2fxo Citations

Crystal structures of human cardiac beta-myosin II S2-Delta provide insight into the functional role of the S2 subfragment.

Proc Natl Acad Sci U S A 103 17713-7 (2006)
Related entries: 1nkn, 2fxm

Cited: 72 times
EuropePMC logo PMID: 17095604

Abstract

Myosin II is the major component of the muscle thick filament. It consists of two N-terminal S1 subfragments ("heads") connected to a long dimeric coiled-coil rod. The rod is in itself twofold symmetric, but in the filament, the two heads point away from the filament surface and are therefore not equivalent. This breaking of symmetry requires the initial section of the rod, subfragment 2 (S2), to be relatively flexible. S2 is an important functional element, involved in various mechanisms by which the activity of smooth and striated muscle is regulated. We have determined crystal structures of the 126 N-terminal residues of S2 from human cardiac beta-myosin II (S2-Delta), of both WT and the disease-associated E924K mutant. S2-Delta is a straight parallel dimeric coiled coil, but the N terminus of one chain is disordered in WT-S2-Delta due to crystal contacts, indicative of unstable local structure. Bulky noncanonical side chains pack into a/d positions of S2-Delta's N terminus, leading to defined local asymmetry and axial stagger, which could induce nonequivalence of the S1 subfragments. Additionally, S2 possesses a conserved charge distribution with three prominent rings of negative potential within S2-Delta, the first of which may provide a binding interface for the "blocked head" of smooth muscle myosin in the OFF state. The observation that many disease-associated mutations affect the second negatively charged ring further suggests that charge interactions play an important role in regulation of cardiac muscle activity through myosin-binding protein C.

Articles - 2fxo mentioned but not cited (10)

  1. Crystal structures of human cardiac beta-myosin II S2-Delta provide insight into the functional role of the S2 subfragment. Blankenfeldt W, Thomä NH, Wray JS, Gautel M, Schlichting I. Proc Natl Acad Sci U S A 103 17713-17717 (2006)
  2. Probing myosin structural conformation in vivo by second-harmonic generation microscopy. Nucciotti V, Stringari C, Sacconi L, Vanzi F, Fusi L, Linari M, Piazzesi G, Lombardi V, Pavone FS. Proc Natl Acad Sci U S A 107 7763-7768 (2010)
  3. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle. Kampourakis T, Sun YB, Irving M. Biophys J 108 304-314 (2015)
  4. Novel mutations in MYBPC1 are associated with myogenic tremor and mild myopathy. Stavusis J, Lace B, Schäfer J, Geist J, Inashkina I, Kidere D, Pajusalu S, Wright NT, Saak A, Weinhold M, Haubenberger D, Jackson S, Kontrogianni-Konstantopoulos A, Bönnemann CG. Ann Neurol 86 129-142 (2019)
  5. Sonification based de novo protein design using artificial intelligence, structure prediction, and analysis using molecular modeling. Yu CH, Buehler MJ. APL Bioeng 4 016108 (2020)
  6. The myosin II coiled-coil domain atomic structure in its native environment. Rahmani H, Ma W, Hu Z, Daneshparvar N, Taylor DW, McCammon JA, Irving TC, Edwards RJ, Taylor KA. Proc Natl Acad Sci U S A 118 e2024151118 (2021)
  7. Variants in MHY7 Gene Cause Arrhythmogenic Cardiomyopathy. Ferradini V, Parca L, Martino A, Lanzillo C, Silvetti E, Calò L, Caselli S, Novelli G, Helmer-Citterich M, Sangiuolo FC, Mango R. Genes (Basel) 12 793 (2021)
  8. Cooperativity of myosin II motors in the non-regulated and regulated thin filaments investigated with high-speed AFM. Matusovsky OS, Månsson A, Rassier DE. J Gen Physiol 155 e202213190 (2023)
  9. An Myh11 single lysine deletion causes aortic dissection by reducing aortic structural integrity and contractility. Negishi K, Aizawa K, Shindo T, Suzuki T, Sakurai T, Saito Y, Miyakawa T, Tanokura M, Kataoka Y, Maeda M, Tomida S, Morita H, Takeda N, Komuro I, Kario K, Nagai R, Imai Y. Sci Rep 12 8844 (2022)
  10. Approximating lattice similarity. Andrews LC, Bernstein HJ, Sauter NK. Acta Crystallogr A Found Adv 79 480-484 (2023)


Reviews citing this publication (13)

  1. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA. Biophys Rev 10 27-48 (2018)
  2. Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Spudich JA. Pflugers Arch 471 701-717 (2019)
  3. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom? Pfuhl M, Gautel M. J Muscle Res Cell Motil 33 83-94 (2012)
  4. Structural implications of β-cardiac myosin heavy chain mutations in human disease. Colegrave M, Peckham M. Anat Rec (Hoboken) 297 1670-1680 (2014)
  5. Common structural motifs for the regulation of divergent class II myosins. Lowey S, Trybus KM. J Biol Chem 285 16403-16407 (2010)
  6. Bioinformatics assessment of beta-myosin mutations reveals myosin's high sensitivity to mutations. Buvoli M, Hamady M, Leinwand LA, Knight R. Trends Cardiovasc Med 18 141-149 (2008)
  7. Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Alamo L, Pinto A, Sulbarán G, Mavárez J, Padrón R. Biophys Rev 10 1465-1477 (2018)
  8. Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Alamo L, Koubassova N, Pinto A, Gillilan R, Tsaturyan A, Padrón R. Biophys Rev 9 461-480 (2017)
  9. Phase transition-induced elasticity of α-helical bioelastomeric fibres and networks. Miserez A, Guerette PA. Chem Soc Rev 42 1973-1995 (2013)
  10. The nonideal coiled coil of M protein and its multifarious functions in pathogenesis. Ghosh P. Adv Exp Med Biol 715 197-211 (2011)
  11. Protein conformation and molecular order probed by second-harmonic-generation microscopy. Vanzi F, Sacconi L, Cicchi R, Pavone FS. J Biomed Opt 17 060901 (2012)
  12. The pulse of morphogenesis: actomyosin dynamics and regulation in epithelia. Miao H, Blankenship JT. Development 147 dev186502 (2020)
  13. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Kawana M, Spudich JA, Ruppel KM. Front Physiol 13 975076 (2022)

Articles citing this publication (49)

  1. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W, Gong H, Rogers CS, Gorham JM, Wong FL, Morck MM, Seidman JG, Ruppel KM, Irving TC, Cooke R, Green EM, Spudich JA. Proc Natl Acad Sci U S A 115 E8143-E8152 (2018)
  2. Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Jung HS, Komatsu S, Ikebe M, Craig R. Mol Biol Cell 19 3234-3242 (2008)
  3. Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain. Hinz A, Miguet N, Natrajan G, Usami Y, Yamanaka H, Renesto P, Hartlieb B, McCarthy AA, Simorre JP, Göttlinger H, Weissenhorn W. Cell Host Microbe 7 314-323 (2010)
  4. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nag S, Trivedi DV, Sarkar SS, Adhikari AS, Sunitha MS, Sutton S, Ruppel KM, Spudich JA. Nat Struct Mol Biol 24 525-533 (2017)
  5. Structure of an integrin alphaIIb beta3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Yang J, Ma YQ, Page RC, Misra S, Plow EF, Qin J. Proc Natl Acad Sci U S A 106 17729-17734 (2009)
  6. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. Alamo L, Wriggers W, Pinto A, Bártoli F, Salazar L, Zhao FQ, Craig R, Padrón R. J Mol Biol 384 780-797 (2008)
  7. Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence. McNamara C, Zinkernagel AS, Macheboeuf P, Cunningham MW, Nizet V, Ghosh P. Science 319 1405-1408 (2008)
  8. Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes. Alamo L, Ware JS, Pinto A, Gillilan RE, Seidman JG, Seidman CE, Padrón R. Elife 6 e24634 (2017)
  9. Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1. Ababou A, Rostkova E, Mistry S, Le Masurier C, Gautel M, Pfuhl M. J Mol Biol 384 615-630 (2008)
  10. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis. Alamo L, Qi D, Wriggers W, Pinto A, Zhu J, Bilbao A, Gillilan RE, Hu S, Padrón R. J Mol Biol 428 1142-1164 (2016)
  11. Small-angle X-ray scattering reveals the N-terminal domain organization of cardiac myosin binding protein C. Jeffries CM, Whitten AE, Harris SP, Trewhella J. J Mol Biol 377 1186-1199 (2008)
  12. Dissecting the N-terminal myosin binding site of human cardiac myosin-binding protein C. Structure and myosin binding of domain C2. Ababou A, Gautel M, Pfuhl M. J Biol Chem 282 9204-9215 (2007)
  13. Structural and biophysical analysis of BST-2/tetherin ectodomains reveals an evolutionary conserved design to inhibit virus release. Swiecki M, Scheaffer SM, Allaire M, Fremont DH, Colonna M, Brett TJ. J Biol Chem 286 2987-2997 (2011)
  14. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution. Hu Z, Taylor DW, Reedy MK, Edwards RJ, Taylor KA. Sci Adv 2 e1600058 (2016)
  15. Head-head interaction characterizes the relaxed state of Limulus muscle myosin filaments. Zhao FQ, Craig R, Woodhead JL. J Mol Biol 385 423-431 (2009)
  16. The elastic properties of the structurally characterized myosin II S2 subdomain: a molecular dynamics and normal mode analysis. Adamovic I, Mijailovich SM, Karplus M. Biophys J 94 3779-3789 (2008)
  17. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. Cell 184 2135-2150.e13 (2021)
  18. Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications. Woodhead JL, Zhao FQ, Craig R. Proc Natl Acad Sci U S A 110 8561-8566 (2013)
  19. Novel Adult-Onset Systolic Cardiomyopathy Due to MYH7 E848G Mutation in Patient-Derived Induced Pluripotent Stem Cells. Yang KC, Breitbart A, De Lange WJ, Hofsteen P, Futakuchi-Tsuchida A, Xu J, Schopf C, Razumova MV, Jiao A, Boucek R, Pabon L, Reinecke H, Kim DH, Ralphe JC, Regnier M, Murry CE. JACC Basic Transl Sci 3 728-740 (2018)
  20. Cryo-EM structure of the inhibited (10S) form of myosin II. Yang S, Tiwari P, Lee KH, Sato O, Ikebe M, Padrón R, Craig R. Nature 588 521-525 (2020)
  21. The contribution of cardiac myosin binding protein-c Ser282 phosphorylation to the rate of force generation and in vivo cardiac contractility. Gresham KS, Mamidi R, Stelzer JE. J Physiol 592 3747-3765 (2014)
  22. The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion. Pinto A, Sánchez F, Alamo L, Padrón R. J Struct Biol 180 469-478 (2012)
  23. An undecided coiled coil: the leucine zipper of Nek2 kinase exhibits atypical conformational exchange dynamics. Croasdale R, Ivins FJ, Muskett F, Daviter T, Scott DJ, Hardy T, Smerdon SJ, Fry AM, Pfuhl M. J Biol Chem 286 27537-27547 (2011)
  24. Aberrant post-translational modifications compromise human myosin motor function in old age. Li M, Ogilvie H, Ochala J, Artemenko K, Iwamoto H, Yagi N, Bergquist J, Larsson L. Aging Cell 14 228-235 (2015)
  25. Crystal structure of the C1 domain of cardiac myosin binding protein-C: implications for hypertrophic cardiomyopathy. Govada L, Carpenter L, da Fonseca PC, Helliwell JR, Rizkallah P, Flashman E, Chayen NE, Redwood C, Squire JM, Squire JM. J Mol Biol 378 387-397 (2008)
  26. Structure of the shutdown state of myosin-2. Scarff CA, Carrington G, Casas-Mao D, Chalovich JM, Knight PJ, Ranson NA, Peckham M. Nature 588 515-520 (2020)
  27. E258K HCM-causing mutation in cardiac MyBP-C reduces contractile force and accelerates twitch kinetics by disrupting the cMyBP-C and myosin S2 interaction. De Lange WJ, Grimes AC, Hegge LF, Spring AM, Brost TM, Ralphe JC. J Gen Physiol 142 241-255 (2013)
  28. Early events in helix unfolding under external forces: a milestoning analysis. Kreuzer SM, Elber R, Moon TJ. J Phys Chem B 116 8662-8691 (2012)
  29. A composite approach towards a complete model of the myosin rod. Korkmaz EN, Taylor KC, Andreas MP, Ajay G, Heinze NT, Cui Q, Rayment I. Proteins 84 172-189 (2016)
  30. Coiled-coil response to mechanical force: global stability and local cracking. Kreuzer SM, Elber R. Biophys J 105 951-961 (2013)
  31. The mesa trail and the interacting heads motif of myosin II. Woodhead JL, Craig R. Arch Biochem Biophys 680 108228 (2020)
  32. An unstable head-rod junction may promote folding into the compact off-state conformation of regulated myosins. Brown JH, Yang Y, Reshetnikova L, Gourinath S, Süveges D, Kardos J, Hóbor F, Reutzel R, Nyitray L, Cohen C. J Mol Biol 375 1434-1443 (2008)
  33. Coupling between myosin head conformation and the thick filament backbone structure. Hu Z, Taylor DW, Edwards RJ, Taylor KA. J Struct Biol 200 334-342 (2017)
  34. The HCM-causing Y235S cMyBPC mutation accelerates contractile function by altering C1 domain structure. Doh CY, Li J, Mamidi R, Stelzer JE. Biochim Biophys Acta Mol Basis Dis 1865 661-677 (2019)
  35. Family-specific Kinesin Structures Reveal Neck-linker Length Based on Initiation of the Coiled-coil. Phillips RK, Peter LG, Gilbert SP, Rayment I. J Biol Chem 291 20372-20386 (2016)
  36. Deriving how far structural information is transmitted through parallel homodimeric coiled-coils: a correlation analysis of helical staggers. Brown JH. Proteins 81 635-643 (2013)
  37. Evidence for S2 flexibility by direct visualization of quantum dot-labeled myosin heads and rods within smooth muscle myosin filaments moving on actin in vitro. Brizendine RK, Anuganti M, Cremo CR. J Gen Physiol 153 e202012751 (2021)
  38. Impact of regulatory light chain mutation K104E on the ATPase and motor properties of cardiac myosin. Rasicci DV, Kirkland O, Moonschi FH, Wood NB, Szczesna-Cordary D, Previs MJ, Wenk JF, Campbell KS, Yengo CM. J Gen Physiol 153 e202012811 (2021)
  39. Auto-inhibitory effects of an IQ motif on protein structure and function. Petzhold D, Lossie J, Behlke J, Keller S, Haase H, Morano I. Biochem Biophys Res Commun 396 939-943 (2010)
  40. Mutations in Drosophila myosin rod cause defects in myofibril assembly. Salvi SS, Kumar RP, Ramachandra NB, Sparrow JC, Nongthomba U. J Mol Biol 419 22-40 (2012)
  41. Myosin II sequences for Lethocerus indicus. Fee L, Lin W, Qiu F, Edwards RJ. J Muscle Res Cell Motil 38 193-200 (2017)
  42. Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts. Landim-Vieira M, Childers MC, Wacker AL, Garcia MR, He H, Singh R, Brundage EA, Johnston JR, Whitson BA, Chase PB, Janssen PML, Regnier M, Biesiadecki BJ, Pinto JR, Parvatiyar MS. Elife 11 e74919 (2022)
  43. Variants of the myosin interacting-heads motif. Padrón R, Dutta D, Craig R. J Gen Physiol 155 e202213249 (2023)
  44. Combined molecular/continuum modeling reveals the role of friction during fast unfolding of coiled-coil proteins. Torres-Sánchez A, Vanegas JM, Purohit PK, Arroyo M. Soft Matter 15 4961-4975 (2019)
  45. Structure of the Flight Muscle Thick Filament from the Bumble Bee, Bombus ignitus, at 6 Å Resolution. Li J, Rahmani H, Abbasi Yeganeh F, Rastegarpouyani H, Taylor DW, Wood NB, Previs MJ, Iwamoto H, Taylor KA. Int J Mol Sci 24 377 (2022)
  46. Cryo-EM structure of the folded-back state of human β-cardiac myosin. Grinzato A, Auguin D, Kikuti C, Nandwani N, Moussaoui D, Pathak D, Kandiah E, Ruppel KM, Spudich JA, Houdusse A, Robert-Paganin J. Nat Commun 14 3166 (2023)
  47. Cryo-EM structure of the human cardiac myosin filament. Dutta D, Nguyen V, Campbell KS, Padrón R, Craig R. Nature (2023)
  48. Double-headed binding of myosin II to F-actin shows the effect of strain on head structure. Hojjatian A, Taylor DW, Daneshparvar N, Fagnant PM, Trybus KM, Taylor KA. J Struct Biol 215 107995 (2023)
  49. Using Multiscale Simulations as a Tool to Interpret Equatorial X-ray Fiber Diffraction Patterns from Skeletal Muscle. Prodanovic M, Wang Y, Mijailovich SM, Irving T. Int J Mol Sci 24 8474 (2023)


Related citations provided by authors (2)