2fxk Citations

Splicing regulates NAD metabolite binding to histone macroH2A.

Nat Struct Mol Biol 12 624-5 (2005)
Cited: 209 times
EuropePMC logo PMID: 15965484

Abstract

Histone macroH2A is a hallmark of mammalian heterochromatin. Here we show that human macroH2A1.1 binds the SirT1-metabolite O-acetyl-ADP-ribose (OAADPR) through its macro domain. The 1.6-A crystal structure and mutants reveal how the metabolite is recognized. Mutually exclusive exon use in the gene H2AFY produces macroH2A1.2, whose tissue distribution differs. MacroH2A1.2 shows only subtle structural changes but cannot bind nucleotides. Alternative splicing may thus regulate the binding of nicotinamide adenine dinucleotide (NAD) metabolites to chromatin.

Reviews - 2fxk mentioned but not cited (2)

  1. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Tong L, Denu JM. Biochim Biophys Acta 1804 1617-1625 (2010)
  2. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer. Corujo D, Buschbeck M. Cancers (Basel) 10 E59 (2018)

Articles - 2fxk mentioned but not cited (4)

  1. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level. Abascal F, Ezkurdia I, Rodriguez-Rivas J, Rodriguez JM, del Pozo A, Vázquez J, Valencia A, Tress ML. PLoS Comput Biol 11 e1004325 (2015)
  2. Macro histone H2A1.2 (macroH2A1) protein suppresses mitotic kinase VRK1 during interphase. Kim W, Chakraborty G, Kim S, Shin J, Park CH, Jeong MW, Bharatham N, Yoon HS, Kim KT. J Biol Chem 287 5278-5289 (2012)
  3. Flexible torsion-angle noncrystallographic symmetry restraints for improved macromolecular structure refinement. Headd JJ, Echols N, Afonine PV, Moriarty NW, Gildea RJ, Adams PD. Acta Crystallogr D Biol Crystallogr 70 1346-1356 (2014)
  4. The macro domain as fusion tag for carrier-driven crystallization. Wild R, Hothorn M. Protein Sci 26 365-374 (2017)


Reviews citing this publication (73)

  1. Sirtuins as regulators of metabolism and healthspan. Houtkooper RH, Pirinen E, Auwerx J. Nat Rev Mol Cell Biol 13 225-238 (2012)
  2. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Gibson BA, Kraus WL. Nat Rev Mol Cell Biol 13 411-424 (2012)
  3. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Krishnakumar R, Kraus WL. Mol Cell 39 8-24 (2010)
  4. The biochemistry of sirtuins. Sauve AA, Wolberger C, Schramm VL, Boeke JD. Annu Rev Biochem 75 435-465 (2006)
  5. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Hassa PO, Haenni SS, Elser M, Hottiger MO. Microbiol Mol Biol Rev 70 789-829 (2006)
  6. Function of alternative splicing. Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Gene 514 1-30 (2013)
  7. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Gupte R, Liu Z, Kraus WL. Genes Dev 31 101-126 (2017)
  8. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Kraus WL. Curr Opin Cell Biol 20 294-302 (2008)
  9. Facultative heterochromatin: is there a distinctive molecular signature? Trojer P, Reinberg D. Mol Cell 28 1-13 (2007)
  10. Sirtuin functions in health and disease. Yamamoto H, Schoonjans K, Auwerx J. Mol Endocrinol 21 1745-1755 (2007)
  11. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Vaquero A, Sternglanz R, Reinberg D. Oncogene 26 5505-5520 (2007)
  12. Chemical mechanisms of histone lysine and arginine modifications. Smith BC, Denu JM. Biochim Biophys Acta 1789 45-57 (2009)
  13. Histone H2A variants in nucleosomes and chromatin: more or less stable? Bönisch C, Hake SB. Nucleic Acids Res 40 10719-10741 (2012)
  14. SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions. Zhang T, Kraus WL. Biochim Biophys Acta 1804 1666-1675 (2010)
  15. PARP-1 and gene regulation: progress and puzzles. Kraus WL, Hottiger MO. Mol Aspects Med 34 1109-1123 (2013)
  16. Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation. Barkauskaite E, Jankevicius G, Ahel I. Mol Cell 58 935-946 (2015)
  17. Functions of PARylation in DNA Damage Repair Pathways. Wei H, Yu X. Genomics Proteomics Bioinformatics 14 131-139 (2016)
  18. Macrodomains: Structure, Function, Evolution, and Catalytic Activities. Rack JG, Perina D, Ahel I. Annu Rev Biochem 85 431-454 (2016)
  19. Histone variants in metazoan development. Banaszynski LA, Allis CD, Lewis PW. Dev Cell 19 662-674 (2010)
  20. Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Krietsch J, Rouleau M, Pic É, Ethier C, Dawson TM, Dawson VL, Masson JY, Poirier GG, Gagné JP. Mol Aspects Med 34 1066-1087 (2013)
  21. Epigenetic responses to environmental change and their evolutionary implications. Turner BM. Philos Trans R Soc Lond B Biol Sci 364 3403-3418 (2009)
  22. Histone variants: emerging players in cancer biology. Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Cell Mol Life Sci 71 379-404 (2014)
  23. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Feijs KL, Forst AH, Verheugd P, Lüscher B. Nat Rev Mol Cell Biol 14 443-451 (2013)
  24. Calorie restriction and the exercise of chromatin. Vaquero A, Reinberg D. Genes Dev 23 1849-1869 (2009)
  25. Metabolic Inputs into the Epigenome. Sharma U, Rando OJ. Cell Metab 25 544-558 (2017)
  26. Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Khan JA, Forouhar F, Tao X, Tong L. Expert Opin Ther Targets 11 695-705 (2007)
  27. The macro domain protein family: structure, functions, and their potential therapeutic implications. Han W, Li X, Fu X. Mutat Res 727 86-103 (2011)
  28. The roles of histone variants in fine-tuning chromatin organization and function. Martire S, Banaszynski LA. Nat Rev Mol Cell Biol 21 522-541 (2020)
  29. The recognition and removal of cellular poly(ADP-ribose) signals. Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G. FEBS J 280 3491-3507 (2013)
  30. The nucleosome: a little variation goes a long way. Bernstein E, Hake SB. Biochem Cell Biol 84 505-517 (2006)
  31. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Ryu KW, Kim DS, Kraus WL. Chem Rev 115 2453-2481 (2015)
  32. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Inoue D, Bradley RK, Abdel-Wahab O. Genes Dev 30 989-1001 (2016)
  33. SIRT1, metabolism and cancer. Knight JR, Milner J. Curr Opin Oncol 24 68-75 (2012)
  34. Structure and activity of enzymes that remove histone modifications. Holbert MA, Marmorstein R. Curr Opin Struct Biol 15 673-680 (2005)
  35. Rheostat control of gene expression by metabolites. Ladurner AG. Mol Cell 24 1-11 (2006)
  36. New readers and interpretations of poly(ADP-ribosyl)ation. Kalisch T, Amé JC, Dantzer F, Schreiber V. Trends Biochem Sci 37 381-390 (2012)
  37. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Crit Rev Biochem Mol Biol 53 64-82 (2018)
  38. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. Med Res Rev 38 147-200 (2018)
  39. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. Mashimo M, Kato J, Moss J. DNA Repair (Amst) 23 88-94 (2014)
  40. A metabolic throttle regulates the epigenetic state of rDNA. Grummt I, Ladurner AG. Cell 133 577-580 (2008)
  41. MacroH2A--an epigenetic regulator of cancer. Cantariño N, Douet J, Buschbeck M. Cancer Lett 336 247-252 (2013)
  42. Nuclear PARPs and genome integrity. Azarm K, Smith S. Genes Dev 34 285-301 (2020)
  43. Expression and functionality of histone H2A variants in cancer. Monteiro FL, Baptista T, Amado F, Vitorino R, Jerónimo C, Helguero LA. Oncotarget 5 3428-3443 (2014)
  44. Histone variants: nuclear function and disease. Zink LM, Hake SB. Curr Opin Genet Dev 37 82-89 (2016)
  45. PARP, transcription and chromatin modeling. Posavec Marjanović M, Crawford K, Ahel I. Semin Cell Dev Biol 63 102-113 (2017)
  46. Macro domains as metabolite sensors on chromatin. Posavec M, Timinszky G, Buschbeck M. Cell Mol Life Sci 70 1509-1524 (2013)
  47. NAD(+) -dependent histone deacetylases (sirtuins) as novel therapeutic targets. Schemies J, Uciechowska U, Sippl W, Jung M. Med Res Rev 30 861-889 (2010)
  48. Nicotinamide adenine dinucleotide: beyond a redox coenzyme. Lin H. Org Biomol Chem 5 2541-2554 (2007)
  49. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Karlberg T, Langelier MF, Pascal JM, Schüler H. Mol Aspects Med 34 1088-1108 (2013)
  50. The end adjusts the means: heterochromatin remodelling during terminal cell differentiation. Grigoryev SA, Bulynko YA, Popova EY. Chromosome Res 14 53-69 (2006)
  51. Poly-ADP ribosylation in DNA damage response and cancer therapy. Hou WH, Chen SH, Yu X. Mutat Res Rev Mutat Res 780 82-91 (2019)
  52. New developments in post-translational modifications and functions of histone H2A variants. Thambirajah AA, Li A, Ishibashi T, Ausió J. Biochem Cell Biol 87 7-17 (2009)
  53. Organizing the genome with H2A histone variants. Millar CB. Biochem J 449 567-579 (2013)
  54. Sirtuins of parasitic protozoa: in search of function(s). Religa AA, Waters AP. Mol Biochem Parasitol 185 71-88 (2012)
  55. The taming of PARP1 and its impact on NAD+ metabolism. Hurtado-Bagès S, Knobloch G, Ladurner AG, Buschbeck M. Mol Metab 38 100950 (2020)
  56. Chromatin Dynamics in Vivo: A Game of Musical Chairs. Melters DP, Nye J, Zhao H, Dalal Y. Genes (Basel) 6 751-776 (2015)
  57. Cell fate regulation by chromatin ADP-ribosylation. Abplanalp J, Hottiger MO. Semin Cell Dev Biol 63 114-122 (2017)
  58. Histone MacroH2A1: A Chromatin Point of Intersection between Fasting, Senescence and Cellular Regeneration. Lo Re O, Vinciguerra M. Genes (Basel) 8 E367 (2017)
  59. The Structural Determinants behind the Epigenetic Role of Histone Variants. Cheema MS, Ausió J. Genes (Basel) 6 685-713 (2015)
  60. The Controversial Roles of ADP-Ribosyl Hydrolases MACROD1, MACROD2 and TARG1 in Carcinogenesis. Feijs KLH, Cooper CDO, Žaja R. Cancers (Basel) 12 E604 (2020)
  61. Metabolic sensors and their interplay with cell signalling and transcription. Krejčí A. Biochem Soc Trans 40 311-323 (2012)
  62. Environmental sensing by chromatin: an epigenetic contribution to evolutionary change. Turner BM. FEBS Lett 585 2032-2040 (2011)
  63. The Multiple Facets of ATRX Protein. Valenzuela M, Amato R, Sgura A, Antoccia A, Berardinelli F. Cancers (Basel) 13 2211 (2021)
  64. Solid tumours hijack the histone variant network. Ghiraldini FG, Filipescu D, Bernstein E. Nat Rev Cancer 21 257-275 (2021)
  65. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Oberdoerffer P, Miller KM. Semin Cell Dev Biol 135 59-72 (2023)
  66. Histone variants and lipid metabolism. Borghesan M, Mazzoccoli G, Sheedfar F, Oben J, Pazienza V, Vinciguerra M. Biochem Soc Trans 42 1409-1413 (2014)
  67. Histone variants and melanoma: facts and hypotheses. Konstantinov NK, Ulff-Møller CJ, Dimitrov S. Pigment Cell Melanoma Res 29 426-433 (2016)
  68. The Role of MacroH2A Histone Variants in Cancer. Hsu CJ, Meers O, Buschbeck M, Heidel FH. Cancers (Basel) 13 3003 (2021)
  69. Functional roles of ADP-ribosylation writers, readers and erasers. Li P, Lei Y, Qi J, Liu W, Yao K. Front Cell Dev Biol 10 941356 (2022)
  70. Histone variants in skeletal myogenesis. Karthik N, Taneja R. Epigenetics 16 243-262 (2021)
  71. ADP-ribosylhydrolases: from DNA damage repair to COVID-19. Yu L, Liu X, Yu X. J Zhejiang Univ Sci B 22 21-30 (2021)
  72. The Role of Histone Variants in the Epithelial-To-Mesenchymal Transition. Lone IN, Sengez B, Hamiche A, Dimitrov S, Alotaibi H. Cells 9 E2499 (2020)
  73. The macrodomain family: Rethinking an ancient domain from evolutionary perspectives. Li X, Wu Z, Han W. Chin Sci Bull 58 953-960 (2013)

Articles citing this publication (130)

  1. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ. J Neurosci 34 11929-11947 (2014)
  2. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Ahel D, Horejsí Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I, Flynn H, Skehel M, West SC, Jackson SP, Owen-Hughes T, Boulton SJ. Science 325 1240-1243 (2009)
  3. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B, Colombelli J, Altmeyer M, Stelzer EH, Scheffzek K, Hottiger MO, Ladurner AG. Nat Struct Mol Biol 16 923-929 (2009)
  4. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I. Nature 477 616-620 (2011)
  5. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A. Science 352 986-990 (2016)
  6. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG. Nat Struct Mol Biol 20 508-514 (2013)
  7. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, Ozkan E, Golia B, Schellenberg MJ, Weston R, Williams JG, Rossi MN, Galehdari H, Krahn J, Wan A, Trembath RC, Crosby AH, Ahel D, Hay R, Ladurner AG, Timinszky G, Williams RS, Ahel I. EMBO J 32 1225-1237 (2013)
  8. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. Egloff MP, Malet H, Putics A, Heinonen M, Dutartre H, Frangeul A, Gruez A, Campanacci V, Cambillau C, Ziebuhr J, Ahola T, Canard B. J Virol 80 8493-8502 (2006)
  9. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG. Nat Struct Mol Biol 14 897-903 (2007)
  10. The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. Malet H, Coutard B, Jamal S, Dutartre H, Papageorgiou N, Neuvonen M, Ahola T, Forrester N, Gould EA, Lafitte D, Ferron F, Lescar J, Gorbalenya AE, de Lamballerie X, Canard B. J Virol 83 6534-6545 (2009)
  11. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. Neuvonen M, Ahola T. J Mol Biol 385 212-225 (2009)
  12. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Buschbeck M, Uribesalgo I, Wibowo I, Rué P, Martin D, Gutierrez A, Morey L, Guigó R, López-Schier H, Di Croce L. Nat Struct Mol Biol 16 1074-1079 (2009)
  13. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, Robin P, Mietton F, Harel-Bellan A, Dimitrov S, Hamiche A. Genes Dev 20 3324-3336 (2006)
  14. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Sporn JC, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T, Schnabel P, Ladurner AG. Oncogene 28 3423-3428 (2009)
  15. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL. Genes Dev 24 21-32 (2010)
  16. The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. Tan J, Vonrhein C, Smart OS, Bricogne G, Bollati M, Kusov Y, Hansen G, Mesters JR, Schmidt CL, Hilgenfeld R. PLoS Pathog 5 e1000428 (2009)
  17. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Chen H, Ruiz PD, McKimpson WM, Novikov L, Kitsis RN, Gamble MJ. Mol Cell 59 719-731 (2015)
  18. QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Novikov L, Park JW, Chen H, Klerman H, Jalloh AS, Gamble MJ. Mol Cell Biol 31 4244-4255 (2011)
  19. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases. Chen D, Vollmar M, Rossi MN, Phillips C, Kraehenbuehl R, Slade D, Mehrotra PV, von Delft F, Crosthwaite SK, Gileadi O, Denu JM, Ahel I. J Biol Chem 286 13261-13271 (2011)
  20. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S. Mol Cell Biol 26 1156-1164 (2006)
  21. Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Dardenne E, Pierredon S, Driouch K, Gratadou L, Lacroix-Triki M, Espinoza MP, Zonta E, Germann S, Mortada H, Villemin JP, Dutertre M, Lidereau R, Vagner S, Auboeuf D. Nat Struct Mol Biol 19 1139-1146 (2012)
  22. Structural and functional insights into alphavirus polyprotein processing and pathogenesis. Shin G, Yost SA, Miller MT, Elrod EJ, Grakoui A, Marcotrigiano J. Proc Natl Acad Sci U S A 109 16534-16539 (2012)
  23. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells. Frizzell KM, Gamble MJ, Berrocal JG, Zhang T, Krishnakumar R, Cen Y, Sauve AA, Kraus WL. J Biol Chem 284 33926-33938 (2009)
  24. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Hoff KG, Avalos JL, Sens K, Wolberger C. Structure 14 1231-1240 (2006)
  25. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities. Barkauskaite E, Brassington A, Tan ES, Warwicker J, Dunstan MS, Banos B, Lafite P, Ahel M, Mitchison TJ, Ahel I, Leys D. Nat Commun 4 2164 (2013)
  26. Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. Doyen CM, Montel F, Gautier T, Menoni H, Claudet C, Delacour-Larose M, Angelov D, Hamiche A, Bednar J, Faivre-Moskalenko C, Bouvet P, Dimitrov S. EMBO J 25 4234-4244 (2006)
  27. Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Forst AH, Karlberg T, Herzog N, Thorsell AG, Gross A, Feijs KL, Verheugd P, Kursula P, Nijmeijer B, Kremmer E, Kleine H, Ladurner AG, Schüler H, Lüscher B. Structure 21 462-475 (2013)
  28. Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. Dani N, Stilla A, Marchegiani A, Tamburro A, Till S, Ladurner AG, Corda D, Di Girolamo M. Proc Natl Acad Sci U S A 106 4243-4248 (2009)
  29. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases. Ono T, Kasamatsu A, Oka S, Moss J. Proc Natl Acad Sci U S A 103 16687-16691 (2006)
  30. MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated H2B acetylation. Chen H, Ruiz PD, Novikov L, Casill AD, Park JW, Gamble MJ. Nat Struct Mol Biol 21 981-989 (2014)
  31. The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Park E, Griffin DE. Virology 388 305-314 (2009)
  32. The diversity of histone versus nonhistone sirtuin substrates. Martínez-Redondo P, Vaquero A. Genes Cancer 4 148-163 (2013)
  33. H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Bönisch C, Schneider K, Pünzeler S, Wiedemann SM, Bielmeier C, Bocola M, Eberl HC, Kuegel W, Neumann J, Kremmer E, Leonhardt H, Mann M, Michaelis J, Schermelleh L, Hake SB. Nucleic Acids Res 40 5951-5964 (2012)
  34. Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Hu Y, Chopra V, Chopra R, Locascio JJ, Liao Z, Ding H, Zheng B, Matson WR, Ferrante RJ, Rosas HD, Hersch SM, Scherzer CR. Proc Natl Acad Sci U S A 108 17141-17146 (2011)
  35. Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine. Smith BC, Denu JM. Biochemistry 45 272-282 (2006)
  36. Loss of ATRX Suppresses Resolution of Telomere Cohesion to Control Recombination in ALT Cancer Cells. Ramamoorthy M, Smith S. Cancer Cell 28 357-369 (2015)
  37. Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties. Peterson FC, Chen D, Lytle BL, Rossi MN, Ahel I, Denu JM, Volkman BF. J Biol Chem 286 35955-35965 (2011)
  38. Differential regulation and predictive potential of MacroH2A1 isoforms in colon cancer. Sporn JC, Jung B. Am J Pathol 180 2516-2526 (2012)
  39. Replication Stress Shapes a Protective Chromatin Environment across Fragile Genomic Regions. Kim J, Sturgill D, Sebastian R, Khurana S, Tran AD, Edwards GB, Kruswick A, Burkett S, Hosogane EK, Hannon WW, Weyemi U, Bonner WM, Luger K, Oberdoerffer P. Mol Cell 69 36-47.e7 (2018)
  40. Mapping post-translational modifications of the histone variant MacroH2A1 using tandem mass spectrometry. Chu F, Nusinow DA, Chalkley RJ, Plath K, Panning B, Burlingame AL. Mol Cell Proteomics 5 194-203 (2006)
  41. DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression. Borghesan M, Fusilli C, Rappa F, Panebianco C, Rizzo G, Oben JA, Mazzoccoli G, Faulkes C, Pata I, Agodi A, Rezaee F, Minogue S, Warren A, Peterson A, Sedivy JM, Douet J, Buschbeck M, Cappello F, Mazza T, Pazienza V, Vinciguerra M. Cancer Res 76 594-606 (2016)
  42. Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins. Gibson BA, Conrad LB, Huang D, Kraus WL. Biochemistry 56 6305-6316 (2017)
  43. Mice without macroH2A histone variants. Pehrson JR, Changolkar LN, Costanzi C, Leu NA. Mol Cell Biol 34 4523-4533 (2014)
  44. Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma. Rappa F, Greco A, Podrini C, Cappello F, Foti M, Bourgoin L, Peyrou M, Marino A, Scibetta N, Williams R, Mazzoccoli G, Federici M, Pazienza V, Vinciguerra M. PLoS One 8 e54458 (2013)
  45. Histone variant macroH2A1 deletion in mice causes female-specific steatosis. Boulard M, Storck S, Cong R, Pinto R, Delage H, Bouvet P. Epigenetics Chromatin 3 8 (2010)
  46. Hydrolase regulates NAD+ metabolites and modulates cellular redox. Tong L, Lee S, Denu JM. J Biol Chem 284 11256-11266 (2009)
  47. Stress-induced PARP activation mediates recruitment of Drosophila Mi-2 to promote heat shock gene expression. Murawska M, Hassler M, Renkawitz-Pohl R, Ladurner A, Brehm A. PLoS Genet 7 e1002206 (2011)
  48. macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Changolkar LN, Pehrson JR. Mol Cell Biol 26 4410-4420 (2006)
  49. A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Bernstein E, Muratore-Schroeder TL, Diaz RL, Chow JC, Changolkar LN, Shabanowitz J, Heard E, Pehrson JR, Hunt DF, Allis CD. Proc Natl Acad Sci U S A 105 1533-1538 (2008)
  50. Macrodomain ADP-ribosylhydrolase and the pathogenesis of infectious diseases. Leung AKL, McPherson RL, Griffin DE. PLoS Pathog 14 e1006864 (2018)
  51. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Pazienza V, Borghesan M, Mazza T, Sheedfar F, Panebianco C, Williams R, Mazzoccoli G, Andriulli A, Nakanishi T, Vinciguerra M. Aging (Albany NY) 6 35-47 (2014)
  52. Macro Domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Is an Efficient ADP-ribose Binding Module: CRYSTAL STRUCTURE AND BIOCHEMICAL STUDIES. Cho CC, Lin MH, Chuang CY, Hsu CH. J Biol Chem 291 4894-4902 (2016)
  53. Method for the synthesis of mono-ADP-ribose conjugated peptides. Moyle PM, Muir TW. J Am Chem Soc 132 15878-15880 (2010)
  54. The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response. Zhang F, Shi J, Chen SH, Bian C, Yu X. Nucleic Acids Res 43 10782-10794 (2015)
  55. Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3. Kasamatsu A, Nakao M, Smith BC, Comstock LR, Ono T, Kato J, Denu JM, Moss J. J Biol Chem 286 21110-21117 (2011)
  56. MacroH2A histone variants limit chromatin plasticity through two distinct mechanisms. Kozlowski M, Corujo D, Hothorn M, Guberovic I, Mandemaker IK, Blessing C, Sporn J, Gutierrez-Triana A, Smith R, Portmann T, Treier M, Scheffzek K, Huet S, Timinszky G, Buschbeck M, Ladurner AG. EMBO Rep 19 e44445 (2018)
  57. MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD+ consumption. Posavec Marjanović M, Hurtado-Bagès S, Lassi M, Valero V, Malinverni R, Delage H, Navarro M, Corujo D, Guberovic I, Douet J, Gama-Perez P, Garcia-Roves PM, Ahel I, Ladurner AG, Yanes O, Bouvet P, Suelves M, Teperino R, Pospisilik JA, Buschbeck M. Nat Struct Mol Biol 24 902-910 (2017)
  58. Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins. Vivelo CA, Leung AK. Proteomics 15 203-217 (2015)
  59. macroH2A1-dependent silencing of endogenous murine leukemia viruses. Changolkar LN, Singh G, Pehrson JR. Mol Cell Biol 28 2059-2065 (2008)
  60. Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property. Piotrowski Y, Hansen G, Boomaars-van der Zanden AL, Snijder EJ, Gorbalenya AE, Hilgenfeld R. Protein Sci 18 6-16 (2009)
  61. MacroH2A in stem cells: a story beyond gene repression. Creppe C, Posavec M, Douet J, Buschbeck M. Epigenomics 4 221-227 (2012)
  62. The Histone Variant MacroH2A1.2 Is Necessary for the Activation of Muscle Enhancers and Recruitment of the Transcription Factor Pbx1. Dell'Orso S, Wang AH, Shih HY, Saso K, Berghella L, Gutierrez-Cruz G, Ladurner AG, O'Shea JJ, Sartorelli V, Zare H. Cell Rep 14 1156-1168 (2016)
  63. UNBS5162, a novel naphthalimide that decreases CXCL chemokine expression in experimental prostate cancers. Mijatovic T, Mahieu T, Bruyère C, De Nève N, Dewelle J, Simon G, Dehoux MJ, van der Aar E, Haibe-Kains B, Bontempi G, Decaestecker C, Van Quaquebeke E, Darro F, Kiss R. Neoplasia 10 573-586 (2008)
  64. In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. Aguilera-Gomez A, van Oorschot MM, Veenendaal T, Rabouille C. Elife 5 e21475 (2016)
  65. The landscape of human mutually exclusive splicing. Hatje K, Rahman RU, Vidal RO, Simm D, Hammesfahr B, Bansal V, Rajput A, Mickael ME, Sun T, Bonn S, Kollmar M. Mol Syst Biol 13 959 (2017)
  66. Analysis of DBC1 and its homologs suggests a potential mechanism for regulation of sirtuin domain deacetylases by NAD metabolites. Anantharaman V, Aravind L. Cell Cycle 7 1467-1472 (2008)
  67. Both ADP-Ribosyl-Binding and Hydrolase Activities of the Alphavirus nsP3 Macrodomain Affect Neurovirulence in Mice. Abraham R, McPherson RL, Dasovich M, Badiee M, Leung AKL, Griffin DE. mBio 11 e03253-19 (2020)
  68. The atypical histone macroH2A1.2 interacts with HER-2 protein in cancer cells. Li X, Kuang J, Shen Y, Majer MM, Nelson CC, Parsawar K, Heichman KA, Kuwada SK. J Biol Chem 287 23171-23183 (2012)
  69. Interaction of Sindbis virus non-structural protein 3 with poly(ADP-ribose) polymerase 1 in neuronal cells. Park E, Griffin DE. J Gen Virol 90 2073-2080 (2009)
  70. The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome. Chakravarthy S, Patel A, Bowman GD. Nucleic Acids Res 40 8285-8295 (2012)
  71. MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat-induced steatosis. Podrini C, Koffas A, Chokshi S, Vinciguerra M, Lelliott CJ, White JK, Adissu HA, Williams R, Greco A. FASEB J 29 1676-1687 (2015)
  72. Comment New functions for an ancient domain. Kraus WL. Nat Struct Mol Biol 16 904-907 (2009)
  73. The macroH2A1.2 histone variant links ATRX loss to alternative telomere lengthening. Kim J, Sun C, Tran AD, Chin PJ, Ruiz PD, Wang K, Gibbons RJ, Gamble MJ, Liu Y, Oberdoerffer P. Nat Struct Mol Biol 26 213-219 (2019)
  74. A decade after the first full human genome sequencing: when will we understand our own genome? Eisenhaber F. J Bioinform Comput Biol 10 1271001 (2012)
  75. Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing. Chou CC, Li YC, Gartenberg MR. Mol Cell 31 650-659 (2008)
  76. Molecular Insights into Poly(ADP-ribose) Recognition and Processing. Zaja R, Mikoč A, Barkauskaite E, Ahel I. Biomolecules 3 1-17 (2012)
  77. Poly(ADP-ribose)-dependent chromatin unfolding facilitates the association of DNA-binding proteins with DNA at sites of damage. Smith R, Lebeaupin T, Juhász S, Chapuis C, D'Augustin O, Dutertre S, Burkovics P, Biertümpfel C, Timinszky G, Huet S. Nucleic Acids Res 47 11250-11267 (2019)
  78. Epigenetics meets mathematics: towards a quantitative understanding of chromatin biology. Steffen PA, Fonseca JP, Ringrose L. Bioessays 34 901-913 (2012)
  79. Histone variant macroH2A1.2 is mono-ubiquitinated at its histone domain. Ogawa Y, Ono T, Wakata Y, Okawa K, Tagami H, Shibahara KI. Biochem Biophys Res Commun 336 204-209 (2005)
  80. MacroH2A1 Regulation of Poly(ADP-Ribose) Synthesis and Stability Prevents Necrosis and Promotes DNA Repair. Ruiz PD, Hamilton GA, Park JW, Gamble MJ. Mol Cell Biol 40 e00230-19 (2019)
  81. Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose. Lee S, Tong L, Denu JM. Anal Biochem 383 174-179 (2008)
  82. Chromosome-wide, allele-specific analysis of the histone code on the human X chromosome. Valley CM, Pertz LM, Balakumaran BS, Willard HF. Hum Mol Genet 15 2335-2347 (2006)
  83. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Pazienza V, Panebianco C, Rappa F, Memoli D, Borghesan M, Cannito S, Oji A, Mazza G, Tamburrino D, Fusai G, Barone R, Bolasco G, Villarroya F, Villarroya J, Hatsuzawa K, Cappello F, Tarallo R, Nakanishi T, Vinciguerra M. Epigenetics Chromatin 9 45 (2016)
  84. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases. Yang J, Zhao Y, Kalita M, Li X, Jamaluddin M, Tian B, Edeh CB, Wiktorowicz JE, Kudlicki A, Brasier AR. Mol Cell Proteomics 14 2701-2721 (2015)
  85. A method for generating highly multiplexed ChIP-seq libraries. Ford E, Nikopoulou C, Kokkalis A, Thanos D. BMC Res Notes 7 312 (2014)
  86. MacroH2A1.1 cooperates with EZH2 to promote adipogenesis by regulating Wnt signaling. Wan D, Liu C, Sun Y, Wang W, Huang K, Zheng L. J Mol Cell Biol 9 325-337 (2017)
  87. Epigenetic Regulation of DNA Repair Pathway Choice by MacroH2A1 Splice Variants Ensures Genome Stability. Sebastian R, Hosogane EK, Sun EG, Tran AD, Reinhold WC, Burkett S, Sturgill DM, Gudla PR, Pommier Y, Aladjem MI, Oberdoerffer P. Mol Cell 79 836-845.e7 (2020)
  88. ZFR coordinates crosstalk between RNA decay and transcription in innate immunity. Haque N, Ouda R, Chen C, Ozato K, Hogg JR. Nat Commun 9 1145 (2018)
  89. A molecular toolbox for ADP-ribosyl binding proteins. Sowa ST, Galera-Prat A, Wazir S, Alanen HI, Maksimainen MM, Lehtiö L. Cell Rep Methods 1 100121 (2021)
  90. Genetic ablation of macrohistone H2A1 leads to increased leanness, glucose tolerance and energy expenditure in mice fed a high-fat diet. Sheedfar F, Vermeer M, Pazienza V, Villarroya J, Rappa F, Cappello F, Mazzoccoli G, Villarroya F, van der Molen H, Hofker MH, Koonen DP, Vinciguerra M. Int J Obes (Lond) 39 331-338 (2015)
  91. MacroH2A1 Immunoexpression in Breast Cancer. Broggi G, Filetti V, Ieni A, Rapisarda V, Ledda C, Vitale E, Varricchio S, Russo D, Lombardo C, Tuccari G, Caltabiano R, Loreto C. Front Oncol 10 1519 (2020)
  92. Regulation of Breast Cancer-Induced Osteoclastogenesis by MacroH2A1.2 Involving EZH2-Mediated H3K27me3. Kim J, Shin Y, Lee S, Kim M, Punj V, Lu JF, Shin H, Kim K, Ulmer TS, Koh J, Jeong D, An W. Cell Rep 24 224-237 (2018)
  93. SirT7 auto-ADP-ribosylation regulates glucose starvation response through mH2A1. Simonet NG, Thackray JK, Vazquez BN, Ianni A, Espinosa-Alcantud M, Morales-Sanfrutos J, Hurtado-Bagès S, Sabidó E, Buschbeck M, Tischfield J, De La Torre C, Esteller M, Braun T, Olivella M, Serrano L, Vaquero A. Sci Adv 6 eaaz2590 (2020)
  94. Synthesis and biochemical evaluation of O-acetyl-ADP-ribose and N-acetyl analogs. Comstock LR, Denu JM. Org Biomol Chem 5 3087-3091 (2007)
  95. The histone variant MacroH2A1 regulates target gene expression in part by recruiting the transcriptional coregulator PELP1. Hussey KM, Chen H, Yang C, Park E, Hah N, Erdjument-Bromage H, Tempst P, Gamble MJ, Kraus WL. Mol Cell Biol 34 2437-2449 (2014)
  96. ATM, MacroH2A.1, and SASP: The Checks and Balances of Cellular Senescence. Kozlowski M, Ladurner AG. Mol Cell 59 713-715 (2015)
  97. Disruption of Macrodomain Protein SCO6735 Increases Antibiotic Production in Streptomyces coelicolor. Lalić J, Posavec Marjanović M, Palazzo L, Perina D, Sabljić I, Žaja R, Colby T, Pleše B, Halasz M, Jankevicius G, Bucca G, Ahel M, Matić I, Ćetković H, Luić M, Mikoč A, Ahel I. J Biol Chem 291 23175-23187 (2016)
  98. Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Hodge DQ, Cui J, Gamble MJ, Guo W. Sci Rep 8 841 (2018)
  99. Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation. Thurtle-Schmidt DM, Dodson AE, Rine J. Genetics 204 177-190 (2016)
  100. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. O'Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. Mol Syst Biol 17 e10079 (2021)
  101. MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20. Ruiz PD, Gamble MJ. Nat Commun 9 5143 (2018)
  102. Sirtuins as regulators of the yeast metabolic network. Ralser M, Michel S, Breitenbach M. Front Pharmacol 3 32 (2012)
  103. Chromatin affinity-precipitation using a small metabolic molecule: its application to analysis of O-acetyl-ADP-ribose. Tung SY, Hong JY, Walz T, Moazed D, Liou GG. Cell Mol Life Sci 69 641-650 (2012)
  104. PARG: a macrodomain in disguise. Hassler M, Jankevicius G, Ladurner AG. Structure 19 1351-1353 (2011)
  105. The MacroH2A1.1 - PARP1 Axis at the Intersection Between Stress Response and Metabolism. Hurtado-Bagès S, Guberovic I, Buschbeck M. Front Genet 9 417 (2018)
  106. The histone variant macroH2A1 is a splicing-modulated caretaker of genome integrity and tumor growth. Kim J, Oberdoerffer P, Khurana S. Mol Cell Oncol 5 e1441629 (2018)
  107. Biomimetic α-selective ribosylation enables two-step modular synthesis of biologically important ADP-ribosylated peptides. Zhu A, Li X, Bai L, Zhu G, Guo Y, Lin J, Cui Y, Tian G, Zhang L, Wang J, Li XD, Li L. Nat Commun 11 5600 (2020)
  108. Loss of histone variant macroH2A2 expression associates with progression of anal neoplasm. Hu WH, Miyai K, Sporn JC, Luo L, Wang JY, Cosman B, Ramamoorthy S. J Clin Pathol 69 627-631 (2016)
  109. MacroH2A suppresses the proliferation of the B16 melanoma cell line. Lei S, Long J, Li J. Mol Med Rep 10 1845-1850 (2014)
  110. The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro. Haile JD, Kennelly PJ. Arch Biochem Biophys 511 56-63 (2011)
  111. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro. Lin KY, Huang D, Kraus WL. Methods Mol Biol 1813 91-108 (2018)
  112. The diagnostic and prognostic value of H2AFY in hepatocellular carcinoma. Ma X, Ding Y, Zeng L. BMC Cancer 21 418 (2021)
  113. Beyond protein modification: the rise of non-canonical ADP-ribosylation. Schuller M, Ahel I. Biochem J 479 463-477 (2022)
  114. Phosphorylation within Intrinsic Disordered Region Discriminates Histone Variant macroH2A1 Splicing Isoforms-macroH2A1.1 and macroH2A1.2. Giallongo S, Lo Re O, Lochmanová G, Parca L, Petrizzelli F, Zdráhal Z, Mazza T, Vinciguerra M. Biology (Basel) 10 659 (2021)
  115. The histone variant macroH2A confers functional robustness to the intestinal stem cell compartment. Cedeno RJ, Nakauka-Ddamba A, Yousefi M, Sterling S, Leu NA, Li N, Pehrson JR, Lengner CJ. PLoS One 12 e0185196 (2017)
  116. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining. Singh JK, Smith R, Rother MB, de Groot AJL, Wiegant WW, Vreeken K, D'Augustin O, Kim RQ, Qian H, Krawczyk PM, González-Prieto R, Vertegaal ACO, Lamers M, Huet S, van Attikum H. Nat Commun 12 6560 (2021)
  117. Research Support, Non-U.S. Gov't PARP: a transferase by any other name. Till S, Diamantara K, Ladurner AG. Nat Struct Mol Biol 15 1243-1244 (2008)
  118. The Histone Variant MacroH2A1 Regulates Key Genes for Myogenic Cell Fusion in a Splice-Isoform Dependent Manner. Hurtado-Bagès S, Posavec Marjanovic M, Valero V, Malinverni R, Corujo D, Bouvet P, Lavigne AC, Bystricky K, Buschbeck M. Cells 9 E1109 (2020)
  119. Comment Expanding the functional repertoire of macrodomains. Gamble MJ. Nat Struct Mol Biol 20 407-408 (2013)
  120. Inhibition of osteosarcoma cell progression by MacroH2A via the downregulation of cyclin D and cyclin‑dependent kinase genes. Yang P, Yin K, Zhong D, Liao Q, Li K. Mol Med Rep 11 1905-1910 (2015)
  121. Unconventional metabolites in chromatin regulation. Gapa L, Alfardus H, Fischle W. Biosci Rep 42 BSR20211558 (2022)
  122. Zebrafish macroH2A variants have distinct embryo localization and function. Gonzalez-Munoz E, Arboleda-Estudillo Y, Chanumolu SK, Otu HH, Cibelli JB. Sci Rep 9 8632 (2019)
  123. Structural and Functional Characterization of Legionella pneumophila Effector MavL. Voth K, Pasricha S, Chung IYW, Wibawa RR, Zainudin ENHE, Hartland EL, Cygler M. Biomolecules 11 1802 (2021)
  124. Synthesis of alkylcarbonate analogs of O-acetyl-ADP-ribose. Dvorakova M, Nencka R, Dejmek M, Zbornikova E, Brezinova A, Pribylova M, Pohl R, Migaud ME, Vanek T. Org Biomol Chem 11 5702-5713 (2013)
  125. Synthesis of simple adenosine diphosphate ribose analogues. Chevallier OP, Migaud ME. Nucleosides Nucleotides Nucleic Acids 27 1127-1143 (2008)
  126. The histone variant macroH2A1.1 regulates RNA polymerase II-paused genes within defined chromatin interaction landscapes. Recoules L, Heurteau A, Raynal F, Karasu N, Moutahir F, Bejjani F, Jariel-Encontre I, Cuvier O, Sexton T, Lavigne AC, Bystricky K. J Cell Sci 135 jcs259456 (2022)
  127. PARP1 and CBP lose their footing in cancer. Timinszky G, Ladurner AG. Nat Struct Mol Biol 21 947-948 (2014)
  128. The histone H2A variant macroH2A1 does not localize to the centrosome. Friedman N, Barzily-Rokni M, Isaac S, Eden A. PLoS One 6 e17262 (2011)
  129. Combinatorial targeting of a specific EMT/MET network by macroH2A variants safeguards mesenchymal identity. Valakos D, Klagkou E, Kokkalis A, Polyzos A, Kyrilis FL, Banos A, Vatsellas G, Pliatska M, Ford E, Stravopodis DJ, Thanos D. PLoS One 18 e0288005 (2023)
  130. Evolution of a histone variant involved in compartmental regulation of NAD metabolism. Guberovic I, Hurtado-Bagès S, Rivera-Casas C, Knobloch G, Malinverni R, Valero V, Leger MM, García J, Basquin J, Gómez de Cedrón M, Frigolé-Vivas M, Cheema MS, Pérez A, Ausió J, Ramírez de Molina A, Salvatella X, Ruiz-Trillo I, Eirin-Lopez JM, Ladurner AG, Buschbeck M. Nat Struct Mol Biol 28 1009-1019 (2021)