2f53 Citations

Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity.

Abstract

The mammalian alpha/beta T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR-MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential.

Articles - 2f53 mentioned but not cited (13)

  1. Germ line-governed recognition of a cancer epitope by an immunodominant human T-cell receptor. Cole DK, Yuan F, Rizkallah PJ, Miles JJ, Gostick E, Price DA, Gao GF, Jakobsen BK, Sewell AK. J Biol Chem 284 27281-27289 (2009)
  2. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity. Dunn SM, Rizkallah PJ, Baston E, Mahon T, Cameron B, Moysey R, Gao F, Sami M, Boulter J, Li Y, Jakobsen BK. Protein Sci 15 710-721 (2006)
  3. Degenerate T-cell recognition of peptides on MHC molecules creates large holes in the T-cell repertoire. Calis JJ, de Boer RJ, Keşmir C. PLoS Comput Biol 8 e1002412 (2012)
  4. POPISK: T-cell reactivity prediction using support vector machines and string kernels. Tung CW, Ziehm M, Kämper A, Kohlbacher O, Ho SY. BMC Bioinformatics 12 446 (2011)
  5. Computational stabilization of T cell receptors allows pairing with antibodies to form bispecifics. Froning K, Maguire J, Sereno A, Huang F, Chang S, Weichert K, Frommelt AJ, Dong J, Wu X, Austin H, Conner EM, Fitchett JR, Heng AR, Balasubramaniam D, Hilgers MT, Kuhlman B, Demarest SJ. Nat Commun 11 2330 (2020)
  6. Molecular Rules Underpinning Enhanced Affinity Binding of Human T Cell Receptors Engineered for Immunotherapy. Crean RM, MacLachlan BJ, Madura F, Whalley T, Rizkallah PJ, Holland CJ, McMurran C, Harper S, Godkin A, Sewell AK, Pudney CR, van der Kamp MW, Cole DK. Mol Ther Oncolytics 18 443-456 (2020)
  7. Predicting peptide binding affinities to MHC molecules using a modified semi-empirical scoring function. Liao WW, Arthur JW. PLoS One 6 e25055 (2011)
  8. CIG-DB: the database for human or mouse immunoglobulin and T cell receptor genes available for cancer studies. Nakamura Y, Komiyama T, Furue M, Gojobori T, Akiyama Y. BMC Bioinformatics 11 398 (2010)
  9. DynaDom: structure-based prediction of T cell receptor inter-domain and T cell receptor-peptide-MHC (class I) association angles. Hoffmann T, Marion A, Antes I. BMC Struct Biol 17 2 (2017)
  10. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition. Hoffmann T, Krackhardt AM, Antes I. PLoS Comput Biol 11 e1004244 (2015)
  11. How far are we from automatic crystal structure solution via molecular-replacement techniques? Burla MC, Carrozzini B, Cascarano GL, Giacovazzo C, Polidori G. Acta Crystallogr D Struct Biol 76 9-18 (2020)
  12. Strengths and limitations of web servers for the modeling of TCRpMHC complexes. Le HN, de Freitas MV, Antunes DA. Comput Struct Biotechnol J 23 2938-2948 (2024)
  13. The Automatic Solution of Macromolecular Crystal Structures via Molecular Replacement Techniques: REMO22 and Its Pipeline. Carrozzini B, Cascarano GL, Giacovazzo C. Int J Mol Sci 24 6070 (2023)


Reviews citing this publication (19)

  1. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Chandran SS, Klebanoff CA. Immunol Rev 290 127-147 (2019)
  2. Tebentafusp: T Cell Redirection for the Treatment of Metastatic Uveal Melanoma. Damato BE, Dukes J, Goodall H, Carvajal RD. Cancers (Basel) 11 E971 (2019)
  3. MM-GBSA binding free energy decomposition and T cell receptor engineering. Zoete V, Irving MB, Michielin O. J Mol Recognit 23 142-152 (2010)
  4. ImmTACs for targeted cancer therapy: Why, what, how, and which. Oates J, Hassan NJ, Jakobsen BK. Mol Immunol 67 67-74 (2015)
  5. Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens. Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Front Immunol 6 582 (2015)
  6. Genetic engineering of T cells for adoptive immunotherapy. Varela-Rohena A, Carpenito C, Perez EE, Richardson M, Parry RV, Milone M, Scholler J, Hao X, Mexas A, Carroll RG, June CH, Riley JL. Immunol Res 42 166-181 (2008)
  7. Structure-Based, Rational Design of T Cell Receptors. Zoete V, Irving M, Ferber M, Cuendet MA, Michielin O. Front Immunol 4 268 (2013)
  8. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Rath JA, Arber C. Cells 9 E1485 (2020)
  9. Display, engineering, and applications of antigen-specific T cell receptors. Richman SA, Kranz DM. Biomol Eng 24 361-373 (2007)
  10. Challenges in T cell receptor gene therapy. Uttenthal BJ, Chua I, Morris EC, Stauss HJ. J Gene Med 14 386-399 (2012)
  11. Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function. Birnbaum ME, Dong S, Garcia KC. Immunol Rev 250 82-101 (2012)
  12. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Front Immunol 11 585385 (2020)
  13. Integrating Experiment and Theory to Understand TCR-pMHC Dynamics. Buckle AM, Borg NA. Front Immunol 9 2898 (2018)
  14. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Riley TP, Baker BM. Semin Cell Dev Biol 84 30-41 (2018)
  15. Enhanced T cell receptor gene therapy for cancer. Kieback E, Uckert W. Expert Opin Biol Ther 10 749-762 (2010)
  16. Phage Display Engineered T Cell Receptors as Tools for the Study of Tumor Peptide-MHC Interactions. Løset GÅ, Berntzen G, Frigstad T, Pollmann S, Gunnarsen KS, Sandlie I. Front Oncol 4 378 (2014)
  17. Challenges and solutions for therapeutic TCR-based agents. Malviya M, Aretz ZEH, Molvi Z, Lee J, Pierre S, Wallisch P, Dao T, Scheinberg DA. Immunol Rev 320 58-82 (2023)
  18. Engineering the T cell receptor for fun and profit: Uncovering complex biology, interrogating the immune system, and targeting disease. Rosenberg AM, Baker BM. Curr Opin Struct Biol 74 102358 (2022)
  19. Unconventional modes of peptide-HLA-I presentation change the rules of TCR engagement. Hopkins JR, MacLachlan BJ, Harper S, Sewell AK, Cole DK. Discov Immunol 1 kyac001 (2022)

Articles citing this publication (51)