2hnp Citations

Crystal structure of human protein tyrosine phosphatase 1B.

Science 263 1397-404 (1994)
Cited: 423 times
EuropePMC logo PMID: 8128219

Abstract

Protein tyrosine phosphatases (PTPs) constitute a family of receptor-like and cytoplasmic signal transducing enzymes that catalyze the dephosphorylation of phosphotyrosine residues and are characterized by homologous catalytic domains. The crystal structure of a representative member of this family, the 37-kilodalton form (residues 1 to 321) of PTP1B, has been determined at 2.8 A resolution. The enzyme consists of a single domain with the catalytic site located at the base of a shallow cleft. The phosphate recognition site is created from a loop that is located at the amino-terminus of an alpha helix. This site is formed from an 11-residue sequence motif that is diagnostic of PTPs and the dual specificity phosphatases, and that contains the catalytically essential cysteine and arginine residues. The position of the invariant cysteine residue within the phosphate binding site is consistent with its role as a nucleophile in the catalytic reaction. The structure of PTP1B should serve as a model for other members of the PTP family and as a framework for understanding the mechanism of tyrosine dephosphorylation.

Reviews - 2hnp mentioned but not cited (5)

  1. Protein tyrosine phosphatases: structure, function, and implication in human disease. Tautz L, Critton DA, Grotegut S. Methods Mol Biol 1053 179-221 (2013)
  2. Cryptic binding sites on proteins: definition, detection, and druggability. Vajda S, Beglov D, Wakefield AE, Egbert M, Whitty A. Curr Opin Chem Biol 44 1-8 (2018)
  3. Structural biology of glucan phosphatases from humans to plants. Gentry MS, Brewer MK, Vander Kooi CW. Curr Opin Struct Biol 40 62-69 (2016)
  4. Structure and catalytic mechanism of human protein tyrosine phosphatome. Kim SJ, Ryu SE. BMB Rep 45 693-699 (2012)
  5. Unique carbohydrate binding platforms employed by the glucan phosphatases. Emanuelle S, Brewer MK, Meekins DA, Gentry MS. Cell Mol Life Sci 73 2765-2778 (2016)

Articles - 2hnp mentioned but not cited (34)

  1. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S, Knapp S. Cell 136 352-363 (2009)
  2. Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ, Tonks NK. J Biol Chem 284 16066-16070 (2009)
  3. Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps. Brandão TA, Hengge AC, Johnson SJ. J Biol Chem 285 15874-15883 (2010)
  4. Exploring the structural origins of cryptic sites on proteins. Beglov D, Hall DR, Wakefield AE, Luo L, Allen KN, Kozakov D, Whitty A, Vajda S. Proc Natl Acad Sci U S A 115 E3416-E3425 (2018)
  5. Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. Eswaran J, von Kries JP, Marsden B, Longman E, Debreczeni JE, Ugochukwu E, Turnbull A, Lee WH, Knapp S, Barr AJ. Biochem J 395 483-491 (2006)
  6. Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication. Guarnera E, Berezovsky IN. PLoS Comput Biol 12 e1004678 (2016)
  7. Binding leverage as a molecular basis for allosteric regulation. Mitternacht S, Berezovsky IN. PLoS Comput Biol 7 e1002148 (2011)
  8. Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases. Cui DS, Beaumont V, Ginther PS, Lipchock JM, Loria JP. J Mol Biol 429 2360-2372 (2017)
  9. Identifying Allosteric Hotspots with Dynamics: Application to Inter- and Intra-species Conservation. Clarke D, Sethi A, Li S, Kumar S, Chang RWF, Chen J, Gerstein M. Structure 24 826-837 (2016)
  10. The mechanism of allosteric inhibition of protein tyrosine phosphatase 1B. Li S, Zhang J, Lu S, Huang W, Geng L, Shen Q, Zhang J. PLoS One 9 e97668 (2014)
  11. Reversing allosteric communication: From detecting allosteric sites to inducing and tuning targeted allosteric response. Tee WV, Guarnera E, Berezovsky IN. PLoS Comput Biol 14 e1006228 (2018)
  12. The structure of apo protein-tyrosine phosphatase 1B C215S mutant: more than just an S --> O change. Scapin G, Patel S, Patel V, Kennedy B, Asante-Appiah E. Protein Sci 10 1596-1605 (2001)
  13. Identification of ligand binding sites of proteins using the Gaussian Network Model. Tuzmen C, Erman B. PLoS One 6 e16474 (2011)
  14. Predicting Reactive Cysteines with Implicit-Solvent-Based Continuous Constant pH Molecular Dynamics in Amber. Harris RC, Liu R, Shen J. J Chem Theory Comput 16 3689-3698 (2020)
  15. Druggability analysis and classification of protein tyrosine phosphatase active sites. Ghattas MA, Raslan N, Sadeq A, Al Sorkhy M, Atatreh N. Drug Des Devel Ther 10 3197-3209 (2016)
  16. Toward an accurate prediction of inter-residue distances in proteins using 2D recursive neural networks. Kukic P, Mirabello C, Tradigo G, Walsh I, Veltri P, Pollastri G. BMC Bioinformatics 15 6 (2014)
  17. Inhibition of Low Molecular Weight Protein Tyrosine Phosphatase by an Induced-Fit Mechanism. He R, Wang J, Yu ZH, Zhang RY, Liu S, Wu L, Zhang ZY. J Med Chem 59 9094-9106 (2016)
  18. Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures. Guterres H, Park SJ, Jiang W, Im W. J Chem Inf Model 61 535-546 (2021)
  19. In silico Druggability Assessment of the NUDIX Hydrolase Protein Family as a Workflow for Target Prioritization. Michel M, Homan EJ, Wiita E, Pedersen K, Almlöf I, Gustavsson AL, Lundbäck T, Helleday T, Warpman Berglund U. Front Chem 8 443 (2020)
  20. Computational and Experimental Druggability Assessment of Human DNA Glycosylases. Michel M, Visnes T, Homan EJ, Seashore-Ludlow B, Hedenström M, Wiita E, Vallin K, Paulin CBJ, Zhang J, Wallner O, Scobie M, Schmidt A, Jenmalm-Jensen A, Warpman Berglund U, Helleday T. ACS Omega 4 11642-11656 (2019)
  21. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid. Lipchock JM, Hendrickson HP, Douglas BB, Bird KE, Ginther PS, Rivalta I, Ten NS, Batista VS, Loria JP. Biochemistry 56 96-106 (2017)
  22. Shining light on cysteine modification: connecting protein conformational dynamics to catalysis and regulation. van den Bedem H, Wilson MA. J Synchrotron Radiat 26 958-966 (2019)
  23. Antidiabetic activity in vitro and in vivo of BDB, a selective inhibitor of protein tyrosine phosphatase 1B, from Rhodomela confervoides. Luo J, Zheng M, Jiang B, Li C, Guo S, Wang L, Li X, Yu R, Shi D. Br J Pharmacol 177 4464-4480 (2020)
  24. Structure-Based Analysis of Cryptic-Site Opening. Sun Z, Wakefield AE, Kolossvary I, Beglov D, Vajda S. Structure 28 223-235.e2 (2020)
  25. Identification and structure-function analyses of an allosteric inhibitor of the tyrosine phosphatase PTPN22. Li K, Hou X, Li R, Bi W, Yang F, Chen X, Xiao P, Liu T, Lu T, Zhou Y, Tian Z, Shen Y, Zhang Y, Wang J, Fang H, Sun J, Yu X. J Biol Chem 294 8653-8663 (2019)
  26. Biochemical, Enzymatic, and Computational Characterization of Recurrent Somatic Mutations of the Human Protein Tyrosine Phosphatase PTP1B in Primary Mediastinal B Cell Lymphoma. Liu R, Sun Y, Berthelet J, Bui LC, Xu X, Viguier M, Dupret JM, Deshayes F, Rodrigues Lima F. Int J Mol Sci 23 7060 (2022)
  27. Chemical activation of divergent protein tyrosine phosphatase domains with cyanine-based biarsenicals. Plaman BA, Chan WC, Bishop AC. Sci Rep 9 16148 (2019)
  28. Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B. Scior T, Guevara-García JA, Melendez FJ, Abdallah HH, Do QT, Bernard P. Drug Des Devel Ther 4 231-242 (2010)
  29. Optimized allosteric inhibition of engineered protein tyrosine phosphatases with an expanded palette of biarsenical small molecules. Korntner S, Pomorski A, Krężel A, Bishop AC. Bioorg Med Chem 26 2610-2620 (2018)
  30. Unified access to up-to-date residue-level annotations from UniProtKB and other biological databases for PDB data. Choudhary P, Anyango S, Berrisford J, Tolchard J, Varadi M, Velankar S. Sci Data 10 204 (2023)
  31. A PTP1B-Cdk3 Signaling Axis Promotes Cell Cycle Progression of Human Glioblastoma Cells through an Rb-E2F Dependent Pathway. Villamar-Cruz O, Loza-Mejía MA, Vivar-Sierra A, Saldivar-Cerón HI, Patiño-López G, Olguín JE, Terrazas LI, Armas-López L, Ávila-Moreno F, Saha S, Chernoff J, Camacho-Arroyo I, Arias-Romero LE. Mol Cell Biol 43 631-649 (2023)
  32. Deconstructing allostery by computational assessment of the binding determinants of allosteric PTP1B modulators. Hardie A, Cossins BP, Lovera S, Michel J. Commun Chem 6 125 (2023)
  33. Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases. Hong SH, Xi SY, Johns AC, Tang LC, Li A, Hum MN, Chartier CA, Jovanovic M, Shah NH. Chembiochem 24 e202200706 (2023)
  34. research-article Native dynamics and allosteric responses in PTP1B probed by high-resolution HDX-MS. Woods VA, Abzalimov RR, Keedy DA. bioRxiv 2023.07.12.548582 (2023)


Reviews citing this publication (90)

  1. Protein tyrosine phosphatases in the human genome. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Cell 117 699-711 (2004)
  2. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Møller NP. Mol Cell Biol 21 7117-7136 (2001)
  3. Src kinase regulation by phosphorylation and dephosphorylation. Roskoski R. Biochem Biophys Res Commun 331 1-14 (2005)
  4. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Barford D, Das AK, Egloff MP. Annu Rev Biophys Biomol Struct 27 133-164 (1998)
  5. Combinatorial control of the specificity of protein tyrosine phosphatases. Tonks NK, Neel BG. Curr Opin Cell Biol 13 182-195 (2001)
  6. Protein tyrosine phosphatase 1B inhibitors for diabetes. Johnson TO, Ermolieff J, Jirousek MR. Nat Rev Drug Discov 1 696-709 (2002)
  7. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Jeffrey KL, Camps M, Rommel C, Mackay CR. Nat Rev Drug Discov 6 391-403 (2007)
  8. Structure and regulation of MAPK phosphatases. Farooq A, Zhou MM. Cell Signal 16 769-779 (2004)
  9. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. Tonks NK. FEBS J 280 346-378 (2013)
  10. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Denu JM, Dixon JE. Curr Opin Chem Biol 2 633-641 (1998)
  11. Thiol-based redox switches in eukaryotic proteins. Brandes N, Schmitt S, Jakob U. Antioxid Redox Signal 11 997-1014 (2009)
  12. Recognition and specificity in protein tyrosine kinase-mediated signalling. Songyang Z, Cantley LC. Trends Biochem Sci 20 470-475 (1995)
  13. PTP1B: from the sidelines to the front lines! Tonks NK. FEBS Lett 546 140-148 (2003)
  14. Inhibitors of protein tyrosine phosphatases: next-generation drugs? Bialy L, Waldmann H. Angew Chem Int Ed Engl 44 3814-3839 (2005)
  15. Form and function in protein dephosphorylation. Denu JM, Stuckey JA, Saper MA, Dixon JE. Cell 87 361-364 (1996)
  16. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Salmeen A, Barford D. Antioxid Redox Signal 7 560-577 (2005)
  17. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Barford D, Neel BG. Structure 6 249-254 (1998)
  18. Mechanisms and free energies of enzymatic reactions. Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG. Chem Rev 106 3188-3209 (2006)
  19. Receptor protein tyrosine phosphatases in nervous system development. Johnson KG, Van Vactor D. Physiol Rev 83 1-24 (2003)
  20. Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Byon JC, Kusari AB, Kusari J. Mol Cell Biochem 182 101-108 (1998)
  21. Pore loops: an emerging theme in ion channel structure. MacKinnon R. Neuron 14 889-892 (1995)
  22. The intestinal epithelium tuft cells: specification and function. Gerbe F, Legraverend C, Jay P. Cell Mol Life Sci 69 2907-2917 (2012)
  23. Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Pao LI, Badour K, Siminovitch KA, Neel BG. Annu Rev Immunol 25 473-523 (2007)
  24. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Zhang ZY. Crit Rev Biochem Mol Biol 33 1-52 (1998)
  25. Mechanisms of signaling and related enzymes. Mildvan AS. Proteins 29 401-416 (1997)
  26. The chemical biology of naphthoquinones and its environmental implications. Kumagai Y, Shinkai Y, Miura T, Cho AK. Annu Rev Pharmacol Toxicol 52 221-247 (2012)
  27. Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Matthews HR. Pharmacol Ther 67 323-350 (1995)
  28. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Antioxid Redox Signal 15 77-97 (2011)
  29. PTP1B: a simple enzyme for a complex world. Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML. Crit Rev Biochem Mol Biol 48 430-445 (2013)
  30. Protein tyrosine phosphatases take off. Barford D, Jia Z, Tonks NK. Nat Struct Biol 2 1043-1053 (1995)
  31. Protein tyrosine phosphatases: structure-function relationships. Tabernero L, Aricescu AR, Jones EY, Szedlacsek SE. FEBS J 275 867-882 (2008)
  32. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Jiang CS, Liang LF, Guo YW. Acta Pharmacol Sin 33 1217-1245 (2012)
  33. Inhibition of the Ser-Thr phosphatases PP1 and PP2A by naturally occurring toxins. Sheppeck JE, Gauss CM, Chamberlin AR. Bioorg Med Chem 5 1739-1750 (1997)
  34. Cdc25 protein phosphatases in cell proliferation. Draetta G, Eckstein J. Biochim Biophys Acta 1332 M53-63 (1997)
  35. Dual-specificity phosphatases as targets for antineoplastic agents. Lyon MA, Ducruet AP, Wipf P, Lazo JS. Nat Rev Drug Discov 1 961-976 (2002)
  36. T-cell protein tyrosine phosphatase is a key regulator in immune cell signaling: lessons from the knockout mouse model and implications in human disease. Doody KM, Bourdeau A, Tremblay ML. Immunol Rev 228 325-341 (2009)
  37. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Li L, Dixon JE. Semin Immunol 12 75-84 (2000)
  38. Protein phosphatases. Barford D. Curr Opin Struct Biol 5 728-734 (1995)
  39. Peroxovanadium compounds: biological actions and mechanism of insulin-mimesis. Bevan AP, Drake PG, Yale JF, Shaver A, Posner BI. Mol Cell Biochem 153 49-58 (1995)
  40. Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery. Burke TR, Zhang ZY. Biopolymers 47 225-241 (1998)
  41. Lafora disease: insights into neurodegeneration from plant metabolism. Gentry MS, Dixon JE, Worby CA. Trends Biochem Sci 34 628-639 (2009)
  42. Protein tyrosine phosphatases and neural development. Stoker A, Dutta R. Bioessays 20 463-472 (1998)
  43. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). Al Barashdi MA, Ali A, McMullin MF, Mills K. J Clin Pathol 74 548-552 (2021)
  44. The catalytic mechanism of protein tyrosine phosphatases revisited. Kolmodin K, Aqvist J. FEBS Lett 498 208-213 (2001)
  45. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. Prieto-Bermejo R, Romo-González M, Pérez-Fernández A, Ijurko C, Hernández-Hernández Á. J Exp Clin Cancer Res 37 125 (2018)
  46. Recent advances in protein tyrosine phosphatase 1B inhibitors. Taylor SD, Hill B. Expert Opin Investig Drugs 13 199-214 (2004)
  47. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Yu ZH, Zhang ZY. Chem Rev 118 1069-1091 (2018)
  48. Protein tyrosine phosphatases: counting the trees in the forest. Hooft van Huijsduijnen R. Gene 225 1-8 (1998)
  49. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. Böhmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. FEBS J 280 413-431 (2013)
  50. Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. Ukkola O, Santaniemi M. J Intern Med 251 467-475 (2002)
  51. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis. Hsu F, Mao Y. Biochim Biophys Acta 1851 698-710 (2015)
  52. Phosphatases in Mitosis: Roles and Regulation. Moura M, Conde C. Biomolecules 9 E55 (2019)
  53. Metal-based anti-diabetic drugs: advances and challenges. Levina A, Lay PA. Dalton Trans 40 11675-11686 (2011)
  54. The mechanism of action of the tumour suppressor gene PTEN. Hlobilková A, Knillová J, Bártek J, Lukás J, Kolár Z. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 147 19-25 (2003)
  55. 2-cys peroxiredoxins: emerging hubs determining redox dependency of Mammalian signaling networks. Park J, Lee S, Lee S, Kang SW. Int J Cell Biol 2014 715867 (2014)
  56. Structural, catalytic, and functional properties of low M(r), phosphotyrosine protein phosphatases. Evidence of a long evolutionary history. Ramponi G, Stefani M. Int J Biochem Cell Biol 29 279-292 (1997)
  57. Targeting the reversibly oxidized protein tyrosine phosphatase superfamily. Boivin B, Yang M, Tonks NK. Sci Signal 3 pl2 (2010)
  58. Receptor-like protein tyrosine phosphatases: alike and yet so different. Schaapveld R, Wieringa B, Hendriks W. Mol Biol Rep 24 247-262 (1997)
  59. The chemistry of peroxovanadium compounds relevant to insulin mimesis. Shaver A, Ng JB, Hall DA, Posner BI. Mol Cell Biochem 153 5-15 (1995)
  60. The metal face of protein tyrosine phosphatase 1B. Bellomo E, Birla Singh K, Massarotti A, Hogstrand C, Maret W. Coord Chem Rev 327-328 70-83 (2016)
  61. The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis. Prieto-Bermejo R, Hernández-Hernández A. Antioxidants (Basel) 6 E32 (2017)
  62. Thiazolidine-2,4-dione derivatives: programmed chemical weapons for key protein targets of various pathological conditions. Chadha N, Bahia MS, Kaur M, Silakari O. Bioorg Med Chem 23 2953-2974 (2015)
  63. Dephosphorylating eukaryotic RNA polymerase II. Mayfield JE, Burkholder NT, Zhang YJ. Biochim Biophys Acta 1864 372-387 (2016)
  64. Toxicological disruption of signaling homeostasis: tyrosine phosphatases as targets. Samet JM, Tal TL. Annu Rev Pharmacol Toxicol 50 215-235 (2010)
  65. Dissection of the Torso signal transduction pathway in Drosophila. Perrimon N, Lu X, Hou XS, Hsu JC, Melnick MB, Chou TB, Perkins LA. Mol Reprod Dev 42 515-522 (1995)
  66. Covalent inhibition of protein tyrosine phosphatases. Ruddraraju KV, Zhang ZY. Mol Biosyst 13 1257-1279 (2017)
  67. VHR/DUSP3 phosphatase: structure, function and regulation. Pavic K, Duan G, Köhn M. FEBS J 282 1871-1890 (2015)
  68. Hydroxamido vanadates: aqueous chemistry and function in protein tyrosine phosphatases and cell cultures. Tracey AS. J Inorg Biochem 80 11-16 (2000)
  69. The next wave: protein tyrosine phosphatases enter T cell antigen receptor signalling. Mustelin T, Brockdorff J, Rudbeck L, Gjörloff-Wingren A, Han S, Wang X, Tailor P, Saxena M. Cell Signal 11 637-650 (1999)
  70. Protein phosphatases in pancreatic islets. Ortsäter H, Grankvist N, Honkanen RE, Sjöholm Å. J Endocrinol 221 R121-44 (2014)
  71. Recent advances in PTP1B signaling in metabolism and cancer. Villamar-Cruz O, Loza-Mejía MA, Arias-Romero LE, Camacho-Arroyo I. Biosci Rep 41 BSR20211994 (2021)
  72. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives. Liu R, Mathieu C, Berthelet J, Zhang W, Dupret JM, Rodrigues Lima F. Int J Mol Sci 23 7027 (2022)
  73. Phosphatases: counterregulatory role in inflammatory cell signaling. Shanley TP. Crit Care Med 30 S80-8 (2002)
  74. Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Grishin AM, Beyrakhova KA, Cygler M. Protein Sci 24 604-620 (2015)
  75. The biochemical and clinical implications of phosphatase and tensin homolog deleted on chromosome ten in different cancers. Wang Q, Wang J, Xiang H, Ding P, Wu T, Ji G. Am J Cancer Res 11 5833-5855 (2021)
  76. Metabolic and Epigenetic Action Mechanisms of Antidiabetic Medicinal Plants. Shanak S, Saad B, Zaid H. Evid Based Complement Alternat Med 2019 3583067 (2019)
  77. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  78. Structural mechanisms of plant glucan phosphatases in starch metabolism. Meekins DA, Vander Kooi CW, Gentry MS. FEBS J 283 2427-2447 (2016)
  79. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Hobiger K, Friedrich T. Front Pharmacol 6 20 (2015)
  80. Charged with meaning: the structure and mechanism of phosphoprotein phosphatases. Taylor WP, Widlanski TS. Chem Biol 2 713-718 (1995)
  81. Revisiting the roles of VHR/DUSP3 phosphatase in human diseases. Russo LC, Farias JO, Ferruzo PYM, Monteiro LF, Forti FL. Clinics (Sao Paulo) 73 e466s (2018)
  82. Structure and catalytic properties of protein tyrosine phosphatases. Dixon JE. Ann N Y Acad Sci 766 18-22 (1995)
  83. Crystal structure of the Yersinia tyrosine phosphatase. Bliska JB. Trends Microbiol 3 125-127 (1995)
  84. Computational Methods in Cooperation with Experimental Approaches to Design Protein Tyrosine Phosphatase 1B Inhibitors in Type 2 Diabetes Drug Design: A Review of the Achievements of This Century. Campos-Almazán MI, Hernández-Campos A, Castillo R, Sierra-Campos E, Valdez-Solana M, Avitia-Domínguez C, Téllez-Valencia A. Pharmaceuticals (Basel) 15 866 (2022)
  85. Kinetic isotope effects in the characterization of catalysis by protein tyrosine phosphatases. Hengge AC. Biochim Biophys Acta 1854 1768-1775 (2015)
  86. Bi-domain protein tyrosine phosphatases reveal an evolutionary adaptation to optimize signal transduction. Ahuja LG, Gopal B. Antioxid Redox Signal 20 2141-2159 (2014)
  87. Protein Tyrosine Phosphatases: A new paradigm in an old signaling system? Welsh CL, Pandey P, Ahuja LG. Adv Cancer Res 152 263-303 (2021)
  88. Protein tyrosine phosphatase 1B: a novel molecular target for retinal degenerative diseases. Basavarajappa DK, Gupta VK, Rajala RV. Adv Exp Med Biol 723 829-834 (2012)
  89. The development of protein tyrosine phosphatase1B inhibitors defined by binding sites in crystalline complexes. Zhang Y, Du Y. Future Med Chem 10 2345-2367 (2018)
  90. X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases. Gulerez IE, Gehring K. Methods 65 175-183 (2014)

Articles citing this publication (294)

  1. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Nat Genet 15 356-362 (1997)
  2. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP. Cell 99 323-334 (1999)
  3. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK, Barford D. Nature 423 769-773 (2003)
  4. Crystal structure of the tyrosine phosphatase SHP-2. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Cell 92 441-450 (1998)
  5. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH, Parsons R, Tonks NK. Proc Natl Acad Sci U S A 94 9052-9057 (1997)
  6. Development of "substrate-trapping" mutants to identify physiological substrates of protein tyrosine phosphatases. Flint AJ, Tiganis T, Barford D, Tonks NK. Proc Natl Acad Sci U S A 94 1680-1685 (1997)
  7. Protein tyrosine phosphatases in signal transduction. Neel BG, Tonks NK. Curr Opin Cell Biol 9 193-204 (1997)
  8. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. Nature 423 773-777 (2003)
  9. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. Das AK, Helps NR, Cohen PT, Barford D. EMBO J 15 6798-6809 (1996)
  10. Allosteric inhibition of protein tyrosine phosphatase 1B. Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W, Fahr BJ, Zhong M, Taylor L, Randal M, McDowell RS, Hansen SK. Nat Struct Mol Biol 11 730-737 (2004)
  11. H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Krishnan N, Fu C, Pappin DJ, Tonks NK. Sci Signal 4 ra86 (2011)
  12. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate. Stuckey JA, Schubert HL, Fauman EB, Zhang ZY, Dixon JE, Saper MA. Nature 370 571-575 (1994)
  13. Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Bilwes AM, den Hertog J, Hunter T, Noel JP. Nature 382 555-559 (1996)
  14. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC, Zhang ZY. Proc Natl Acad Sci U S A 94 13420-13425 (1997)
  15. Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Noguchi T, Matozaki T, Horita K, Fujioka Y, Kasuga M. Mol Cell Biol 14 6674-6682 (1994)
  16. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. J Biol Chem 281 6785-6792 (2006)
  17. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Krishnan N, Koveal D, Miller DH, Xue B, Akshinthala SD, Kragelj J, Jensen MR, Gauss CM, Page R, Blackledge M, Muthuswamy SK, Peti W, Tonks NK. Nat Chem Biol 10 558-566 (2014)
  18. Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Gustafson TA, He W, Craparo A, Schaub CD, O'Neill TJ. Mol Cell Biol 15 2500-2508 (1995)
  19. Bisperoxovanadium compounds are potent PTEN inhibitors. Schmid AC, Byrne RD, Vilar R, Woscholski R. FEBS Lett 566 35-38 (2004)
  20. Identification of p130(cas) as a substrate for the cytosolic protein tyrosine phosphatase PTP-PEST. Garton AJ, Flint AJ, Tonks NK. Mol Cell Biol 16 6408-6418 (1996)
  21. Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Fauman EB, Cogswell JP, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ, Saper MA. Cell 93 617-625 (1998)
  22. Association of SET domain and myotubularin-related proteins modulates growth control. Cui X, De Vivo I, Slany R, Miyamoto A, Firestein R, Cleary ML. Nat Genet 18 331-337 (1998)
  23. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Denu JM, Lohse DL, Vijayalakshmi J, Saper MA, Dixon JE. Proc Natl Acad Sci U S A 93 2493-2498 (1996)
  24. Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase. Lee CH, Kominos D, Jacques S, Margolis B, Schlessinger J, Shoelson SE, Kuriyan J. Structure 2 423-438 (1994)
  25. The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Su XD, Taddei N, Stefani M, Ramponi G, Nordlund P. Nature 370 575-578 (1994)
  26. Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK, Tiganis T. Mol Cell Biol 23 2096-2108 (2003)
  27. Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Stebbins CE, Galán JE. Mol Cell 6 1449-1460 (2000)
  28. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Timms JF, Carlberg K, Gu H, Chen H, Kamatkar S, Nadler MJ, Rohrschneider LR, Neel BG. Mol Cell Biol 18 3838-3850 (1998)
  29. Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Liu F, Chernoff J. Biochem J 327 ( Pt 1) 139-145 (1997)
  30. Crystal structure of the tandem phosphatase domains of RPTP LAR. Nam HJ, Poy F, Krueger NX, Saito H, Frederick CA. Cell 97 449-457 (1999)
  31. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle. Reynolds RA, Yem AW, Wolfe CL, Deibel MR, Chidester CG, Watenpaugh KD. J Mol Biol 293 559-568 (1999)
  32. Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases. Whittier SK, Hengge AC, Loria JP. Science 341 899-903 (2013)
  33. PTPmu regulates N-cadherin-dependent neurite outgrowth. Burden-Gulley SM, Brady-Kalnay SM. J Cell Biol 144 1323-1336 (1999)
  34. ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3(-/-) mice. Yalcin S, Marinkovic D, Mungamuri SK, Zhang X, Tong W, Sellers R, Ghaffari S. EMBO J 29 4118-4131 (2010)
  35. Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain. Furukawa T, Itoh M, Krueger NX, Streuli M, Saito H. Proc Natl Acad Sci U S A 91 10928-10932 (1994)
  36. A catalytic mechanism for the dual-specific phosphatases. Denu JM, Dixon JE. Proc Natl Acad Sci U S A 92 5910-5914 (1995)
  37. Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Haque A, Andersen JN, Salmeen A, Barford D, Tonks NK. Cell 147 185-198 (2011)
  38. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Xu Q, Fu HH, Gupta R, Luan S. Plant Cell 10 849-857 (1998)
  39. Differential oxidation of protein-tyrosine phosphatases. Groen A, Lemeer S, van der Wijk T, Overvoorde J, Heck AJ, Ostman A, Barford D, Slijper M, den Hertog J. J Biol Chem 280 10298-10304 (2005)
  40. Structure determination of T cell protein-tyrosine phosphatase. Iversen LF, Moller KB, Pedersen AK, Peters GH, Petersen AS, Andersen HS, Branner S, Mortensen SB, Moller NP. J Biol Chem 277 19982-19990 (2002)
  41. Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. Nam HJ, Poy F, Saito H, Frederick CA. J Exp Med 201 441-452 (2005)
  42. Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. Manford A, Xia T, Saxena AK, Stefan C, Hu F, Emr SD, Mao Y. EMBO J 29 1489-1498 (2010)
  43. Regulation of thioredoxin peroxidase activity by C-terminal truncation. Koo KH, Lee S, Jeong SY, Kim ET, Kim HJ, Kim K, Song K, Chae HZ. Arch Biochem Biophys 397 312-318 (2002)
  44. The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin. Sun YJ, Chou CC, Chen WS, Wu RT, Meng M, Hsiao CD. Proc Natl Acad Sci U S A 96 5412-5417 (1999)
  45. Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Hsu F, Zhu W, Brennan L, Tao L, Luo ZQ, Mao Y. Proc Natl Acad Sci U S A 109 13567-13572 (2012)
  46. Structural determinants of SHP-2 function and specificity in Xenopus mesoderm induction. O'Reilly AM, Neel BG. Mol Cell Biol 18 161-177 (1998)
  47. In vitro evaluation of the permeation-enhancing effect of thiolated polycarbophil. Clausen AE, Bernkop-Schnürch A. J Pharm Sci 89 1253-1261 (2000)
  48. A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells. Boivin B, Zhang S, Arbiser JL, Zhang ZY, Tonks NK. Proc Natl Acad Sci U S A 105 9959-9964 (2008)
  49. PTP-PEST: a protein tyrosine phosphatase regulated by serine phosphorylation. Garton AJ, Tonks NK. EMBO J 13 3763-3771 (1994)
  50. A ligand-induced conformational change in the Yersinia protein tyrosine phosphatase. Schubert HL, Fauman EB, Stuckey JA, Dixon JE, Saper MA. Protein Sci 4 1904-1913 (1995)
  51. LMW-PTP is a negative regulator of insulin-mediated mitotic and metabolic signalling. Chiarugi P, Cirri P, Marra F, Raugei G, Camici G, Manao G, Ramponi G. Biochem Biophys Res Commun 238 676-682 (1997)
  52. Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion. Zalatan JG, Fenn TD, Herschlag D. J Mol Biol 384 1174-1189 (2008)
  53. Low-affinity binding determined by titration calorimetry using a high-affinity coupling ligand: a thermodynamic study of ligand binding to protein tyrosine phosphatase 1B. Zhang YL, Zhang ZY. Anal Biochem 261 139-148 (1998)
  54. Quality measures for protein alignment benchmarks. Edgar RC. Nucleic Acids Res 38 2145-2153 (2010)
  55. Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme. Changela A, Ho CK, Martins A, Shuman S, Mondragón A. EMBO J 20 2575-2586 (2001)
  56. Formin homology 2 domains occur in multiple contexts in angiosperms. Cvrcková F, Novotný M, Pícková D, Zárský V. BMC Genomics 5 44 (2004)
  57. Oleanolic acid and its derivatives: new inhibitor of protein tyrosine phosphatase 1B with cellular activities. Zhang YN, Zhang W, Hong D, Shi L, Shen Q, Li JY, Li J, Hu LH. Bioorg Med Chem 16 8697-8705 (2008)
  58. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families. Bordo D, Deriu D, Colnaghi R, Carpen A, Pagani S, Bolognesi M. J Mol Biol 298 691-704 (2000)
  59. Class II formin targeting to the cell cortex by binding PI(3,5)P(2) is essential for polarized growth. van Gisbergen PA, Li M, Wu SZ, Bezanilla M. J Cell Biol 198 235-250 (2012)
  60. Multiple dual specificity protein tyrosine phosphatases are expressed and regulated differentially in liver cell lines. Kwak SP, Dixon JE. J Biol Chem 270 1156-1160 (1995)
  61. Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. LaMontagne KR, Flint AJ, Franza BR, Pandergast AM, Tonks NK. Mol Cell Biol 18 2965-2975 (1998)
  62. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. Hofmann K, Bucher P, Kajava AV. J Mol Biol 282 195-208 (1998)
  63. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery. Choy MS, Li Y, Machado LESF, Kunze MBA, Connors CR, Wei X, Lindorff-Larsen K, Page R, Peti W. Mol Cell 65 644-658.e5 (2017)
  64. Dimerization of receptor protein-tyrosine phosphatase alpha in living cells. Tertoolen LG, Blanchetot C, Jiang G, Overvoorde J, Gadella TW, Hunter T, den Hertog J. BMC Cell Biol 2 8 (2001)
  65. Probing cellular protein targets of H2O2 with fluorescein-conjugated iodoacetamide and antibodies to fluorescein. Wu Y, Kwon KS, Rhee SG. FEBS Lett 440 111-115 (1998)
  66. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1. Shen Y, Luche R, Wei B, Gordon ML, Diltz CD, Tonks NK. Proc Natl Acad Sci U S A 98 13613-13618 (2001)
  67. Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Bennett MS, Guan Z, Laurberg M, Su XD. Proc Natl Acad Sci U S A 98 13577-13582 (2001)
  68. Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Ah Fong AM, Judelson HS. Mol Microbiol 50 487-494 (2003)
  69. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. Wang W, Liu L, Song X, Mo Y, Komma C, Bellamy HD, Zhao ZJ, Zhou GW. J Cell Biochem 112 2062-2071 (2011)
  70. Identification and structural characterization of a Legionella phosphoinositide phosphatase. Toulabi L, Wu X, Cheng Y, Mao Y. J Biol Chem 288 24518-24527 (2013)
  71. PDGF receptor as a specific in vivo target for low M(r) phosphotyrosine protein phosphatase. Chiarugi P, Cirri P, Raugei G, Camici G, Dolfi F, Berti A, Ramponi G. FEBS Lett 372 49-53 (1995)
  72. Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins. Grunt M, Zárský V, Cvrcková F. BMC Evol Biol 8 115 (2008)
  73. Bracoviruses contain a large multigene family coding for protein tyrosine phosphatases. Provost B, Varricchio P, Arana E, Espagne E, Falabella P, Huguet E, La Scaleia R, Cattolico L, Poirié M, Malva C, Olszewski JA, Pennacchio F, Drezen JM. J Virol 78 13090-13103 (2004)
  74. Tight association of GRB2 with receptor protein-tyrosine phosphatase alpha is mediated by the SH2 and C-terminal SH3 domains. den Hertog J, Hunter T. EMBO J 15 3016-3027 (1996)
  75. Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution. Madhurantakam C, Rajakumara E, Mazumdar PA, Saha B, Mitra D, Wiker HG, Sankaranarayanan R, Das AK. J Bacteriol 187 2175-2181 (2005)
  76. Elevated expression and activity of protein-tyrosine phosphatase 1B in skeletal muscle of insulin-resistant type II diabetic Goto-Kakizaki rats. Dadke SS, Li HC, Kusari AB, Begum N, Kusari J. Biochem Biophys Res Commun 274 583-589 (2000)
  77. HD-PTP: A novel protein tyrosine phosphatase gene on human chromosome 3p21.3. Toyooka S, Ouchida M, Jitsumori Y, Tsukuda K, Sakai A, Nakamura A, Shimizu N, Shimizu K. Biochem Biophys Res Commun 278 671-678 (2000)
  78. Isoxazole carboxylic acids as protein tyrosine phosphatase 1B (PTP1B) inhibitors. Zhao H, Liu G, Xin Z, Serby MD, Pei Z, Szczepankiewicz BG, Hajduk PJ, Abad-Zapatero C, Hutchins CW, Lubben TH, Ballaron SJ, Haasch DL, Kaszubska W, Rondinone CM, Trevillyan JM, Jirousek MR. Bioorg Med Chem Lett 14 5543-5546 (2004)
  79. Editorial PTEN: sometimes taking it off can be better than putting it on. Myers MP, Tonks NK. Am J Hum Genet 61 1234-1238 (1997)
  80. Crystal structure of a human low molecular weight phosphotyrosyl phosphatase. Implications for substrate specificity. Zhang M, Stauffacher CV, Lin D, Van Etten RL. J Biol Chem 273 21714-21720 (1998)
  81. Protein cysteine sulfinic acid reductase (sulfiredoxin) as a regulator of cell proliferation and drug response. Lei K, Townsend DM, Tew KD. Oncogene 27 4877-4887 (2008)
  82. A glutamate switch controls voltage-sensitive phosphatase function. Liu L, Kohout SC, Xu Q, Müller S, Kimberlin CR, Isacoff EY, Minor DL. Nat Struct Mol Biol 19 633-641 (2012)
  83. A molecular dynamics study of WPD-loop flexibility in PTP1B. Kamerlin SC, Rucker R, Boresch S. Biochem Biophys Res Commun 356 1011-1016 (2007)
  84. Molecular dynamics studies on the interactions of PTP1B with inhibitors: from the first phosphate-binding site to the second one. Wang JF, Gong K, Wei DQ, Li YX, Chou KC. Protein Eng Des Sel 22 349-355 (2009)
  85. JNK pathway-associated phosphatase dephosphorylates focal adhesion kinase and suppresses cell migration. Li JP, Fu YN, Chen YR, Tan TH. J Biol Chem 285 5472-5478 (2010)
  86. Structural basis for inhibition of protein-tyrosine phosphatase 1B by isothiazolidinone heterocyclic phosphonate mimetics. Ala PJ, Gonneville L, Hillman MC, Becker-Pasha M, Wei M, Reid BG, Klabe R, Yue EW, Wayland B, Douty B, Polam P, Wasserman Z, Bower M, Combs AP, Burn TC, Hollis GF, Wynn R. J Biol Chem 281 32784-32795 (2006)
  87. Targeting inactive enzyme conformation: aryl diketoacid derivatives as a new class of PTP1B inhibitors. Liu S, Zeng LF, Wu L, Yu X, Xue T, Gunawan AM, Long YQ, Zhang ZY. J Am Chem Soc 130 17075-17084 (2008)
  88. Central regulation of metabolism by protein tyrosine phosphatases. Tsou RC, Bence KK. Front Neurosci 6 192 (2012)
  89. Strategies for developing protein tyrosine phosphatase inhibitors. Tautz L, Mustelin T. Methods 42 250-260 (2007)
  90. The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases. Krishnan N, Bencze G, Cohen P, Tonks NK. FEBS J 280 2830-2841 (2013)
  91. Enhanced functional annotation of protein sequences via the use of structural descriptors. Di Gennaro JA, Siew N, Hoffman BT, Zhang L, Skolnick J, Neilson LI, Fetrow JS. J Struct Biol 134 232-245 (2001)
  92. Molecular dynamics simulations of protein-tyrosine phosphatase 1B. I. ligand-induced changes in the protein motions. Peters GH, Frimurer TM, Andersen JN, Olsen OH. Biophys J 77 505-515 (1999)
  93. Structural basis for the glucan phosphatase activity of Starch Excess4. Vander Kooi CW, Taylor AO, Pace RM, Meekins DA, Guo HF, Kim Y, Gentry MS. Proc Natl Acad Sci U S A 107 15379-15384 (2010)
  94. Energetics of nucleophile activation in a protein tyrosine phosphatase. Hansson T, Nordlund P, Aqvist J. J Mol Biol 265 118-127 (1997)
  95. MAPK-specific tyrosine phosphatases: new targets for drug discovery? Barr AJ, Knapp S. Trends Pharmacol Sci 27 525-530 (2006)
  96. Thiolated carboxymethylcellulose: in vitro evaluation of its permeation enhancing effect on peptide drugs. Clausen AE, Bernkop-Schnürch A. Eur J Pharm Biopharm 51 25-32 (2001)
  97. Probing the function of the conserved tryptophan in the flexible loop of the Yersinia protein-tyrosine phosphatase. Keng YF, Wu L, Zhang ZY. Eur J Biochem 259 809-814 (1999)
  98. Discovery of new potent human protein tyrosine phosphatase inhibitors via pharmacophore and QSAR analysis followed by in silico screening. Taha MO, Bustanji Y, Al-Bakri AG, Yousef AM, Zalloum WA, Al-Masri IM, Atallah N. J Mol Graph Model 25 870-884 (2007)
  99. Glycogen synthase kinase-3β regulates Tyr307 phosphorylation of protein phosphatase-2A via protein tyrosine phosphatase 1B but not Src. Yao XQ, Zhang XX, Yin YY, Liu B, Luo DJ, Liu D, Chen NN, Ni ZF, Wang X, Wang Q, Wang JZ, Liu GP. Biochem J 437 335-344 (2011)
  100. Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Grundner C, Ng HL, Alber T. Structure 13 1625-1634 (2005)
  101. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site. Mustelin T, Tautz L, Page R. J Mol Biol 354 150-163 (2005)
  102. Structure-based design and discovery of novel inhibitors of protein tyrosine phosphatases. Huang P, Ramphal J, Wei J, Liang C, Jallal B, McMahon G, Tang C. Bioorg Med Chem 11 1835-1849 (2003)
  103. Insulin-induced tyrosine dephosphorylation of paxillin and focal adhesion kinase requires active phosphotyrosine phosphatase 1D. Ouwens DM, Mikkers HM, van der Zon GC, Stein-Gerlach M, Ullrich A, Maassen JA. Biochem J 318 ( Pt 2) 609-614 (1996)
  104. Purification and Characterization of a Potato Tuber Acid Phosphatase Having Significant Phosphotyrosine Phosphatase Activity. Gellatly KS, Moorhead G, Duff S, Lefebvre DD, Plaxton WC. Plant Physiol 106 223-232 (1994)
  105. Regulation of neuregulin-mediated acetylcholine receptor synthesis by protein tyrosine phosphatase SHP2. Tanowitz M, Si J, Yu DH, Feng GS, Mei L. J Neurosci 19 9426-9435 (1999)
  106. Crystal structure of a complex between protein tyrosine phosphatase 1B and the insulin receptor tyrosine kinase. Li S, Depetris RS, Barford D, Chernoff J, Hubbard SR. Structure 13 1643-1651 (2005)
  107. Energy drink consumption, health complaints and late bedtime among young adolescents. Koivusilta L, Kuoppamäki H, Rimpelä A. Int J Public Health 61 299-306 (2016)
  108. Potent non-peptidyl inhibitors of protein tyrosine phosphatase 1B. Taylor SD, Kotoris CC, Dinaut AN, Wang Q, Ramachandran C, Huang Z. Bioorg Med Chem 6 1457-1468 (1998)
  109. Protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus: sequence analysis, expression profile, and a possible biological role in host immunosuppression. Ibrahim AM, Choi JY, Je YH, Kim Y. Dev Comp Immunol 31 978-990 (2007)
  110. Signal transduction. Switching off MAP kinases. Clarke PR. Curr Biol 4 647-650 (1994)
  111. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses. Ibrahim AM, Kim Y. Naturwissenschaften 95 25-32 (2008)
  112. Discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (PtpB) inhibitors from natural products. Mascarello A, Mori M, Chiaradia-Delatorre LD, Menegatti AC, Delle Monache F, Ferrari F, Yunes RA, Nunes RJ, Terenzi H, Botta B, Botta M. PLoS One 8 e77081 (2013)
  113. Impaired acid catalysis by mutation of a protein loop hinge residue in a YopH mutant revealed by crystal structures. Brandão TA, Robinson H, Johnson SJ, Hengge AC. J Am Chem Soc 131 778-786 (2009)
  114. Molecular dynamics simulations of protein-tyrosine phosphatase 1B. II. substrate-enzyme interactions and dynamics. Peters GH, Frimurer TM, Andersen JN, Olsen OH. Biophys J 78 2191-2200 (2000)
  115. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 2. Benchmark in the CSAR-2010 scoring exercise. Sulea T, Cui Q, Purisima EO. J Chem Inf Model 51 2066-2081 (2011)
  116. Structural insights into glucan phosphatase dynamics using amide hydrogen-deuterium exchange mass spectrometry. Hsu S, Kim Y, Li S, Durrant ES, Pace RM, Woods VL, Gentry MS. Biochemistry 48 9891-9902 (2009)
  117. 3-Substituted indolizine-1-carbonitrile derivatives as phosphatase inhibitors. Weide T, Arve L, Prinz H, Waldmann H, Kessler H. Bioorg Med Chem Lett 16 59-63 (2006)
  118. In vivo inactivation of phosphotyrosine protein phosphatases by nitric oxide. Caselli A, Chiarugi P, Camici G, Manao G, Ramponi G. FEBS Lett 374 249-252 (1995)
  119. Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase. Puhl AA, Gruninger RJ, Greiner R, Janzen TW, Mosimann SC, Selinger LB. Protein Sci 16 1368-1378 (2007)
  120. NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation. Sánchez-Gómez FJ, Calvo E, Bretón-Romero R, Fierro-Fernández M, Anilkumar N, Shah AM, Schröder K, Brandes RP, Vázquez J, Lamas S. Free Radic Biol Med 89 419-430 (2015)
  121. The four cdc25 genes from the nematode Caenorhabditis elegans. Ashcroft NR, Kosinski ME, Wickramasinghe D, Donovan PJ, Golden A. Gene 214 59-66 (1998)
  122. The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ. Alonso A, Burkhalter S, Sasin J, Tautz L, Bogetz J, Huynh H, Bremer MC, Holsinger LJ, Godzik A, Mustelin T. J Biol Chem 279 35768-35774 (2004)
  123. A targeted molecular dynamics study of WPD loop movement in PTP1B. Kamerlin SC, Rucker R, Boresch S. Biochem Biophys Res Commun 345 1161-1166 (2006)
  124. Multiple roles of the novel protein tyrosine phosphatase PTP3 during Dictyostelium growth and development. Gamper M, Howard PK, Hunter T, Firtel RA. Mol Cell Biol 16 2431-2444 (1996)
  125. Oxidative stress-induced expression and modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in mammalian retina. Yu L, Kelly U, Ebright JN, Malek G, Saloupis P, Rickman DW, McKay BS, Arshavsky VY, Bowes Rickman C. Biochim Biophys Acta 1773 1473-1482 (2007)
  126. The apo-structure of the low molecular weight protein-tyrosine phosphatase A (MptpA) from Mycobacterium tuberculosis allows for better target-specific drug development. Stehle T, Sreeramulu S, Löhr F, Richter C, Saxena K, Jonker HR, Schwalbe H. J Biol Chem 287 34569-34582 (2012)
  127. Uncovering the Molecular Interactions in the Catalytic Loop That Modulate the Conformational Dynamics in Protein Tyrosine Phosphatase 1B. Cui DS, Lipchock JM, Brookner D, Loria JP. J Am Chem Soc 141 12634-12647 (2019)
  128. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B. Ali MY, Jannat S, Jung HA, Jeong HO, Chung HY, Choi JS. Chem Biol Interact 252 93-101 (2016)
  129. Phosphatase inhibitors--III. Benzylaminophosphonic acids as potent inhibitors of human prostatic acid phosphatase. Beers SA, Schwender CF, Loughney DA, Malloy E, Demarest K, Jordan J. Bioorg Med Chem 4 1693-1701 (1996)
  130. SKAP55 coupled with CD45 positively regulates T-cell receptor-mediated gene transcription. Wu L, Fu J, Shen SH. Mol Cell Biol 22 2673-2686 (2002)
  131. Cross reactivity between IA-2 and phogrin/IA-2beta in binding of autoantibodies in IDDM. Hatfield EC, Hawkes CJ, Payton MA, Christie MR. Diabetologia 40 1327-1333 (1997)
  132. Cloning and characterization of a Saccharomyces cerevisiae gene encoding the low molecular weight protein-tyrosine phosphatase. Ostanin K, Pokalsky C, Wang S, Van Etten RL. J Biol Chem 270 18491-18499 (1995)
  133. Diversity of phytases in the rumen. Nakashima BA, McAllister TA, Sharma R, Selinger LB. Microb Ecol 53 82-88 (2007)
  134. Identification of novel PTP1B inhibitors by pharmacophore based virtual screening, scaffold hopping and docking. Balaramnavar VM, Srivastava R, Rahuja N, Gupta S, Rawat AK, Varshney S, Chandasana H, Chhonker YS, Doharey PK, Kumar S, Gautam S, Srivastava SP, Bhatta RS, Saxena JK, Gaikwad AN, Srivastava AK, Saxena AK. Eur J Med Chem 87 578-594 (2014)
  135. Inhibition of protein tyrosine phosphatases PTP1B and CD45 by sulfotyrosyl peptides. Desmarais S, Jia Z, Ramachandran C. Arch Biochem Biophys 354 225-231 (1998)
  136. Isolation and characterization of a hyperbranched proteoglycan from Ganoderma lucidum for anti-diabetes. Pan D, Wang L, Chen C, Hu B, Zhou P. Carbohydr Polym 117 106-114 (2015)
  137. Role of Protein Tyrosine Phosphatases in Plants. Shankar A, Agrawal N, Sharma M, Pandey A, Pandey A, Girdhar K Pandey M. Curr Genomics 16 224-236 (2015)
  138. Alpha7 helix plays an important role in the conformational stability of PTP1B. Olmez EO, Alakent B. J Biomol Struct Dyn 28 675-693 (2011)
  139. Inactivation of MMAC1 in bladder transitional-cell carcinoma cell lines and specimens. Liu J, Babaian DC, Liebert M, Steck PA, Kagan J. Mol Carcinog 29 143-150 (2000)
  140. Nox4 redox regulation of PTP1B contributes to the proliferation and migration of glioblastoma cells by modulating tyrosine phosphorylation of coronin-1C. Mondol AS, Tonks NK, Kamata T. Free Radic Biol Med 67 285-291 (2014)
  141. Nitric oxide-mediated alterations of protein tyrosine phosphatase activity and expression during hypoxia in the cerebral cortex of newborn piglets. Ashraf QM, Haider SH, Katsetos CD, Delivoria-Papadopoulos M, Mishra O. Neurosci Lett 362 108-112 (2004)
  142. The N-terminal domains of tensin and auxilin are phosphatase homologues. Haynie DT, Ponting CP. Protein Sci 5 2643-2646 (1996)
  143. Growth stimulation of primary B cell precursors by the anti-phosphatase Sbf1. De Vivo I, Cui X, Domen J, Cleary ML. Proc Natl Acad Sci U S A 95 9471-9476 (1998)
  144. Identification of an essential acidic residue in Cdc25 protein phosphatase and a general three-dimensional model for a core region in protein phosphatases. Eckstein JW, Beer-Romero P, Berdo I. Protein Sci 5 5-12 (1996)
  145. Properties of a baculovirus mutant defective in the protein phosphatase gene. Li Y, Miller LK. J Virol 69 4533-4537 (1995)
  146. Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop. Critton DA, Tautz L, Page R. J Mol Biol 405 619-629 (2011)
  147. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2beta). Drake PG, Peters GH, Andersen HS, Hendriks W, Møller NP. Biochem J 373 393-401 (2003)
  148. A tandem of SH3-like domains participates in RNA binding in KIN17, a human protein activated in response to genotoxics. le Maire A, Schiltz M, Stura EA, Pinon-Lataillade G, Couprie J, Moutiez M, Gondry M, Angulo JF, Zinn-Justin S. J Mol Biol 364 764-776 (2006)
  149. Glutathione deficiency down-regulates hepatic lipogenesis in rats. Brandsch C, Schmidt T, Behn D, Weisse K, Mueller AS, Stangl GI. Lipids Health Dis 9 50 (2010)
  150. MAP kinase kinase kinase (MAPKKK)-dependent and -independent activation of Sty1 stress MAPK in fission yeast. Zhou X, Ma Y, Sugiura R, Kobayashi D, Suzuki M, Deng L, Kuno T. J Biol Chem 285 32818-32823 (2010)
  151. Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling. Bharatham K, Bharatham N, Kwon YJ, Lee KW. J Comput Aided Mol Des 22 925-933 (2008)
  152. Naphthalenebis[alpha,alpha-difluoromethylenephosphonates] as potent inhibitors of protein tyrosine phosphatases. Wang Q, Huang Z, Ramachandran C, Dinaut AN, Taylor SD. Bioorg Med Chem Lett 8 345-350 (1998)
  153. Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation. Szedlacsek SE, Aricescu AR, Fulga TA, Renault L, Scheidig AJ. J Mol Biol 311 557-568 (2001)
  154. Protein tyrosine phosphatase inhibition induces anti-tumor activity: evidence of Cdk2/p27 kip1 and Cdk2/SHP-1 complex formation in human ovarian cancer cells. Caron D, Savard PE, Doillon CJ, Olivier M, Shink E, Lussier JG, Faure RL. Cancer Lett 262 265-275 (2008)
  155. The extraordinary active site substrate specificity of pp60c-src. A multiple specificity protein kinase. Lee TR, Niu J, Lawrence DS. J Biol Chem 270 5375-5380 (1995)
  156. An intuitive approach to measuring protein surface curvature. Coleman RG, Burr MA, Souvaine DL, Cheng AC. Proteins 61 1068-1074 (2005)
  157. Cloning of murine low molecular weight phosphotyrosine protein phosphatase cDNA: identification of a new isoform. Magherini F, Giannoni E, Raugei G, Cirri P, Paoli P, Modesti A, Camici G, Ramponi G. FEBS Lett 437 263-266 (1998)
  158. Conserved conformational dynamics determine enzyme activity. Torgeson KR, Clarkson MW, Granata D, Lindorff-Larsen K, Page R, Peti W. Sci Adv 8 eabo5546 (2022)
  159. Cosolvent Analysis Toolkit (CAT): a robust hotspot identification platform for cosolvent simulations of proteins to expand the druggable proteome. Sabanés Zariquiey F, de Souza JV, Bronowska AK. Sci Rep 9 19118 (2019)
  160. Crystal structure of the protein histidine phosphatase SixA in the multistep His-Asp phosphorelay. Hamada K, Kato M, Shimizu T, Ihara K, Mizuno T, Hakoshima T. Genes Cells 10 1-11 (2005)
  161. Expression, purification, and crystallization of the catalytic domain of protein tyrosine phosphatase SHP-1. Liang X, Meng W, Niu T, Zhao Z, Zhou GW. J Struct Biol 120 201-203 (1997)
  162. New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities. Qin NB, Jia CC, Xu J, Li DH, Xu FX, Bai J, Li ZL, Hua HM. Fitoterapia 119 83-89 (2017)
  163. Reciprocal allosteric regulation of p38γ and PTPN3 involves a PDZ domain-modulated complex formation. Chen KE, Lin SY, Wu MJ, Ho MR, Santhanam A, Chou CC, Meng TC, Wang AH. Sci Signal 7 ra98 (2014)
  164. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition. Tal TL, Bromberg PA, Kim Y, Samet JM. Toxicol Appl Pharmacol 233 382-388 (2008)
  165. New aspects of the phosphatase VHZ revealed by a high-resolution structure with vanadate and substrate screening. Kuznetsov VI, Hengge AC, Johnson SJ. Biochemistry 51 9869-9879 (2012)
  166. Non-radioactive method to measure CD45 protein tyrosine phosphatase activity isolated directly from cells. Ng DH, Harder KW, Clark-Lewis I, Jirik F, Johnson P. J Immunol Methods 179 177-185 (1995)
  167. Purification and characterization of T cell protein tyrosine phosphatase reveals significant functional homology to protein tyrosine phosphatase-1B. Romsicki Y, Kennedy BP, Asante-Appiah E. Arch Biochem Biophys 414 40-50 (2003)
  168. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations. Pasquo A, Consalvi V, Knapp S, Alfano I, Ardini M, Stefanini S, Chiaraluce R. PLoS One 7 e32555 (2012)
  169. The role of the C-terminal domain of protein tyrosine phosphatase-1B in phosphatase activity and substrate binding. Picha KM, Patel SS, Mandiyan S, Koehn J, Wennogle LP. J Biol Chem 282 2911-2917 (2007)
  170. A novel isoform of the low molecular weight phosphotyrosine phosphatase, LMPTP-C, arising from alternative mRNA splicing. Tailor P, Gilman J, Williams S, Mustelin T. Eur J Biochem 262 277-282 (1999)
  171. Acylsulfonamide-containing PTP1B inhibitors designed to mimic an enzyme-bound water of hydration. Liu DG, Gao Y, Voigt JH, Lee K, Nicklaus MC, Wu L, Zhang ZY, Burke TR. Bioorg Med Chem Lett 13 3005-3007 (2003)
  172. Allele-specific inhibition of divergent protein tyrosine phosphatases with a single small molecule. Zhang XY, Chen VL, Rosen MS, Blair ER, Lone AM, Bishop AC. Bioorg Med Chem 16 8090-8097 (2008)
  173. Anti-Diabetic Activity of 2,3,6-Tribromo-4,5-Dihydroxybenzyl Derivatives from Symphyocladia latiuscula through PTP1B Downregulation and α-Glucosidase Inhibition. Paudel P, Seong SH, Park HJ, Jung HA, Choi JS. Mar Drugs 17 E166 (2019)
  174. Calpain-mediated degradation of reversibly oxidized protein-tyrosine phosphatase 1B. Trümpler A, Schlott B, Herrlich P, Greer PA, Böhmer FD. FEBS J 276 5622-5633 (2009)
  175. Crystal structure of the major diabetes autoantigen insulinoma-associated protein 2 reveals distinctive immune epitopes. Kim SJ, Jeong DG, Jeong SK, Yoon TS, Ryu SE. Diabetes 56 41-48 (2007)
  176. Inhibition of calcineurin by the tyrphostin class of tyrosine kinase inhibitors. Martin BL. Biochem Pharmacol 56 483-488 (1998)
  177. Molecular cloning and tissue-specific RNA processing of a murine receptor-type protein tyrosine phosphatase. Wagner J, Boerboom D, Tremblay ML. Eur J Biochem 226 773-782 (1994)
  178. Molecular dynamics simulations of interaction between protein-tyrosine phosphatase 1B and a bidentate inhibitor. Liu GX, Tan JZ, Niu CY, Shen JH, Luo XM, Shen X, Chen KX, Jiang HL. Acta Pharmacol Sin 27 100-110 (2006)
  179. Myxoma virus and Shope fibroma virus encode dual-specificity tyrosine/serine phosphatases which are essential for virus viability. Mossman K, Ostergaard H, Upton C, McFadden G. Virology 206 572-582 (1995)
  180. Negative regulation of mitosis in fission yeast by catalytically inactive pyp1 and pyp2 mutants. Hannig G, Ottilie S, Erikson RL. Proc Natl Acad Sci U S A 91 10084-10088 (1994)
  181. Small molecule receptor protein tyrosine phosphatase γ (RPTPγ) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. Sheriff S, Beno BR, Zhai W, Kostich WA, McDonnell PA, Kish K, Goldfarb V, Gao M, Kiefer SE, Yanchunas J, Huang Y, Shi S, Zhu S, Dzierba C, Bronson J, Macor JE, Appiah KK, Westphal RS, O'Connell J, Gerritz SW. J Med Chem 54 6548-6562 (2011)
  182. The MBP fusion protein restores the activity of the first phosphatase domain of CD45. Lorenzo HK, Farber D, Germain V, Acuto O, Alzari PM. FEBS Lett 411 231-235 (1997)
  183. Active site titration of the tyrosine phosphatases SHP-1 and PTP1B using aromatic disulfides. Reaction with the essential cysteine residue in the active site. Pregel MJ, Storer AC. J Biol Chem 272 23552-23558 (1997)
  184. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development. Stumpf M, den Hertog J. PLoS One 11 e0148508 (2016)
  185. Fine mapping of diabetes-associated IA-2 specific autoantibodies. Bearzatto M, Lampasona V, Belloni C, Bonifacio E. J Autoimmun 21 377-382 (2003)
  186. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors. Mahapatra MK, Bera K, Singh DV, Kumar R, Kumar M. J Biomol Struct Dyn 36 1195-1211 (2018)
  187. Inhibition of a metal-dependent viral RNA triphosphatase by decavanadate. Bougie I, Bisaillon M. Biochem J 398 557-567 (2006)
  188. Congress Phosphatases and kinases in lymphocyte signaling. Yakura H. Immunol Today 19 198-201 (1998)
  189. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches. Shinde RN, Kumar GS, Eqbal S, Sobhia ME. PLoS One 13 e0199020 (2018)
  190. Structural characterization and bioactivity evaluation of an acidic proteoglycan extract from Ganoderma lucidum fruiting bodies for PTP1B inhibition and anti-diabetes. Pan D, Wang L, Hu B, Zhou P. Biopolymers 101 613-623 (2014)
  191. The crystal structure of human receptor protein tyrosine phosphatase kappa phosphatase domain 1. Eswaran J, Debreczeni JE, Longman E, Barr AJ, Knapp S. Protein Sci 15 1500-1505 (2006)
  192. Antidiabetic Bis-Maltolato-OxoVanadium(IV): conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B. Scior T, Mack HG, García JA, Koch W. Drug Des Devel Ther 2 221-231 (2009)
  193. Biochemical characterization of a protein tyrosine phosphatase from Trypanosoma cruzi involved in metacyclogenesis and cell invasion. Gallo G, Ramos TC, Tavares F, Rocha AA, Machi E, Schenkman S, Bahia D, Pesquero JB, Würtele M. Biochem Biophys Res Commun 408 427-431 (2011)
  194. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors. Mei W, Wang K, Huang J, Zheng X. PLoS One 11 e0166538 (2016)
  195. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity. Kim SJ, Jeong DG, Yoon TS, Son JH, Cho SK, Ryu SE, Kim JH. Proteins 66 239-245 (2007)
  196. Crystal structure of human protein tyrosine phosphatase 14 (PTPN14) at 1.65-A resolution. Barr AJ, Debreczeni JE, Eswaran J, Knapp S. Proteins 63 1132-1136 (2006)
  197. Discovery and evaluation of the hybrid of bromophenol and saccharide as potent and selective protein tyrosine phosphatase 1B inhibitors. Zhang R, Yu R, Xu Q, Li X, Luo J, Jiang B, Wang L, Guo S, Wu N, Shi D. Eur J Med Chem 134 24-33 (2017)
  198. Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis. Sánchez-Lombardo I, Alvarez S, McLauchlan CC, Crans DC. J Inorg Biochem 147 153-164 (2015)
  199. Expression, purification and crystallization of human phosphotyrosine phosphatase 1B. Hoppe E, Berne PF, Stock D, Rasmussen JS, Møller NP, Ullrich A, Huber R. Eur J Biochem 223 1069-1077 (1994)
  200. Expression, purification and preliminary crystal analysis of the human low Mr phosphotyrosine protein phosphatase isoform 1. Marzocchini R, Bucciantini M, Stefani M, Taddei N, Thunnissen MG, Nordlund P, Ramponi G. FEBS Lett 426 52-56 (1998)
  201. Identification and evaluation of magnolol and chrysophanol as the principle protein tyrosine phosphatase-1B inhibitory compounds in a Kampo medicine, Masiningan. Onoda T, Li W, Sasaki T, Miyake M, Higai K, Koike K. J Ethnopharmacol 186 84-90 (2016)
  202. Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study. Mavri J, Vogel HJ. Proteins 24 495-501 (1996)
  203. Kinetic comparison of the catalytic domains of SHP-1 and SHP-2. Niu T, Liang X, Yang J, Zhao Z, Zhou GW. J Cell Biochem 72 145-150 (1999)
  204. PTP1B inhibitors: synthesis and evaluation of difluoro-methylenephosphonate bioisosteres on a sulfonamide scaffold. Holmes CP, Li X, Pan Y, Xu C, Bhandari A, Moody CM, Miguel JA, Ferla SW, De Francisco MN, Frederick BT, Zhou S, Macher N, Jang L, Irvine JD, Grove JR. Bioorg Med Chem Lett 18 2719-2724 (2008)
  205. Regulation of the calcium/NF-AT T cell activation pathway by the D2 domain of CD45. Wang Y, Liang L, Esselman WJ. J Immunol 164 2557-2564 (2000)
  206. The Pro387Leu variant of protein tyrosine phosphatase-1B is not associated with diabetes mellitus type 2 in a German population. Gouni-Berthold I, Giannakidou E, Müller-Wieland D, Faust M, Kotzka J, Berthold HK, Krone W. J Intern Med 257 272-280 (2005)
  207. Letter Backbone resonance assignment of the 298 amino acid catalytic domain of protein tyrosine phosphatase 1B (PTP1B). Meier S, Li YC, Koehn J, Vlattas I, Wareing J, Jahnke W, Wennogle LP, Grzesiek S. J Biomol NMR 24 165-166 (2002)
  208. Characterization and chromosomal localization of PTP-NP-2, a new isoform of protein tyrosine phosphatase-like receptor, expressed on synaptic boutons. Jiang S, Tulloch AG, Kim TA, Fu Y, Rogers R, Gaskell A, White RA, Avraham H, Avraham S. Gene 215 345-359 (1998)
  209. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I. Meng G, Zheng M, Wang M, Tong J, Ge W, Zhang J, Zheng A, Li J, Gao L, Li J. Eur J Med Chem 122 756-769 (2016)
  210. Mechanism of substrate dephosphorylation in low Mr protein tyrosine phosphatase. Kolmodin K, Nordlund P, Aqvist J. Proteins 36 370-379 (1999)
  211. Sequence-specific recognition of peptide substrates by the low Mr phosphotyrosine protein phosphatase isoforms. Bucciantini M, Stefani M, Taddei N, Chiti F, Rigacci S, Ramponi G. FEBS Lett 422 213-217 (1998)
  212. VSpipe, an Integrated Resource for Virtual Screening and Hit Selection: Applications to Protein Tyrosine Phospahatase Inhibition. Álvarez-Carretero S, Pavlopoulou N, Adams J, Gilsenan J, Tabernero L. Molecules 23 E353 (2018)
  213. Analyzing the catalytic mechanism of MPtpA: a low molecular weight protein tyrosine phosphatase from Mycobacterium tuberculosis through site-directed mutagenesis. Madhurantakam C, Chavali VR, Das AK. Proteins 71 706-714 (2008)
  214. Comment Enzyme structure. Cracking tyrosine phosphatases. Tainer J, Russell P. Nature 370 506-507 (1994)
  215. Lactose-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus. Purification of the histidine-tagged transmembrane component IICBLac and its hydrophilic IIB domain by metal-affinity chromatography, and functional characterization. Peters D, Frank R, Hengstenberg W. Eur J Biochem 228 798-804 (1995)
  216. Mapping and identification of protein-protein interactions by two-dimensional far-Western immunoblotting. Pasquali C, Vilbois F, Curchod ML, Hooft van Huijsduijnen R, Arigoni F. Electrophoresis 21 3357-3368 (2000)
  217. New chemically reactive dsDNAs containing single internucleotide monophosphoryldithio links: reactivity of 5'-mercapto-oligodeoxyribonucleotides. Metelev VG, Borisova OA, Volkov EM, Oretskaya TS, Dolinnaya NG. Nucleic Acids Res 29 4062-4069 (2001)
  218. Predicted secondary and supersecondary structure for the serine-threonine-specific protein phosphatase family. Jenny TF, Gerloff DL, Cohen MA, Benner SA. Proteins 21 1-10 (1995)
  219. Specific inhibition of sensitized protein tyrosine phosphatase 1B (PTP1B) with a biarsenical probe. Davis OB, Bishop AC. Bioconjug Chem 23 272-278 (2012)
  220. The PTP family photo album. Tremblay ML. Cell 136 213-214 (2009)
  221. The second-sphere residue T263 is important for the function and catalytic activity of PTP1B via interaction with the WPD-loop. Xiao P, Wang X, Wang HM, Fu XL, Cui FA, Yu X, Wen SS, Bi WX, Sun JP. Int J Biochem Cell Biol 57 84-95 (2014)
  222. Thermosensitive mutants of the MPTP and hPTP1B protein tyrosine phosphatases: isolation and structural analysis. Muise ES, Vrielink A, Ennis MA, Lemieux NH, Tremblay ML. Protein Sci 5 604-613 (1996)
  223. Letter Classification of binding site conformations of protein tyrosine phosphatase 1B. Tanchuk VY, Tanin VO, Vovk AI. Chem Biol Drug Des 80 121-128 (2012)
  224. Comparative analysis of the Band 4.1/ezrin-related protein tyrosine phosphatase Pez from two Drosophila species: implications for structure and function. Edwards K, Davis T, Marcey D, Kurihara J, Yamamoto D. Gene 275 195-205 (2001)
  225. Comparative molecular similarity indices analysis (CoMSIA) studies of 1,2-naphthoquinone derivatives as PTP1B inhibitors. Sobhia ME, Bharatam PV. Bioorg Med Chem 13 2331-2338 (2005)
  226. Conservative tryptophan mutants of the protein tyrosine phosphatase YopH exhibit impaired WPD-loop function and crystallize with divanadate esters in their active sites. Moise G, Gallup NM, Alexandrova AN, Hengge AC, Johnson SJ. Biochemistry 54 6490-6500 (2015)
  227. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes. Ku B, Keum CW, Lee HS, Yun HY, Shin HC, Kim BY, Kim SJ. Biochem Biophys Res Commun 478 1217-1222 (2016)
  228. Design, synthesis and molecular modelling studies of novel 3-acetamido-4-methyl benzoic acid derivatives as inhibitors of protein tyrosine phosphatase 1B. Rakse M, Karthikeyan C, Deora GS, Moorthy NS, Rathore V, Rawat AK, Srivastava AK, Trivedi P. Eur J Med Chem 70 469-476 (2013)
  229. Flavonoids as potent allosteric inhibitors of protein tyrosine phosphatase 1B: molecular dynamics simulation and free energy calculation. Zargari F, Lotfi M, Shahraki O, Nikfarjam Z, Shahraki J. J Biomol Struct Dyn 36 4126-4142 (2018)
  230. Inactivation of protein tyrosine phosphatases by oltipraz and other cancer chemopreventive 1,2-dithiole-3-thiones. Bhattacharyya S, Zhou H, Seiner DR, Gates KS. Bioorg Med Chem 18 5945-5949 (2010)
  231. Inhibition Mechanism of Components Isolated from Morus alba Branches on Diabetes and Diabetic Complications via Experimental and Molecular Docking Analyses. Kwon RH, Thaku N, Timalsina B, Park SE, Choi JS, Jung HA. Antioxidants (Basel) 11 383 (2022)
  232. Insulin-Mimetic Dihydroxanthyletin-Type Coumarins from Angelica decursiva with Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitory Activities and Docking Studies of Their Molecular Mechanisms. Ali MY, Jannat S, Jung HA, Choi JS. Antioxidants (Basel) 10 292 (2021)
  233. News Signalling an interest. Yu H, Schreiber SL. Nat Struct Biol 1 417-420 (1994)
  234. The active site specificity of the Yersinia protein-tyrosine phosphatase. Dunn D, Chen L, Lawrence DS, Zhang ZY. J Biol Chem 271 168-173 (1996)
  235. Crystallization and preliminary crystallographic study of human CksHs1: a cell cycle regulatory protein. Arvai AS, Bourne Y, Williams D, Reed SI, Tainer JA. Proteins 21 70-73 (1995)
  236. Design, synthesis, and biological evaluation of novel 2-ethyl-5-phenylthiazole-4-carboxamide derivatives as protein tyrosine phosphatase 1B inhibitors with improved cellular efficacy. Chen YT, Tang CL, Ma WP, Gao LX, Wei Y, Zhang W, Li JY, Li J, Nan FJ. Eur J Med Chem 69 399-412 (2013)
  237. Engineering Cell-Permeable Proteins through Insertion of Cell-Penetrating Motifs into Surface Loops. Chen K, Pei D. ACS Chem Biol 15 2568-2576 (2020)
  238. Knowledge-based characterization of similarity relationships in the human protein-tyrosine phosphatase family for rational inhibitor design. Vidović D, Schürer SC. J Med Chem 52 6649-6659 (2009)
  239. PTP1B inhibitors from Selaginella tamariscina (Beauv.) Spring and their kinetic properties and molecular docking simulation. Le DD, Nguyen DH, Zhao BT, Seong SH, Choi JS, Kim SK, Kim JA, Min BS, Woo MH. Bioorg Chem 72 273-281 (2017)
  240. Rationalizing protein-ligand interactions for PTP1B inhibitors using computational methods. Ajmani S, Karanam S, Kulkarni SA. Chem Biol Drug Des 74 582-595 (2009)
  241. Secondary structure prediction from multiple sequence data: blood clotting factor XIII and Yersinia protein-tyrosine phosphatase. Livingstone CD, Barton GJ. Int J Pept Protein Res 44 239-244 (1994)
  242. Structural basis for the dephosphorylating activity of PTPRQ towards phosphatidylinositide substrates. Yu KR, Kim YJ, Jung SK, Ku B, Park H, Cho SY, Jung H, Chung SJ, Bae KH, Lee SC, Kim BY, Erikson RL, Ryu SE, Kim SJ. Acta Crystallogr D Biol Crystallogr 69 1522-1529 (2013)
  243. Allosteric Impact of the Variable Insert Loop in Vaccinia H1-Related (VHR) Phosphatase. Beaumont VA, Reiss K, Qu Z, Allen B, Batista VS, Loria JP. Biochemistry 59 1896-1908 (2020)
  244. Characterization of active compounds from Gracilaria lemaneiformis inhibiting the protein tyrosine phosphatase 1B activity. Guo X, Gu D, Wang M, Huang Y, Li H, Dong Y, Tian J, Wang Y, Yang Y. Food Funct 8 3271-3275 (2017)
  245. Control of genetically prescribed protein tyrosine kinase activities by environment-linked redox reactions. Nakashima I, Kawamoto Y, Takeda K, Kato M. Enzyme Res 2011 896567 (2011)
  246. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase. Linford AS, Jiang NM, Edwards TE, Sherman NE, Van Voorhis WC, Stewart LJ, Myler PJ, Staker BL, Petri WA. Mol Biochem Parasitol 193 33-44 (2014)
  247. Discovery of di-indolinone as a novel scaffold for protein tyrosine phosphatase 1B inhibitors. Dai HL, Gao LX, Yang Y, Li JY, Cheng JG, Li J, Wen R, Peng YQ, Zheng JB. Bioorg Med Chem Lett 22 7440-7443 (2012)
  248. Frequency response of a protein to local conformational perturbations. Eren D, Alakent B. PLoS Comput Biol 9 e1003238 (2013)
  249. In silico investigations on the binding efficacy and allosteric mechanism of six different natural product compounds towards PTP1B inhibition through docking and molecular dynamics simulations. SarathKumar B, Lakshmi BS. J Mol Model 25 272 (2019)
  250. Involvement of the membrane distal catalytic domain in pervanadate-induced tyrosine phosphorylation of receptor protein-tyrosine phosphatase alpha. Buist A, Blanchetot C, den Hertog J. Biochem Biophys Res Commun 267 96-102 (2000)
  251. Purification of dual-tagged intact recombinant proteins. Rosales JL, Lee KY. Biochem Biophys Res Commun 273 1058-1062 (2000)
  252. Radiation activates myeloperoxidase (MPO) to generate active chlorine species (ACS) via a dephosphorylation mechanism - inhibitory effect of LGM2605. Mishra OP, Popov AV, Pietrofesa RA, Hwang WT, Andrake M, Nakamaru-Ogiso E, Christofidou-Solomidou M. Biochim Biophys Acta Gen Subj 1864 129548 (2020)
  253. Serendipitous discovery of light-induced (In Situ) formation of an Azo-bridged dimeric sulfonated naphthol as a potent PTP1B inhibitor. Bongard RD, Lepley M, Thakur K, Talipov MR, Nayak J, Lipinski RAJ, Bohl C, Sweeney N, Ramchandran R, Rathore R, Sem DS. BMC Biochem 18 10 (2017)
  254. A multi-omic approach reveals utility of CD45 expression in prognosis and novel target discovery. Ye N, Cai J, Dong Y, Chen H, Bo Z, Zhao X, Xia M, Han M. Front Genet 13 928328 (2022)
  255. An enzyme-linked immunosorbent assay to measure insulin receptor dephosphorylation by PTP1B. Zhang YL, Tam M, Kirincich S, Wan ZK, Wilson D, Wu JJ, Lee J, Tobin JF, Erbe DV. Anal Biochem 365 174-184 (2007)
  256. Bioassay-guided isolation of an active compound with protein tyrosine phosphatase 1B inhibitory activity from Sargassum fusiforme by high-speed counter-current chromatography. Wang M, Gu D, Guo X, Li H, Wang Y, Guo H, Yang Y, Tian J. J Sep Sci 39 4408-4414 (2016)
  257. Computational Insight into Protein Tyrosine Phosphatase 1B Inhibition: A Case Study of the Combined Ligand- and Structure-Based Approach. Zhang X, Jiang H, Li W, Wang J, Cheng M. Comput Math Methods Med 2017 4245613 (2017)
  258. Design, synthesis, biological activity and molecular dynamics studies of specific protein tyrosine phosphatase 1B inhibitors over SHP-2. Sun SX, Li XB, Liu WB, Ma Y, Wang RL, Cheng XC, Wang SQ, Liu W. Int J Mol Sci 14 12661-12674 (2013)
  259. Effects of protonation state of Asp181 and position of active site water molecules on the conformation of PTP1B. Ozcan A, Olmez EO, Alakent B. Proteins 81 788-804 (2013)
  260. Loss of phosphatase activity in PTEN (phosphatase and tensin homolog deleted on chromosome ten) results in endometrial carcinoma in humans: An in-silico study. Mondal SK, Sen MK. Heliyon 6 e03106 (2020)
  261. Physicochemical Properties, Cytocompatibility, and Biocompatibility of a Bioactive Glass Based Retrograde Filling Material. Murata K, Washio A, Morotomi T, Rojasawasthien T, Kokabu S, Kitamura C. Nanomaterials (Basel) 11 1828 (2021)
  262. Single Residue on the WPD-Loop Affects the pH Dependency of Catalysis in Protein Tyrosine Phosphatases. Shen R, Crean RM, Johnson SJ, Kamerlin SCL, Hengge AC. JACS Au 1 646-659 (2021)
  263. Structural analysis of protein tyrosine phosphatase 1B reveals potentially druggable allosteric binding sites. Kumar AP, Nguyen MN, Verma C, Lukman S. Proteins 86 301-321 (2018)
  264. Structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease. Lountos GT, Tropea JE, Waugh DS. Mol Biochem Parasitol 187 1-8 (2013)
  265. Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations. Yan F, Liu X, Zhang S, Su J, Zhang Q, Chen J. J Biomol Struct Dyn 36 3636-3650 (2018)
  266. Effect of citrulline for arginine replacement on the structure and turnover of phosphopeptide substrates of protein phosphatase-1. Martin BL, Luo S, Kintanar A, Chen M, Graves DJ. Arch Biochem Biophys 359 179-191 (1998)
  267. Effect of hypoxia on protein tyrosine phosphatase activity and expression of protein tyrosine phosphatases PTP-1B, PTP-SH1 and PTP-SH2 in the cerebral cortex of guinea pig fetus. Maulik D, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M. Neurosci Lett 432 174-178 (2008)
  268. Protein tyrosine phosphatase SHP-1 specifically recognizes C-terminal residues of its substrates via helix alpha0. Yang J, Cheng Z, Niu T, Liang X, Zhao ZJ, Zhou GW. J Cell Biochem 83 14-20 (2001)
  269. Structural flexibility and interactions of PTP1B's S-loop. Wang JF, Gong K, Wei DQ, Li YX. Interdiscip Sci 1 214-219 (2009)
  270. Teaching resources. Protein phosphatases. Salton SR. Sci STKE 2005 tr8 (2005)
  271. The physiological concentration of ferrous iron (II) alters the inhibitory effect of hydrogen peroxide on CD45, LAR and PTP1B phosphatases. Kuban-Jankowska A, Gorska M, Jaremko L, Jaremko M, Tuszynski JA, Wozniak M. Biometals 28 975-986 (2015)
  272. An Isoform-Selective PTP1B Inhibitor Derived from Nitrogen-Atom Augmentation of Radicicol. Shi T, Wijeratne EMK, Solano C, Ambrose AJ, Ross AB, Norwood C, Orido CK, Grigoryan T, Tillotson J, Kang M, Luo G, Keegan BM, Hu W, Hu W, Blagg BSJ, Zhang DD, Gunatilaka AAL, Chapman E. Biochemistry 58 3225-3231 (2019)
  273. Discovery of inhibitors targeting protein tyrosine phosphatase 1B using a combined virtual screening approach. Zhao D, Sun L, Zhong S. Mol Divers 26 2159-2174 (2022)
  274. Distinct functional and conformational states of the human lymphoid tyrosine phosphatase catalytic domain can be targeted by choice of the inhibitor chemotype. Vidović D, Xie Y, Rinderspacher A, Deng SX, Landry DW, Chung C, Smith DH, Tautz L, Schürer SC. J Comput Aided Mol Des 25 873-883 (2011)
  275. Involvement of the Mitochondrial Protein Tyrosine Phosphatase PTPM1 in the Promotion of Conidiation, Development, and Pathogenicity in Colletotrichum graminicola. Wang S, Li G, Wei Y, Wang G, Dang Y, Zhang P, Zhang SH. Front Microbiol 11 605738 (2020)
  276. Congress Meeting report: targeting protein phosphatases-medicines for the new millenium. Shenolikar S, Brautigan DL. Sci STKE 2000 pe1 (2000)
  277. Molecular Dynamics Simulations of A27S and K120A Mutated PTP1B Reveals Selective Binding of the Bidentate Inhibitor. Chen X, Liu X, Gan Q, Feng C, Zhang Q. Biomed Res Int 2019 9852897 (2019)
  278. Molecular and Biological Investigation of Isolated Marine Fungal Metabolites as Anticancer Agents: A Multi-Target Approach. Bogari HA, Elhady SS, Darwish KM, Refaey MS, Mohamed RA, Abdelhameed RFA, Almalki AJ, Aldurdunji MM, Lashkar MO, Alshehri SO, Malatani RT, Yamada K, Khedr AIM. Metabolites 13 162 (2023)
  279. Phospho-Azatyrosine, a less effective protein-tyrosine phosphatase substrate than phosphotyrosine. Burke TR, Yao ZJ, Ye B, Miyoshi K, Otaka A, Wu L, Zhang ZY. Bioorg Med Chem Lett 11 1265-1268 (2001)
  280. Potential Therapeutic Target Protein Tyrosine Phosphatase-1B for Modulation of Insulin Resistance with Polyphenols and Its Quantitative Structure-Activity Relationship. Rath P, Ranjan A, Ghosh A, Chauhan A, Gurnani M, Tuli HS, Habeeballah H, Alkhanani MF, Haque S, Dhama K, Verma NK, Jindal T. Molecules 27 2212 (2022)
  281. Reactions of an organoruthenium anticancer complex with 2-mercaptobenzanilide--a model for the active-site cysteine of protein tyrosine phosphatase 1B. Han Y, Luo Q, Hao X, Li X, Wang F, Hu W, Wu K, Lü S, Sadler PJ. Dalton Trans 40 11519-11529 (2011)
  282. Structure and Molecular Dynamics Simulations of Protein Tyrosine Phosphatase Non-Receptor 12 Provide Insights into the Catalytic Mechanism of the Enzyme. Dong H, Zonta F, Wang S, Song K, He X, He M, Nie Y, Li S. Int J Mol Sci 19 E60 (2017)
  283. Substrate Activation of the Low-Molecular Weight Protein Tyrosine Phosphatase from Mycobacterium tuberculosis. Stefan A, Dal Piaz F, Girella A, Hochkoeppler A. Biochemistry 59 1137-1148 (2020)
  284. Target identification reveals protein arginine methyltransferase 1 is a potential target of phenyl vinyl sulfone and its derivatives. Yu CH, Chou CC, Lee DY, Khoo KH, Chang GD. Biosci Rep 38 BSR20171717 (2018)
  285. Differentiation of peptide molecular recognition by phospholipase C gamma-1 Src homology-2 domain and a mutant Tyr phosphatase PTP1bC215S. MacLean D, Sefler AM, Zhu G, Decker SJ, Saltiel AR, Singh J, McNamara D, Dobrusin EM, Sawyer TK. Protein Sci 4 13-20 (1995)
  286. Genetic analysis of DAF-18/PTEN missense mutants for the ability to maintain quiescence of the somatic gonad and germ line in Caenorhabditis elegans dauer larvae. Wittes J, Greenwald I. G3 (Bethesda) 12 jkac093 (2022)
  287. Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays. Djakpa H, Kulkarni A, Barrows-Murphy S, Miller G, Zhou W, Cho H, Török B, Stieglitz K. Chem Biol Drug Des 87 714-729 (2016)
  288. Myocardial protection of S-nitroso-L-cysteine in diabetic cardiomyopathy mice. Peng L, Zhu M, Huo S, Shi W, Jiang T, Peng D, Wang M, Jiang Y, Guo J, Men L, Huang B, Wang Q, Lv J, Lin L, Li S. Front Endocrinol (Lausanne) 13 1011383 (2022)
  289. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. Burroughs AM, Aravind L. NAR Genom Bioinform 5 lqad029 (2023)
  290. New dammarane-type triterpenoids from hydrolyzate of total Gynostemma pentaphyllum saponins with protein tyrosine phosphatase 1B inhibitory activity. Tan D, Wang J, Wang X, Qin L, Du Y, Zhao C, Liu P, Zhang Q, Ma F, Xie J, Wu D, He Y. J Enzyme Inhib Med Chem 38 2281263 (2023)
  291. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment. Wang YQ, Li HX, Liu XC, Zhao JS, Liu RQ, Huai WY, Ding WJ, Zhang TE, Deng Y. Nat Prod Res 33 3459-3463 (2019)
  292. Preliminary crystallization studies of calmodulin-dependent protein phosphatase (calcineurin) from bovine brain. Balendiran K, Tan Y, Sharma RK, Murthy KH. Mol Cell Biochem 149-150 127-130 (1995)
  293. Protein Tyrosine Phosphatases: Mighty oaks from little acorns grow. Tonks NK. IUBMB Life 75 337-352 (2023)
  294. The crystal structure of the catalytic domain of the chick retinal neurite inhibitor-receptor protein tyrosine phosphatase CRYP-2/cPTPRO. Girish TS, Gopal B. Proteins 68 1011-1015 (2007)