2hel Citations

A change in conformational dynamics underlies the activation of Eph receptor tyrosine kinases.

Abstract

Eph receptor tyrosine kinases (RTKs) mediate numerous developmental processes. Their activity is regulated by auto-phosphorylation on two tyrosines within the juxtamembrane segment (JMS) immediately N-terminal to the kinase domain (KD). Here, we probe the molecular details of Eph kinase activation through mutational analysis, X-ray crystallography and NMR spectroscopy on auto-inhibited and active EphB2 and EphA4 fragments. We show that a Tyr750Ala gain-of-function mutation in the KD and JMS phosphorylation independently induce disorder of the JMS and its dissociation from the KD. Our X-ray analyses demonstrate that this occurs without major conformational changes to the KD and with only partial ordering of the KD activation segment. However, conformational exchange for helix alphaC in the N-terminal KD lobe and for the activation segment, coupled with increased inter-lobe dynamics, is observed upon kinase activation in our NMR analyses. Overall, our results suggest that a change in inter-lobe dynamics and the sampling of catalytically competent conformations for helix alphaC and the activation segment rather than a transition to a static active conformation underlies Eph RTK activation.

Reviews citing this publication (20)

  1. Bidirectional Eph-ephrin signaling during axon guidance. Egea J, Klein R. Trends Cell Biol 17 230-238 (2007)
  2. Cell-cell signaling via Eph receptors and ephrins. Himanen JP, Saha N, Nikolov DB. Curr Opin Cell Biol 19 534-542 (2007)
  3. Protein dynamics and allostery: an NMR view. Tzeng SR, Kalodimos CG. Curr Opin Struct Biol 21 62-67 (2011)
  4. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. Ward CW, Lawrence MC. Bioessays 31 422-434 (2009)
  5. Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Li C, Xu Q. Cell Signal 19 881-891 (2007)
  6. The insulin and EGF receptor structures: new insights into ligand-induced receptor activation. Ward CW, Lawrence MC, Streltsov VA, Adams TE, McKern NM. Trends Biochem Sci 32 129-137 (2007)
  7. Structure and function of SET and MYND domain-containing proteins. Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Int J Mol Sci 16 1406-1428 (2015)
  8. Eph-dependent cell-cell adhesion and segregation in development and cancer. Nievergall E, Lackmann M, Janes PW. Cell Mol Life Sci 69 1813-1842 (2012)
  9. Solution NMR Spectroscopy for the Study of Enzyme Allostery. Lisi GP, Loria JP. Chem Rev 116 6323-6369 (2016)
  10. Eph receptor signalling: from catalytic to non-catalytic functions. Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Oncogene 38 6567-6584 (2019)
  11. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch Pharm (Weinheim) 343 193-206 (2010)
  12. EphA3 biology and cancer. Janes PW, Slape CI, Farnsworth RH, Atapattu L, Scott AM, Vail ME. Growth Factors 32 176-189 (2014)
  13. NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes. East KW, Skeens E, Cui JY, Belato HB, Mitchell B, Hsu R, Batista VS, Palermo G, Lisi GP. Biophys Rev 12 155-174 (2020)
  14. Deciphering enzyme function using peptide arrays. Thiele A, Stangl GI, Schutkowski M, Schutkowski M. Mol Biotechnol 49 283-305 (2011)
  15. Tie2 and Eph receptor tyrosine kinase activation and signaling. Barton WA, Dalton AC, Seegar TC, Himanen JP, Nikolov DB. Cold Spring Harb Perspect Biol 6 a009142 (2014)
  16. RTK SLAP down: the emerging role of Src-like adaptor protein as a key player in receptor tyrosine kinase signaling. Wybenga-Groot LE, McGlade CJ. Cell Signal 27 267-274 (2015)
  17. The EphB6 Receptor: Kinase-Dead but Very Much Alive. Strozen TG, Sharpe JC, Harris ED, Uppalapati M, Toosi BM. Int J Mol Sci 22 8211 (2021)
  18. EPHB4-RASA1-Mediated Negative Regulation of Ras-MAPK Signaling in the Vasculature: Implications for the Treatment of EPHB4- and RASA1-Related Vascular Anomalies in Humans. Chen D, Van der Ent MA, Lartey NL, King PD. Pharmaceuticals (Basel) 16 165 (2023)
  19. A regulatory role of membrane by direct modulation of the catalytic kinase domain. Prakash P. Small GTPases 12 246-256 (2021)
  20. Roles of Eph-Ephrin Signaling in the Eye Lens Cataractogenesis, Biomechanics, and Homeostasis. Murugan S, Cheng C. Front Cell Dev Biol 10 852236 (2022)

Articles citing this publication (51)

  1. Kinase-dependent and -independent roles of EphA2 in the regulation of prostate cancer invasion and metastasis. Taddei ML, Parri M, Angelucci A, Onnis B, Bianchini F, Giannoni E, Raugei G, Calorini L, Rucci N, Teti A, Bologna M, Chiarugi P. Am J Pathol 174 1492-1503 (2009)
  2. Conformational states dynamically populated by a kinase determine its function. Xie T, Saleh T, Rossi P, Kalodimos CG. Science 370 eabc2754 (2020)
  3. NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Skora L, Mestan J, Fabbro D, Jahnke W, Grzesiek S. Proc Natl Acad Sci U S A 110 E4437-45 (2013)
  4. Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10. Janes PW, Wimmer-Kleikamp SH, Frangakis AS, Treble K, Griesshaber B, Sabet O, Grabenbauer M, Ting AY, Saftig P, Bastiaens PI, Lackmann M. PLoS Biol 7 e1000215 (2009)
  5. The composition of EphB2 clusters determines the strength in the cellular repulsion response. Schaupp A, Sabet O, Dudanova I, Ponserre M, Bastiaens P, Klein R. J Cell Biol 204 409-422 (2014)
  6. PTP1B regulates Eph receptor function and trafficking. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. J Cell Biol 191 1189-1203 (2010)
  7. Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3). Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S. Structure 16 873-884 (2008)
  8. Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms. Lisabeth EM, Fernandez C, Pasquale EB. Biochemistry 51 1464-1475 (2012)
  9. Elevated protein tyrosine phosphatase activity provokes Eph/ephrin-facilitated adhesion of pre-B leukemia cells. Wimmer-Kleikamp SH, Nievergall E, Gegenbauer K, Adikari S, Mansour M, Yeadon T, Boyd AW, Patani NR, Lackmann M. Blood 112 721-732 (2008)
  10. Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Plaza-Menacho I, Barnouin K, Goodman K, Martínez-Torres RJ, Borg A, Murray-Rust J, Mouilleron S, Knowles P, McDonald NQ. Mol Cell 53 738-751 (2014)
  11. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Sabet O, Stockert R, Xouri G, Brüggemann Y, Stanoev A, Bastiaens PIH. Nat Commun 6 8047 (2015)
  12. Structural insights into the inhibited states of the Mer receptor tyrosine kinase. Huang X, Finerty P, Walker JR, Butler-Cole C, Vedadi M, Schapira M, Parker SA, Turk BE, Thompson DA, Dhe-Paganon S. J Struct Biol 165 88-96 (2009)
  13. Bacterial chemoreceptor dynamics correlate with activity state and are coupled over long distances. Samanta D, Borbat PP, Dzikovski B, Freed JH, Crane BR. Proc Natl Acad Sci U S A 112 2455-2460 (2015)
  14. Comprehensive analysis of NMR data using advanced line shape fitting. Niklasson M, Otten R, Ahlner A, Andresen C, Schlagnitweit J, Petzold K, Lundström P. J Biomol NMR 69 93-99 (2017)
  15. Solution NMR insights into docking interactions involving inactive ERK2. Piserchio A, Warthaka M, Devkota AK, Kaoud TS, Lee S, Abramczyk O, Ren P, Dalby KN, Ghose R. Biochemistry 50 3660-3672 (2011)
  16. A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation. Singla N, Erdjument-Bromage H, Himanen JP, Muir TW, Nikolov DB. Chem Biol 18 361-371 (2011)
  17. A role of the SAM domain in EphA2 receptor activation. Shi X, Hapiak V, Zheng J, Muller-Greven J, Bowman D, Lingerak R, Buck M, Wang BC, Smith AW. Sci Rep 7 45084 (2017)
  18. Dynamics of protein kinases: insights from nuclear magnetic resonance. Xiao Y, Liddle JC, Pardi A, Ahn NG. Acc Chem Res 48 1106-1114 (2015)
  19. Structures of the EphA2 Receptor at the Membrane: Role of Lipid Interactions. Chavent M, Seiradake E, Jones EY, Sansom MS. Structure 24 337-347 (2016)
  20. Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Locard-Paulet M, Lim L, Veluscek G, McMahon K, Sinclair J, van Weverwijk A, Worboys JD, Yuan Y, Isacke CM, Jørgensen C. Sci Signal 9 ra15 (2016)
  21. Detailed conformational dynamics of juxtamembrane region and activation loop in c-Kit kinase activation process. Zou J, Wang YD, Ma FX, Xiang ML, Shi B, Wei YQ, Yang SY. Proteins 72 323-332 (2008)
  22. Investigating Phosphorylation-Induced Conformational Changes in WNK1 Kinase by Molecular Dynamics Simulations. Jonniya NA, Sk MF, Kar P. ACS Omega 4 17404-17416 (2019)
  23. Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. Chen D, Hughes ED, Saunders TL, Wu J, Vasquez MNH, Makinen T, King PD. JCI Insight 7 e156928 (2022)
  24. Convergent Evolution of Head Crests in Two Domesticated Columbids Is Associated with Different Missense Mutations in EphB2. Vickrey AI, Domyan ET, Horvath MP, Shapiro MD. Mol Biol Evol 32 2657-2664 (2015)
  25. Coupled regulation by the juxtamembrane and sterile α motif (SAM) linker is a hallmark of ephrin tyrosine kinase evolution. Kwon A, John M, Ruan Z, Kannan N. J Biol Chem 293 5102-5116 (2018)
  26. Analysis of EphA4 receptor tyrosine kinase substrate specificity using peptide-based arrays. Warner N, Wybenga-Groot LE, Pawson T. FEBS J 275 2561-2573 (2008)
  27. Completing the structural family portrait of the human EphB tyrosine kinase domains. Overman RC, Debreczeni JE, Truman CM, McAlister MS, Attwood TK. Protein Sci 23 627-638 (2014)
  28. Crystal structure of the EphA4 protein tyrosine kinase domain in the apo- and dasatinib-bound state. Farenc C, Celie PH, Tensen CP, de Esch IJ, Siegal G. FEBS Lett 585 3593-3599 (2011)
  29. Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling. Louria-Hayon I, Frelin C, Ruston J, Gish G, Jin J, Kofler MM, Lambert JP, Adissu HA, Milyavsky M, Herrington R, Minden MD, Dick JE, Gingras AC, Iscove NN, Pawson T. Proc Natl Acad Sci U S A 110 20599-20604 (2013)
  30. Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility. Chen Z, Oh D, Biswas KH, Zaidel-Bar R, Groves JT. Elife 10 e67379 (2021)
  31. Binding and function of phosphotyrosines of the Ephrin A2 (EphA2) receptor using synthetic sterile α motif (SAM) domains. Borthakur S, Lee H, Kim S, Wang BC, Buck M. J Biol Chem 289 19694-19703 (2014)
  32. Deactivation of Mcl-1 by Dual-Function Small-Molecule Inhibitors Targeting the Bcl-2 Homology 3 Domain and Facilitating Mcl-1 Ubiquitination. Song T, Wang Z, Ji F, Feng Y, Fan Y, Chai G, Li X, Li Z, Zhang Z. Angew Chem Int Ed Engl 55 14250-14256 (2016)
  33. Evidence for intermolecular interactions between the intracellular domains of the arabidopsis receptor-like kinase ACR4, its homologs and the Wox5 transcription factor. Meyer MR, Shah S, Zhang J, Rohrs H, Rao AG. PLoS One 10 e0118861 (2015)
  34. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase. Gajiwala KS, Grodsky N, Bolaños B, Feng J, Ferre R, Timofeevski S, Xu M, Murray BW, Johnson TW, Stewart A. J Biol Chem 292 15705-15716 (2017)
  35. Structures of an Eph receptor tyrosine kinase and its potential activation mechanism. Wei Q, Liu J, Wang N, Zhang X, Jin J, Chin-Sang I, Zheng J, Jia Z. Acta Crystallogr D Biol Crystallogr 70 3135-3143 (2014)
  36. Dynamic, structural and thermodynamic basis of insulin-like growth factor 1 kinase allostery mediated by activation loop phosphorylation. Li Y, Nam K. Chem Sci 8 3453-3464 (2017)
  37. Hit Identification of a Novel Quinazoline Sulfonamide as a Promising EphB3 Inhibitor: Design, Virtual Combinatorial Library, Synthesis, Biological Evaluation, and Docking Simulation Studies. Lee K, Nada H, Byun HJ, Lee CH, Elkamhawy A. Pharmaceuticals (Basel) 14 1247 (2021)
  38. Optimized bacterial expression and purification of the c-Src catalytic domain for solution NMR studies. Piserchio A, Ghose R, Cowburn D. J Biomol NMR 44 87-93 (2009)
  39. Assignment of backbone resonances in a eukaryotic protein kinase - ERK2 as a representative example. Piserchio A, Dalby KN, Ghose R. Methods Mol Biol 831 359-368 (2012)
  40. Insights into molecular interactions between the juxtamembrane and kinase subdomains of the Arabidopsis Crinkly-4 receptor-like kinase. Meyer MR, Shah S, Rao AG. Arch Biochem Biophys 535 101-110 (2013)
  41. Two-step release of kinase autoinhibition in discoidin domain receptor 1. Sammon D, Hohenester E, Leitinger B. Proc Natl Acad Sci U S A 117 22051-22060 (2020)
  42. Biochemical and biophysical characterization of four EphB kinase domains reveals contrasting thermodynamic, kinetic and inhibition profiles. Overman RC, Debreczeni JE, Truman CM, McAlister MS, Attwood TK. Biosci Rep 33 e00040 (2013)
  43. Fast and accurate resonance assignment of small-to-large proteins by combining automated and manual approaches. Niklasson M, Ahlner A, Andresen C, Marsh JA, Lundström P. PLoS Comput Biol 11 e1004022 (2015)
  44. Microsecond dynamics in proteins by two-dimensional ESR: Predictions. Gupta P, Liang Z, Freed JH. J Chem Phys 152 214112 (2020)
  45. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. Biochemistry 58 5160-5172 (2019)
  46. Expression and purification of Src-family kinases for solution NMR studies. Piserchio A, Cowburn D, Ghose R. Methods Mol Biol 831 111-131 (2012)
  47. The intracellular domains of the EphB6 and EphA10 receptor tyrosine pseudokinases function as dynamic signalling hubs. Liang LY, Roy M, Horne CR, Sandow JJ, Surudoi M, Dagley LF, Young SN, Dite T, Babon JJ, Janes PW, Patel O, Murphy JM, Lucet IS. Biochem J 478 3351-3371 (2021)
  48. Investigation of the interactions between the EphB2 receptor and SNEW peptide variants. Ma B, Kolb S, Diprima M, Karna M, Tosato G, Yang Q, Huang Q, Nussinov R. Growth Factors 32 236-246 (2014)
  49. SOCS2 Binds to and Regulates EphA2 through Multiple Mechanisms. Pilling C, Cooper JA. Sci Rep 7 10838 (2017)
  50. Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations. Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Hao LT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Moyer QJ, Dennis E, Kiziltug E, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Nat Commun 14 7452 (2023)
  51. N-(2,4)-dinitrophenyl-L-arginine Interacts with EphB4 and Functions as an EphB4 Kinase Modulator. Kamstra RL, Freywald A, Floriano WB. Chem Biol Drug Des 86 476-486 (2015)