroblast structure and motility. Park TJ, Curran T. Oncogene 33 5121-5132 (2014)
  24. Structural and functional basis of a role for CRKL in a fibroblast growth factor 8-induced feed-forward loop. Seo JH, Suenaga A, Hatakeyama M, Taiji M, Imamoto A. Mol Cell Biol 29 3076-3087 (2009)
  25. Tuning protein autoinhibition by domain destabilization. Cho JH, Muralidharan V, Vila-Perello M, Raleigh DP, Muir TW, Palmer AG. Nat Struct Mol Biol 18 550-555 (2011)
  26. Src, p130Cas, and Mechanotransduction in Cancer Cells. Matsui H, Harada I, Sawada Y. Genes Cancer 3 394-401 (2012)
  27. Ligand-driven conformational changes of MurD visualized by paramagnetic NMR. Saio T, Ogura K, Kumeta H, Kobashigawa Y, Shimizu K, Yokochi M, Kodama K, Yamaguchi H, Tsujishita H, Inagaki F. Sci Rep 5 16685 (2015)
  28. Phosphorylation of Crk on tyrosine 251 in the RT loop of the SH3C domain promotes Abl kinase transactivation. Sriram G, Reichman C, Tunceroglu A, Kaushal N, Saleh T, Machida K, Mayer B, Ge Q, Li J, Hornbeck P, Kalodimos CG, Birge RB. Oncogene 30 4645-4655 (2011)
  29. CrkII transgene induces atypical mammary gland development and tumorigenesis. Fathers KE, Rodrigues S, Zuo D, Murthy IV, Hallett M, Cardiff R, Park M. Am J Pathol 176 446-460 (2010)
  30. Genetic susceptibility on CagA-interacting molecules and gene-environment interaction with phytoestrogens: a putative risk factor for gastric cancer. Yang JJ, Cho LY, Ko KP, Shin A, Ma SH, Choi BY, Han DS, Song KS, Kim YS, Lee JY, Han BG, Chang SH, Shin HR, Kang D, Yoo KY, Park SK. PLoS One 7 e31020 (2012)
  31. Real-time fluorescent resonance energy transfer analysis to monitor drug resistance in chronic myelogenous leukemia. Tunceroglu A, Matsuda M, Birge RB. Mol Cancer Ther 9 3065-3073 (2010)
  32. Reciprocal regulation of Abl kinase by Crk Y251 and Abi1 controls invasive phenotypes in glioblastoma. Kumar S, Lu B, Dixit U, Hossain S, Liu Y, Li J, Hornbeck P, Zheng W, Sowalsky AG, Kotula L, Birge RB. Oncotarget 6 37792-37807 (2015)
  33. Analysis of an independent tumor suppressor locus telomeric to Tp53 suggested Inpp5k and Myo1c as novel tumor suppressor gene candidates in this region. Hedberg Oldfors C, Dios DG, Linder A, Visuttijai K, Samuelson E, Karlsson S, Nilsson S, Behboudi A. BMC Genet 16 80 (2015)
  34. The adaptor proteins p140CAP and p130CAS as molecular hubs in cell migration and invasion of cancer cells. Di Stefano P, Leal MP, Tornillo G, Bisaro B, Repetto D, Pincini A, Santopietro E, Sharma N, Turco E, Cabodi S, Defilippi P. Am J Cancer Res 1 663-673 (2011)
  35. Cyclophilin A Inhibitor Debio-025 Targets Crk, Reduces Metastasis, and Induces Tumor Immunogenicity in Breast Cancer. Davra V, Saleh T, Geng K, Kimani S, Mehta D, Kasikara C, Smith B, Colangelo NW, Ciccarelli B, Li H, Azzam EI, Kalodimos CG, Birge RB, Kumar S. Mol Cancer Res 18 1189-1201 (2020)
  36. Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media? Yuwen T, Post CB, Skrynnikov NR. J Biomol NMR 51 131-150 (2011)
  37. PEAK3/C19orf35 pseudokinase, a new NFK3 kinase family member, inhibits CrkII through dimerization. Lopez ML, Lo M, Kung JE, Dudkiewicz M, Jang GM, Von Dollen J, Johnson JR, Krogan NJ, Pawłowski K, Jura N. Proc Natl Acad Sci U S A 116 15495-15504 (2019)
  38. Crk adaptors negatively regulate actin polymerization in pedestals formed by enteropathogenic Escherichia coli (EPEC) by binding to Tir effector. Nieto-Pelegrin E, Meiler E, Martín-Villa JM, Benito-León M, Martinez-Quiles N. PLoS Pathog 10 e1004022 (2014)
  39. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation. Wybenga-Groot LE, McGlade CJ. Cell Signal 25 2702-2708 (2013)
  40. Proteins that bind the Src homology 3 domain of CrkI have distinct roles in Crk transformation. Zheng J, Machida K, Antoku S, Ng KY, Claffey KP, Mayer BJ. Oncogene 29 6378-6389 (2010)
  41. A lack of peptide binding and decreased thermostability suggests that the CASKIN2 scaffolding protein SH3 domain may be vestigial. Kwan JJ, Donaldson LW. BMC Struct Biol 16 14 (2016)
  42. Molecular dynamics of the proline switch and its role in Crk signaling. Xia J, Levy RM. J Phys Chem B 118 4535-4545 (2014)
  43. Secondary structure, a missing component of sequence-based minimotif definitions. Sargeant DP, Gryk MR, Maciejewski MW, Thapar V, Kundeti V, Rajasekaran S, Romero P, Dunker K, Li SC, Kaneko T, Schiller MR. PLoS One 7 e49957 (2012)
  44. Comment Structural biology: CrkL is not Crk-like. Kobashigawa Y, Inagaki F. Nat Chem Biol 8 504-505 (2012)
  45. A novel molecular dynamics approach to evaluate the effect of phosphorylation on multimeric protein interface: the αB-Crystallin case study. Chiappori F, Mattiazzi L, Milanesi L, Merelli I. BMC Bioinformatics 17 Suppl 4 57 (2016)
  46. Tyr724 phosphorylation of ELMO1 by Src is involved in cell spreading and migration via Rac1 activation. Makino Y, Tsuda M, Ohba Y, Nishihara H, Sawa H, Nagashima K, Tanaka S. Cell Commun Signal 13 35 (2015)
  47. IL-7-induced phosphorylation of the adaptor Crk-like and other targets. Aiello FB, Guszczynski T, Li W, Hixon JA, Jiang Q, Hodge DL, Massignan T, Di Lisio C, Merchant A, Procopio AD, Bonetto V, Durum SK. Cell Signal 47 131-141 (2018)
  48. Iterative tyrosine phosphorylation controls non-canonical domain utilization in Crk. Sriram G, Jankowski W, Kasikara C, Reichman C, Saleh T, Nguyen KQ, Li J, Hornbeck P, Machida K, Liu T, Li H, Kalodimos CG, Birge RB. Oncogene 34 4260-4269 (2015)
  49. MicroRNA expression profile in bovine mammary gland parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Bagnicka E, Kawecka-Grochocka E, Pawlina-Tyszko K, Zalewska M, Kapusta A, Kościuczuk E, Marczak S, Ząbek T. Vet Res 52 41 (2021)
  50. A pre-metazoan origin of the CRK gene family and co-opted signaling network. Shigeno-Nakazawa Y, Kasai T, Ki S, Kostyanovskaya E, Pawlak J, Yamagishi J, Okimoto N, Taiji M, Okada M, Westbrook J, Satta Y, Kigawa T, Imamoto A. Sci Rep 6 34349 (2016)
  51. In vivo regulation of human CrkII by cyclophilin A and FK506-binding protein. Nath PR, Dong G, Braiman A, Isakov N. Biochem Biophys Res Commun 470 411-416 (2016)
  52. An efficient method for protein phosphorylation using the artificially introduced of cognate-binding modules into kinases and substrates. Kobashigawa Y, Naito M, Inagaki F. J Biotechnol 131 458-465 (2007)
  53. Crystal structure of the cell corpse engulfment protein CED-2 in Caenorhabditis elegans. Kang Y, Xu J, Liu Y, Sun J, Sun D, Hu Y, Liu Y. Biochem Biophys Res Commun 410 189-194 (2011)
  54. Comment Moving parts: how the adaptor protein CRK is regulated, and regulates. Cowburn D. Nat Struct Mol Biol 14 465-466 (2007)
  55. The association of Crk-like adapter protein with poor prognosis in glioma patients. Yao C, Lv S, Han M, Zhang J, Zhang Y, Zhang L, Yi R, Zhuang D, Wu J. Tumour Biol 35 5695-5700 (2014)
  56. research-article What's in a loop? Feller SM, Lewitzky M. Cell Commun Signal 10 31 (2012)
  57. Identification of an LPS-Induced Chemo-Attractive Peptide from Ciona robusta. Longo V, Longo A, Martorana A, Lauria A, Augello G, Azzolina A, Cervello M, Colombo P. Mar Drugs 18 E209 (2020)
  58. Prolyl isomerization as a molecular memory in the allosteric regulation of the signal adapter protein c-CrkII. Schmidpeter PA, Schmid FX. J Biol Chem 290 3021-3032 (2015)
  59. microRNA-132 inhibits the proliferation, migration, and invasion of ovarian cancer cells by regulating CT10 oncogenic gene homolog II-related signaling pathways. Jiang H, Dai M, Wu Y, Dong Y, Qi L, Xi Q, Liang G. Transl Cancer Res 9 4433-4443 (2020)
  60. HYPK: A marginally disordered protein sensitive to charge decoration. Firouzbakht A, Haider A, Gaalswyk K, Alaeen S, Ghosh K, Gruebele M. Proc Natl Acad Sci U S A 121 e2316408121 (2024)
  61. Structure-guided design of a potent peptide inhibitor targeting the interaction between CRK and ABL kinase. Shen Q, Bhatt VS, Krieger I, Sacchettini JC, Cho JH. Medchemcomm 9 519-524 (2018)
  62. [On the occasion of retirement from Graduate School of Pharmaceutical Sciences, Hokkaido University]. Inagaki F. Yakugaku Zasshi 130 1251-1262 (2010)