2gk6 Citations

Structural and functional insights into the human Upf1 helicase core.

EMBO J 26 253-64 (2007)
Related entries: 2gjk, 2gk7

Cited: 109 times
EuropePMC logo PMID: 17159905

Abstract

Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway that recognizes and degrades aberrant mRNAs containing premature stop codons. A critical protein in NMD is Upf1p, which belongs to the helicase super family 1 (SF1), and is thought to utilize the energy of ATP hydrolysis to promote transitions in the structure of RNA or RNA-protein complexes. The crystal structure of the catalytic core of human Upf1p determined in three states (phosphate-, AMPPNP- and ADP-bound forms) reveals an overall structure containing two RecA-like domains with two additional domains protruding from the N-terminal RecA-like domain. Structural comparison combined with mutational analysis identifies a likely single-stranded RNA (ssRNA)-binding channel, and a cycle of conformational change coupled to ATP binding and hydrolysis. These conformational changes alter the likely ssRNA-binding channel in a manner that can explain how ATP binding destabilizes ssRNA binding to Upf1p.

Articles - 2gk6 mentioned but not cited (8)

  1. Structural and functional insights into the human Upf1 helicase core. Cheng Z, Muhlrad D, Lim MK, Parker R, Song H. EMBO J 26 253-264 (2007)
  2. Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. Clerici M, Mourão A, Gutsche I, Gehring NH, Hentze MW, Kulozik A, Kadlec J, Sattler M, Cusack S. EMBO J 28 2293-2306 (2009)
  3. Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Ronchi D, Di Fonzo A, Lin W, Bordoni A, Liu C, Fassone E, Pagliarani S, Rizzuti M, Zheng L, Filosto M, Ferrò MT, Ranieri M, Magri F, Peverelli L, Li H, Yuan YC, Corti S, Sciacco M, Moggio M, Bresolin N, Shen B, Comi GP. Am J Hum Genet 92 293-300 (2013)
  4. A Selective Small Molecule DNA2 Inhibitor for Sensitization of Human Cancer Cells to Chemotherapy. Liu W, Zhou M, Li Z, Li H, Polaczek P, Dai H, Wu Q, Liu C, Karanja KK, Popuri V, Shan SO, Schlacher K, Zheng L, Campbell JL, Shen B. EBioMedicine 6 73-86 (2016)
  5. Predicting small ligand binding sites in proteins using backbone structure. Bordner AJ. Bioinformatics 24 2865-2871 (2008)
  6. Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex. Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y, Maruthi K, Eng ET, Perry JK, Campbell EA, Shaw DE, Darst SA. Nat Struct Mol Biol 29 250-260 (2022)
  7. In-silico prediction of drug targets, biological activities, signal pathways and regulating networks of dioscin based on bioinformatics. Yin L, Zheng L, Xu L, Dong D, Han X, Qi Y, Zhao Y, Xu Y, Peng J. BMC Complement Altern Med 15 41 (2015)
  8. In Silico Analysis of the Structural and Biochemical Features of the NMD Factor UPF1 in Ustilago maydis. Martínez-Montiel N, Morales-Lara L, Hernández-Pérez JM, Martínez-Contreras RD. PLoS One 11 e0148191 (2016)


Reviews citing this publication (32)

  1. SF1 and SF2 helicases: family matters. Fairman-Williams ME, Guenther UP, Jankowsky E. Curr Opin Struct Biol 20 313-324 (2010)
  2. NMD: a multifaceted response to premature translational termination. Kervestin S, Jacobson A. Nat Rev Mol Cell Biol 13 700-712 (2012)
  3. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Snijder EJ, Decroly E, Ziebuhr J. Adv Virus Res 96 59-126 (2016)
  4. Translocation and unwinding mechanisms of RNA and DNA helicases. Pyle AM. Annu Rev Biophys 37 317-336 (2008)
  5. RNA helicases at work: binding and rearranging. Jankowsky E. Trends Biochem Sci 36 19-29 (2011)
  6. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O. Cell Mol Life Sci 67 677-700 (2010)
  7. Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. Schweingruber C, Rufener SC, Zünd D, Yamashita A, Mühlemann O. Biochim Biophys Acta 1829 612-623 (2013)
  8. Execution of nonsense-mediated mRNA decay: what defines a substrate? Rebbapragada I, Lykke-Andersen J. Curr Opin Cell Biol 21 394-402 (2009)
  9. RNA helicases--one fold for many functions. Jankowsky E, Fairman ME. Curr Opin Struct Biol 17 316-324 (2007)
  10. Staufen-mediated mRNA decay. Park E, Maquat LE. Wiley Interdiscip Rev RNA 4 423-435 (2013)
  11. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. Karousis ED, Nasif S, Mühlemann O. Wiley Interdiscip Rev RNA 7 661-682 (2016)
  12. The meaning of nonsense. Stalder L, Mühlemann O. Trends Cell Biol 18 315-321 (2008)
  13. Nonsense-mediated RNA decay regulation by cellular stress: implications for tumorigenesis. Gardner LB. Mol Cancer Res 8 295-308 (2010)
  14. Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Karousis ED, Mühlemann O. Cold Spring Harb Perspect Biol 11 a032862 (2019)
  15. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Fatscher T, Boehm V, Gehring NH. Cell Mol Life Sci 72 4523-4544 (2015)
  16. The conformational plasticity of eukaryotic RNA-dependent ATPases. Ozgur S, Buchwald G, Falk S, Chakrabarti S, Prabu JR, Conti E. FEBS J 282 850-863 (2015)
  17. What we know but do not understand about nidovirus helicases. Lehmann KC, Snijder EJ, Posthuma CC, Gorbalenya AE. Virus Res 202 12-32 (2015)
  18. Nonsense-mediated mRNA decay: The challenge of telling right from wrong in a complex transcriptome. Kishor A, Fritz SE, Hogg JR. Wiley Interdiscip Rev RNA 10 e1548 (2019)
  19. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. Siwaszek A, Ukleja M, Dziembowski A. RNA Biol 11 1122-1136 (2014)
  20. NMD: At the crossroads between translation termination and ribosome recycling. Celik A, Kervestin S, Jacobson A. Biochimie 114 2-9 (2015)
  21. Gene expression networks: competing mRNA decay pathways in mammalian cells. Maquat LE, Gong C. Biochem Soc Trans 37 1287-1292 (2009)
  22. Structural basis for regulation of RNA-binding proteins by phosphorylation. Thapar R. ACS Chem Biol 10 652-666 (2015)
  23. Replication of the coronavirus genome: A paradox among positive-strand RNA viruses. Grellet E, L'Hôte I, Goulet A, Imbert I. J Biol Chem 298 101923 (2022)
  24. Upf proteins: highly conserved factors involved in nonsense mRNA mediated decay. Gupta P, Li YR. Mol Biol Rep 45 39-55 (2018)
  25. UPF1-Mediated RNA Decay-Danse Macabre in a Cloud. Lavysh D, Neu-Yilik G. Biomolecules 10 E999 (2020)
  26. Packing them up and dusting them off: RNA helicases and mRNA storage. Hooper C, Hilliker A. Biochim Biophys Acta 1829 824-834 (2013)
  27. Structural aspects of RNA helicases in eukaryotic mRNA decay. Ling SH, Cheng Z, Song H. Biosci Rep 29 339-349 (2009)
  28. Structural insights into nonsense-mediated mRNA decay (NMD) by electron microscopy. Llorca O. Curr Opin Struct Biol 23 161-167 (2013)
  29. UPF1-From mRNA Degradation to Human Disorders. Staszewski J, Lazarewicz N, Konczak J, Migdal I, Maciaszczyk-Dziubinska E. Cells 12 419 (2023)
  30. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. He F, Jacobson A. FEBS J (2022)
  31. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Mailliot J, Vivoli-Vega M, Schaffitzel C. Biochem J 479 973-993 (2022)
  32. Nonsense-Mediated mRNA Decay Factor Functions in Human Health and Disease. Sun L, Mailliot J, Schaffitzel C. Biomedicines 11 722 (2023)

Articles citing this publication (69)

  1. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Chamieh H, Ballut L, Bonneau F, Le Hir H. Nat Struct Mol Biol 15 85-93 (2008)
  2. Posttranscriptional gene regulation by spatial rearrangement of the 3' untranslated region. Eberle AB, Stalder L, Mathys H, Orozco RZ, Mühlemann O. PLoS Biol 6 e92 (2008)
  3. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, Le Hir H, Conti E. Mol Cell 41 693-703 (2011)
  4. Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense- mediated mRNA decay. Franks TM, Singh G, Lykke-Andersen J. Cell 143 938-950 (2010)
  5. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Guu TS, Liu Z, Ye Q, Mata DA, Li K, Yin C, Zhang J, Tao YJ. Proc Natl Acad Sci U S A 106 12992-12997 (2009)
  6. SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Gong C, Kim YK, Woeller CF, Tang Y, Maquat LE. Genes Dev 23 54-66 (2009)
  7. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Loh B, Jonas S, Izaurralde E. Genes Dev 27 2125-2138 (2013)
  8. Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3' UTRs. Zünd D, Gruber AR, Zavolan M, Mühlemann O. Nat Struct Mol Biol 20 936-943 (2013)
  9. A post-translational regulatory switch on UPF1 controls targeted mRNA degradation. Kurosaki T, Li W, Hoque M, Popp MW, Ermolenko DN, Tian B, Maquat LE. Genes Dev 28 1900-1916 (2014)
  10. The host nonsense-mediated mRNA decay pathway restricts Mammalian RNA virus replication. Balistreri G, Horvath P, Schweingruber C, Zünd D, McInerney G, Merits A, Mühlemann O, Azzalin C, Helenius A. Cell Host Microbe 16 403-411 (2014)
  11. Mechanistic basis of 5'-3' translocation in SF1B helicases. Saikrishnan K, Powell B, Cook NJ, Webb MR, Wigley DB. Cell 137 849-859 (2009)
  12. UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Hwang J, Sato H, Tang Y, Matsuda D, Maquat LE. Mol Cell 39 396-409 (2010)
  13. Amelioration of toxicity in neuronal models of amyotrophic lateral sclerosis by hUPF1. Barmada SJ, Ju S, Arjun A, Batarse A, Archbold HC, Peisach D, Li X, Zhang Y, Tank EM, Qiu H, Huang EJ, Ringe D, Petsko GA, Finkbeiner S. Proc Natl Acad Sci U S A 112 7821-7826 (2015)
  14. Attenuation of nonsense-mediated mRNA decay enhances in vivo nonsense suppression. Keeling KM, Wang D, Dai Y, Murugesan S, Chenna B, Clark J, Belakhov V, Kandasamy J, Velu SE, Baasov T, Bedwell DM. PLoS One 8 e60478 (2013)
  15. Target Discrimination in Nonsense-Mediated mRNA Decay Requires Upf1 ATPase Activity. Lee SR, Pratt GA, Martinez FJ, Yeo GW, Lykke-Andersen J. Mol Cell 59 413-425 (2015)
  16. Crystal structure of Middle East respiratory syndrome coronavirus helicase. Hao W, Wojdyla JA, Zhao R, Han R, Das R, Zlatev I, Manoharan M, Wang M, Cui S. PLoS Pathog 13 e1006474 (2017)
  17. Unexpected roles for UPF1 in HIV-1 RNA metabolism and translation. Ajamian L, Abrahamyan L, Milev M, Ivanov PV, Kulozik AE, Gehring NH, Mouland AJ. RNA 14 914-927 (2008)
  18. Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6. Chakrabarti S, Bonneau F, Schüssler S, Eppinger E, Conti E. Nucleic Acids Res 42 9447-9460 (2014)
  19. DNA binding to RecD: role of the 1B domain in SF1B helicase activity. Saikrishnan K, Griffiths SP, Cook N, Court R, Wigley DB. EMBO J 27 2222-2229 (2008)
  20. IGHMBP2 is a ribosome-associated helicase inactive in the neuromuscular disorder distal SMA type 1 (DSMA1). Guenther UP, Handoko L, Laggerbauer B, Jablonka S, Chari A, Alzheimer M, Ohmer J, Plöttner O, Gehring N, Sickmann A, von Au K, Schuelke M, Fischer U. Hum Mol Genet 18 1288-1300 (2009)
  21. Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity. Park E, Gleghorn ML, Maquat LE. Proc Natl Acad Sci U S A 110 405-412 (2013)
  22. An unusual arrangement of two 14-3-3-like domains in the SMG5-SMG7 heterodimer is required for efficient nonsense-mediated mRNA decay. Jonas S, Weichenrieder O, Izaurralde E. Genes Dev 27 211-225 (2013)
  23. Functional cross-talk between distant domains of chikungunya virus non-structural protein 2 is decisive for its RNA-modulating activity. Das PK, Merits A, Lulla A. J Biol Chem 289 5635-5653 (2014)
  24. The cryo-EM structure of the UPF-EJC complex shows UPF1 poised toward the RNA 3' end. Melero R, Buchwald G, Castaño R, Raabe M, Gil D, Lázaro M, Urlaub H, Conti E, Llorca O. Nat Struct Mol Biol 19 498-505, S1-2 (2012)
  25. A novel phosphorylation-independent interaction between SMG6 and UPF1 is essential for human NMD. Nicholson P, Josi C, Kurosawa H, Yamashita A, Mühlemann O. Nucleic Acids Res 42 9217-9235 (2014)
  26. Processing bodies are not required for mammalian nonsense-mediated mRNA decay. Stalder L, Mühlemann O. RNA 15 1265-1273 (2009)
  27. Tight intramolecular regulation of the human Upf1 helicase by its N- and C-terminal domains. Fiorini F, Boudvillain M, Le Hir H. Nucleic Acids Res 41 2404-2415 (2013)
  28. The RNA helicase DHX34 activates NMD by promoting a transition from the surveillance to the decay-inducing complex. Hug N, Cáceres JF. Cell Rep 8 1845-1856 (2014)
  29. RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon. Chimnaronk S, Suzuki T, Manita T, Ikeuchi Y, Yao M, Suzuki T, Tanaka I. EMBO J 28 1362-1373 (2009)
  30. Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase. Deng Z, Lehmann KC, Li X, Feng C, Wang G, Zhang Q, Qi X, Yu L, Zhang X, Feng W, Wu W, Gong P, Tao Y, Posthuma CC, Snijder EJ, Gorbalenya AE, Chen Z. Nucleic Acids Res 42 3464-3477 (2014)
  31. Crystal structure of the superfamily 1 helicase from Tomato mosaic virus. Nishikiori M, Sugiyama S, Xiang H, Niiyama M, Ishibashi K, Inoue T, Ishikawa M, Matsumura H, Katoh E. J Virol 86 7565-7576 (2012)
  32. The RNA-Binding ATPase, Armitage, Couples piRNA Amplification in Nuage to Phased piRNA Production on Mitochondria. Ge DT, Wang W, Tipping C, Gainetdinov I, Weng Z, Zamore PD. Mol Cell 74 982-995.e6 (2019)
  33. Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs. Dhote V, Sweeney TR, Kim N, Hellen CU, Pestova TV. Proc Natl Acad Sci U S A 109 E3150-9 (2012)
  34. The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription. Akay A, Di Domenico T, Suen KM, Nabih A, Parada GE, Larance M, Medhi R, Berkyurek AC, Zhang X, Wedeles CJ, Rudolph KLM, Engelhardt J, Hemberg M, Ma P, Lamond AI, Claycomb JM, Miska EA. Dev Cell 42 241-255.e6 (2017)
  35. Saccharomyces cerevisiae Sen1 Helicase Domain Exhibits 5'- to 3'-Helicase Activity with a Preference for Translocation on DNA Rather than RNA. Martin-Tumasz S, Brow DA. J Biol Chem 290 22880-22889 (2015)
  36. Structural insights into RNA recognition by the Chikungunya virus nsP2 helicase. Law YS, Utt A, Tan YB, Zheng J, Wang S, Chen MW, Griffin PR, Merits A, Luo D. Proc Natl Acad Sci U S A 116 9558-9567 (2019)
  37. The Ighmbp2 helicase structure reveals the molecular basis for disease-causing mutations in DMSA1. Lim SC, Bowler MW, Lai TF, Song H. Nucleic Acids Res 40 11009-11022 (2012)
  38. The RNA-binding protein Y14 inhibits mRNA decapping and modulates processing body formation. Chuang TW, Chang WL, Lee KM, Tarn WY. Mol Biol Cell 24 1-13 (2013)
  39. UPF1 is crucial for the infectivity of human immunodeficiency virus type 1 progeny virions. Serquiña AK, Das SR, Popova E, Ojelabi OA, Roy CK, Göttlinger HG. J Virol 87 8853-8861 (2013)
  40. Clinical variability in distal spinal muscular atrophy type 1 (DSMA1): determination of steady-state IGHMBP2 protein levels in five patients with infantile and juvenile disease. Guenther UP, Handoko L, Varon R, Stephani U, Tsao CY, Mendell JR, Lützkendorf S, Hübner C, von Au K, Jablonka S, Dittmar G, Heinemann U, Schuetz A, Schuelke M. J Mol Med (Berl) 87 31-41 (2009)
  41. Sen1 has unique structural features grafted on the architecture of the Upf1-like helicase family. Leonaitė B, Han Z, Basquin J, Bonneau F, Libri D, Porrua O, Conti E. EMBO J 36 1590-1604 (2017)
  42. UPF1-like helicase grip on nucleic acids dictates processivity. Kanaan J, Raj S, Decourty L, Saveanu C, Croquette V, Le Hir H. Nat Commun 9 3752 (2018)
  43. HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition. Fiorini F, Robin JP, Kanaan J, Borowiak M, Croquette V, Le Hir H, Jalinot P, Mocquet V. Nat Commun 9 431 (2018)
  44. The RNA surveillance proteins UPF1, UPF2 and SMG6 affect HIV-1 reactivation at a post-transcriptional level. Rao S, Amorim R, Niu M, Temzi A, Mouland AJ. Retrovirology 15 42 (2018)
  45. Insights into the assembly and architecture of a Staufen-mediated mRNA decay (SMD)-competent mRNP. Gowravaram M, Schwarz J, Khilji SK, Urlaub H, Chakrabarti S. Nat Commun 10 5054 (2019)
  46. Intra- and intermolecular regulatory interactions in Upf1, the RNA helicase central to nonsense-mediated mRNA decay in yeast. He F, Ganesan R, Jacobson A. Mol Cell Biol 33 4672-4684 (2013)
  47. A conserved structural element in the RNA helicase UPF1 regulates its catalytic activity in an isoform-specific manner. Gowravaram M, Bonneau F, Kanaan J, Maciej VD, Fiorini F, Raj S, Croquette V, Le Hir H, Chakrabarti S. Nucleic Acids Res 46 2648-2659 (2018)
  48. Mutagenesis of hepatitis E virus helicase motifs: effects on enzyme activity. Mhaindarkar V, Sharma K, Lole KS. Virus Res 179 26-33 (2014)
  49. Computational Prediction and Validation of BAHD1 as a Novel Molecule for Ulcerative Colitis. Zhu H, Wan X, Li J, Han L, Bo X, Chen W, Lu C, Shen Z, Xu C, Chen L, Yu C, Xu G. Sci Rep 5 12227 (2015)
  50. Directed hydroxyl radical probing reveals Upf1 binding to the 80S ribosomal E site rRNA at the L1 stalk. Schuller AP, Zinshteyn B, Enam SU, Green R. Nucleic Acids Res 46 2060-2073 (2018)
  51. The RNA-binding protein PTBP1 promotes ATPase-dependent dissociation of the RNA helicase UPF1 to protect transcripts from nonsense-mediated mRNA decay. Fritz SE, Ranganathan S, Wang CD, Hogg JR. J Biol Chem 295 11613-11625 (2020)
  52. Recent transcriptome-wide mapping of UPF1 binding sites reveals evidence for its recruitment to mRNA before translation. Zünd D, Mühlemann O. Translation (Austin) 1 e26977 (2013)
  53. A highly conserved region essential for NMD in the Upf2 N-terminal domain. Fourati Z, Roy B, Millan C, Coureux PD, Kervestin S, van Tilbeurgh H, He F, Usón I, Jacobson A, Graille M. J Mol Biol 426 3689-3702 (2014)
  54. Insights into the Effects of Cancer Associated Mutations at the UPF2 and ATP-Binding Sites of NMD Master Regulator: UPF1. Kalathiya U, Padariya M, Pawlicka K, Verma CS, Houston D, Hupp TR, Alfaro JA. Int J Mol Sci 20 E5644 (2019)
  55. An alternative UPF1 isoform drives conditional remodeling of nonsense-mediated mRNA decay. Fritz SE, Ranganathan S, Wang CD, Hogg JR. EMBO J 41 e108898 (2022)
  56. Identification of Amino Acids Essential for Viral Replication in the HCMV Helicase-Primase Complex. Ligat G, Da Re S, Alain S, Hantz S. Front Microbiol 9 2483 (2018)
  57. Inhibition of post-termination ribosome recycling at premature termination codons in UPF1 ATPase mutants. Serdar LD, Whiteside DL, Nock SL, McGrath D, Baker KE. Elife 9 e57834 (2020)
  58. IGHMBP2-related clinical and genetic features in a cohort of Chinese Charcot-Marie-Tooth disease type 2 patients. Liu L, Li X, Hu Z, Mao X, Zi X, Xia K, Tang B, Zhang R. Neuromuscul Disord 27 193-199 (2017)
  59. UPF1 learns to relax and unwind. Gleghorn ML, Maquat LE. Mol Cell 41 621-623 (2011)
  60. DNA substrate recognition and processing by the full-length human UPF1 helicase. Dehghani-Tafti S, Sanders CM. Nucleic Acids Res 45 7354-7366 (2017)
  61. Molecular mechanics of RNA translocases. Ding SC, Pyle AM. Methods Enzymol 511 131-147 (2012)
  62. UPF1 mutants with intact ATPase but deficient helicase activities promote efficient nonsense-mediated mRNA decay. Chapman JH, Craig JM, Wang CD, Gundlach JH, Neuman KC, Hogg JR. Nucleic Acids Res 50 11876-11894 (2022)
  63. Role of ATP in the RNA Translocation Mechanism of SARS-CoV-2 NSP13 Helicase. Weber R, McCullagh M. J Phys Chem B 125 8787-8796 (2021)
  64. Structural Characterization of the Helicase nsp10 Encoded by Porcine Reproductive and Respiratory Syndrome Virus. Shi Y, Tong X, Ye G, Xiu R, Li L, Sun L, Shi J, Li M, Song Y, Fan C, Shi K, Fu ZF, Xiao S, Peng G. J Virol 94 e02158-19 (2020)
  65. Binding studies between cytosinpeptidemycin and the superfamily 1 helicase protein of tobacco mosaic virus. Li X, Chen K, Gao D, Wang D, Huang M, Zhu H, Kang J. RSC Adv 8 18952-18958 (2018)
  66. Modulation of RNA-binding properties of the RNA helicase UPF1 by its activator UPF2. Xue G, Maciej VD, Machado de Amorim A, Pak M, Jayachandran U, Chakrabarti S. RNA 29 178-187 (2023)
  67. Molecular cloning and characterization of Mj-mov-10, a putative RNA helicase involved in RNAi of kuruma shrimp. Phetrungnapha A, Kondo H, Hirono I, Panyim S, Ongvarrasopone C. Fish Shellfish Immunol 44 241-247 (2015)
  68. Variations of IGHMBP2 gene was not the major cause of Han Chinese patients with non-5q-spinal muscular atrophies. Lin X, Zhang QJ, He J, Lin MT, Murong SX, Wang N, Chen WJ. J Child Neurol 29 NP35-9 (2014)
  69. Sen1 architecture: RNA-DNA hybrid resolution, autoregulation, and insights into SETX inactivation in AOA2. Appel CD, Bermek O, Dandey VP, Wood M, Viverette E, Williams JG, Bouvette J, Riccio AA, Krahn JM, Borgnia MJ, Williams RS. Mol Cell 83 3692-3706.e5 (2023)