2h51 Citations

An allosteric circuit in caspase-1.

J Mol Biol 381 1157-67 (2008)
Related entries: 2h4w, 2h4y, 2h54

Cited: 55 times
EuropePMC logo PMID: 18590738

Abstract

Structural studies of caspase-1 reveal that the dimeric thiol protease can exist in two states: in an on-state, when the active site is occupied, or in an off-state, when the active site is empty or when the enzyme is bound by a synthetic allosteric ligand at the dimer interface approximately 15 A from the active site. A network of 21 hydrogen bonds from nine side chains connecting the active and allosteric sites change partners when going between the on-state and the off-state. Alanine-scanning mutagenesis of these nine side chains shows that only two of them-Arg286 and Glu390, which form a salt bridge-have major effects, causing 100- to 200-fold reductions in catalytic efficiency (k(cat)/K(m)). Two neighbors, Ser332 and Ser339, have minor effects, causing 4- to 7-fold reductions. A more detailed mutational analysis reveals that the enzyme is especially sensitive to substitutions of the salt bridge: even a homologous R286K substitution causes a 150-fold reduction in k(cat)/K(m). X-ray crystal structures of these variants suggest the importance of both the salt bridge interaction and the coordination of solvent water molecules near the allosteric binding pocket. Thus, only a small subset of side chains from the larger hydrogen bonding network is critical for activity. These form a contiguous set of interactions that run from one active site through the allosteric site at the dimer interface and onto the second active site. This subset constitutes a functional allosteric circuit or "hot wire" that promotes site-to-site coupling.

Articles - 2h51 mentioned but not cited (3)

  1. An allosteric circuit in caspase-1. Datta D, Scheer JM, Romanowski MJ, Wells JA. J Mol Biol 381 1157-1167 (2008)
  2. Evolution-inspired redesign of the LPS receptor caspase-4 into an interleukin-1β converting enzyme. Devant P, Cao A, Kagan JC. Sci Immunol 6 eabh3567 (2021)
  3. A Novel Defined Pyroptosis-Related Gene Signature for Predicting Prognosis and Treatment of Glioma. Yang Z, Chen Z, Wang Y, Wang Z, Zhang D, Yue X, Zheng Y, Li L, Bian E, Zhao B. Front Oncol 12 717926 (2022)


Reviews citing this publication (13)

  1. Human caspases: activation, specificity, and regulation. Pop C, Salvesen GS. J Biol Chem 284 21777-21781 (2009)
  2. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Kenakin T, Miller LJ. Pharmacol Rev 62 265-304 (2010)
  3. The origin of allosteric functional modulation: multiple pre-existing pathways. del Sol A, Tsai CJ, Ma B, Nussinov R. Structure 17 1042-1050 (2009)
  4. Allostery and population shift in drug discovery. Kar G, Keskin O, Gursoy A, Nussinov R. Curr Opin Pharmacol 10 715-722 (2010)
  5. Protein functional landscapes, dynamics, allostery: a tortuous path towards a universal theoretical framework. Zhuravlev PI, Papoian GA. Q Rev Biophys 43 295-332 (2010)
  6. Allosteric regulation of proteases. Hauske P, Ottmann C, Meltzer M, Ehrmann M, Kaiser M. Chembiochem 9 2920-2928 (2008)
  7. Small Molecule Active Site Directed Tools for Studying Human Caspases. Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Chem Rev 115 12546-12629 (2015)
  8. Targeting Non-Catalytic Cysteine Residues Through Structure-Guided Drug Discovery. Hallenbeck KK, Turner DM, Renslo AR, Arkin MR. Curr Top Med Chem 17 4-15 (2017)
  9. Allosteric regulation of protease activity by small molecules. Shen A. Mol Biosyst 6 1431-1443 (2010)
  10. Biophysical and computational methods to analyze amino acid interaction networks in proteins. O'Rourke KF, Gorman SD, Boehr DD. Comput Struct Biotechnol J 14 245-251 (2016)
  11. Modulating caspase activity: beyond the active site. Murray J, Renslo AR. Curr Opin Struct Biol 23 812-819 (2013)
  12. Current knowledge on procaspase-1 variants with reduced or abrogated enzymatic activity in autoinflammatory disease. Luksch H, Winkler S, Heymann MC, Schulze F, Hofmann SR, Roesler J, Rösen-Wolff A. Curr Rheumatol Rep 17 45 (2015)
  13. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Obaha A, Novinec M. Int J Mol Sci 24 17120 (2023)

Articles citing this publication (39)

  1. Protein sectors: evolutionary units of three-dimensional structure. Halabi N, Rivoire O, Leibler S, Ranganathan R. Cell 138 774-786 (2009)
  2. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, Conn PJ, Lindsley CW. J Med Chem 55 1445-1464 (2012)
  3. A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Walters J, Pop C, Scott FL, Drag M, Swartz P, Mattos C, Salvesen GS, Clark AC. Biochem J 424 335-345 (2009)
  4. Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface. Kastritis PL, Rodrigues JP, Folkers GE, Boelens R, Bonvin AM. J Mol Biol 426 2632-2652 (2014)
  5. Two-state selection of conformation-specific antibodies. Gao J, Sidhu SS, Wells JA. Proc Natl Acad Sci U S A 106 3071-3076 (2009)
  6. Zinc-mediated allosteric inhibition of caspase-6. Velázquez-Delgado EM, Hardy JA. J Biol Chem 287 36000-36011 (2012)
  7. Mapping allosteric communications within individual proteins. Wang J, Jain A, McDonald LR, Gambogi C, Lee AL, Dokholyan NV. Nat Commun 11 3862 (2020)
  8. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Shen A, Lupardus PJ, Gersch MM, Puri AW, Albrow VE, Garcia KC, Bogyo M. Nat Struct Mol Biol 18 364-371 (2011)
  9. Structural snapshots reveal distinct mechanisms of procaspase-3 and -7 activation. Thomsen ND, Koerber JT, Wells JA. Proc Natl Acad Sci U S A 110 8477-8482 (2013)
  10. The crystal structure of caspase-6, a selective effector of axonal degeneration. Baumgartner R, Meder G, Briand C, Decock A, D'arcy A, Hassiepen U, Morse R, Renatus M. Biochem J 423 429-439 (2009)
  11. Structure-based predictive models for allosteric hot spots. Demerdash ON, Daily MD, Mitchell JC. PLoS Comput Biol 5 e1000531 (2009)
  12. L2' loop is critical for caspase-7 active site formation. Witkowski WA, Hardy JA. Protein Sci 18 1459-1468 (2009)
  13. The overlap of small molecule and protein binding sites within families of protein structures. Davis FP, Sali A. PLoS Comput Biol 6 e1000668 (2010)
  14. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities. Amor BR, Schaub MT, Yaliraki SN, Barahona M. Nat Commun 7 12477 (2016)
  15. Dissecting an allosteric switch in caspase-7 using chemical and mutational probes. Hardy JA, Wells JA. J Biol Chem 284 26063-26069 (2009)
  16. The Mechanism of ATP-Dependent Allosteric Protection of Akt Kinase Phosphorylation. Lu S, Deng R, Jiang H, Song H, Li S, Shen Q, Huang W, Nussinov R, Yu J, Zhang J. Structure 23 1725-1734 (2015)
  17. Substrate and inhibitor-induced dimerization and cooperativity in caspase-1 but not caspase-3. Datta D, McClendon CL, Jacobson MP, Wells JA. J Biol Chem 288 9971-9981 (2013)
  18. Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization. Stanger K, Steffek M, Zhou L, Pozniak CD, Quan C, Franke Y, Tom J, Tam C, Krylova I, Elliott JM, Lewcock JW, Zhang Y, Murray J, Hannoush RN. Nat Chem Biol 8 655-660 (2012)
  19. Allosteric inhibition of a zinc-sensing transcriptional repressor: insights into the arsenic repressor (ArsR) family. Campanello GC, Ma Z, Grossoehme NE, Guerra AJ, Ward BP, Dimarchi RD, Ye Y, Dann CE, Giedroc DP. J Mol Biol 425 1143-1157 (2013)
  20. Cardiac and skeletal muscles show molecularly distinct responses to cancer cachexia. Shum AM, Fung DC, Corley SM, McGill MC, Bentley NL, Tan TC, Wilkins MR, Polly P. Physiol Genomics 47 588-599 (2015)
  21. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery. Kalescky R, Zhou H, Liu J, Tao P. PLoS Comput Biol 12 e1004893 (2016)
  22. webPSN v2.0: a webserver to infer fingerprints of structural communication in biomacromolecules. Felline A, Seeber M, Fanelli F. Nucleic Acids Res 48 W94-W103 (2020)
  23. A multipronged approach for compiling a global map of allosteric regulation in the apoptotic caspases. Dagbay K, Eron SJ, Serrano BP, Velázquez-Delgado EM, Zhao Y, Lin D, Vaidya S, Hardy JA. Methods Enzymol 544 215-249 (2014)
  24. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. Maciag JJ, Mackenzie SH, Tucker MB, Schipper JL, Swartz P, Clark AC. Proc Natl Acad Sci U S A 113 E6080-E6088 (2016)
  25. Cholesterol lowering drug may influence cellular immune response by altering MHC II function. Roy K, Ghosh M, Pal TK, Chakrabarti S, Roy S. J Lipid Res 54 3106-3115 (2013)
  26. Allosteric modulation of caspase 3 through mutagenesis. Walters J, Schipper JL, Swartz P, Mattos C, Clark AC. Biosci Rep 32 401-411 (2012)
  27. Small-Molecule-Induced and Cooperative Enzyme Assembly on a 14-3-3 Scaffold. den Hamer A, Lemmens LJ, Nijenhuis MA, Ottmann C, Merkx M, de Greef TF, Brunsveld L. Chembiochem 18 331-335 (2017)
  28. A coupled protein and probe engineering approach for selective inhibition and activity-based probe labeling of the caspases. Xiao J, Broz P, Puri AW, Deu E, Morell M, Monack DM, Bogyo M. J Am Chem Soc 135 9130-9138 (2013)
  29. A bifunctional allosteric site in the dimer interface of procaspase-3. Schipper JL, MacKenzie SH, Sharma A, Clark AC. Biophys Chem 159 100-109 (2011)
  30. Uncovering allosteric pathways in caspase-1 using Markov transient analysis and multiscale community detection. Amor B, Yaliraki SN, Woscholski R, Barahona M. Mol Biosyst 10 2247-2258 (2014)
  31. Letter Identification of specific tethered inhibitors for caspase-5. Gao J, Wells JA. Chem Biol Drug Des 79 209-215 (2012)
  32. Modifying caspase-3 activity by altering allosteric networks. Cade C, Swartz P, MacKenzie SH, Clark AC. Biochemistry 53 7582-7595 (2014)
  33. Thermodynamic, enzymatic and structural effects of removing a salt bridge at the base of loop 4 in (pro)caspase-3. Walters J, Swartz P, Mattos C, Clark AC. Arch Biochem Biophys 508 31-38 (2011)
  34. Development of a high-throughput screen targeting caspase-8-mediated cleavage of the amyloid precursor protein. Hart MJ, Glicksman M, Liu M, Sharma MK, Cuny G, Galvan V. Anal Biochem 421 467-476 (2012)
  35. A general calculus of fitness landscapes finds genes under selection in cancers. Hsu TK, Asmussen J, Koire A, Choi BK, Gadhikar MA, Huh E, Lin CH, Konecki DM, Kim YW, Pickering CR, Kimmel M, Donehower LA, Frederick MJ, Myers JN, Katsonis P, Lichtarge O. Genome Res 32 916-929 (2022)
  36. Allosteric sites can be identified based on the residue-residue interaction energy difference. Ma X, Qi Y, Lai L. Proteins 83 1375-1384 (2015)
  37. Chemoproteomics Using Nucleotide Acyl Phosphates Reveals an ATP Binding Site at the Dimer Interface of Procaspase-6. Okerberg ES, Dagbay KB, Green JL, Soni I, Aban A, Nomanbhoy TK, Savinov SN, Hardy JA, Kozarich JW. Biochemistry 58 5320-5328 (2019)
  38. Conferral of allostery to Thermus sp. GH5 methylglyoxal synthase by a single mutation. Farsi Z, Pein H, Pazhang M, Zareian S, Ranaei-Siadat SO, Khajeh K. J Biochem 152 531-538 (2012)
  39. Solvated dissipative electro-elastic network model of hydrated proteins. Martin DR, Matyushov DV. J Chem Phys 137 165101 (2012)