2i0c Citations

Conformational restriction blocks glutamate receptor desensitization.

Nat Struct Mol Biol 13 1120-7 (2006)
Cited: 78 times
EuropePMC logo PMID: 17115050

Abstract

Desensitization is a universal feature of ligand-gated ion channels. Using the crystal structure of the GluR2 L483Y mutant channel as a guide, we attempted to build non-desensitizing kainate-subtype glutamate receptors. Success was achieved for GluR5, GluR6 and GluR7 with intermolecular disulfide cross-links but not by engineering the dimer interface. Crystallographic analysis of the GluR6 Y490C L752C dimer revealed relaxation from the active conformation, which functional studies reveal is not sufficient to trigger desensitization. The equivalent non-desensitizing cross-linked GluR2 mutant retained weak sensitivity to a positive allosteric modulator, which had no effect on GluR2 L483Y. These results establish that the active conformation of AMPA and kainate receptors is conserved and further show that their desensitization requires dimer rearrangements, that subtle structural differences account for their diverse functional properties and that the ligand-binding core dimer is a powerful regulator of ion-channel activity.

Articles - 2i0c mentioned but not cited (1)

  1. Defining the structural relationship between kainate-receptor deactivation and desensitization. Dawe GB, Musgaard M, Andrews ED, Daniels BA, Aurousseau MR, Biggin PC, Bowie D. Nat Struct Mol Biol 20 1054-1061 (2013)


Reviews citing this publication (18)

  1. Glutamate receptor ion channels: structure, regulation, and function. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Pharmacol Rev 62 405-496 (2010)
  2. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Pharmacol Rev 73 298-487 (2021)
  3. Kainate receptors coming of age: milestones of two decades of research. Contractor A, Mulle C, Swanson GT. Trends Neurosci 34 154-163 (2011)
  4. Molecular determinants of AMPA receptor subunit assembly. Greger IH, Ziff EB, Penn AC. Trends Neurosci 30 407-416 (2007)
  5. Control of assembly and function of glutamate receptors by the amino-terminal domain. Hansen KB, Furukawa H, Traynelis SF. Mol Pharmacol 78 535-549 (2010)
  6. Emerging models of glutamate receptor ion channel structure and function. Mayer ML. Structure 19 1370-1380 (2011)
  7. Regulation of synaptic transmission by ambient extracellular glutamate. Featherstone DE, Shippy SA. Neuroscientist 14 171-181 (2008)
  8. Assembly of AMPA receptors: mechanisms and regulation. Gan Q, Salussolia CL, Wollmuth LP. J Physiol 593 39-48 (2015)
  9. Structure and gating of tetrameric glutamate receptors. Sobolevsky AI. J Physiol 593 29-38 (2015)
  10. Structural aspects of AMPA receptor activation, desensitization and deactivation. Hansen KB, Yuan H, Traynelis SF. Curr Opin Neurobiol 17 281-288 (2007)
  11. Gating and permeation of kainate receptors: differences unveiled. Perrais D, Veran J, Mulle C. Trends Pharmacol Sci 31 516-522 (2010)
  12. Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Plested AJ. Nat Struct Mol Biol 23 494-502 (2016)
  13. The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures. Mayer ML. Biophys J 113 2143-2151 (2017)
  14. Mapping the Conformational Landscape of Glutamate Receptors Using Single Molecule FRET. MacLean DM, Durham RJ, Jayaraman V. Trends Neurosci 42 128-139 (2019)
  15. Retour aux sources: defining the structural basis of glutamate receptor activation. Dawe GB, Aurousseau MR, Daniels BA, Bowie D. J Physiol 593 97-110 (2015)
  16. The multifaceted subunit interfaces of ionotropic glutamate receptors. Green T, Nayeem N. J Physiol 593 73-81 (2015)
  17. The structure and function of glutamate receptors: Mg2+ block to X-ray diffraction. Mayer ML. Neuropharmacology 112 4-10 (2017)
  18. [Molecular operation of ionotropic glutamate receptors: proteins that mediate the excitatory synaptic neurotransmission]. Gielen M. Med Sci (Paris) 26 65-72 (2010)

Articles citing this publication (59)

  1. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Sobolevsky AI, Rosconi MP, Gouaux E. Nature 462 745-756 (2009)
  2. NMDA receptor structures reveal subunit arrangement and pore architecture. Lee CH, Lü W, Michel JC, Goehring A, Du J, Song X, Gouaux E. Nature 511 191-197 (2014)
  3. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF. J Neurosci 29 12045-12058 (2009)
  4. Mechanism of NMDA Receptor Inhibition and Activation. Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, Mchaourab HS, Gouaux E. Cell 165 704-714 (2016)
  5. Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Gielen M, Le Goff A, Stroebel D, Johnson JW, Neyton J, Paoletti P. Neuron 57 80-93 (2008)
  6. A Central Extended Amygdala Circuit That Modulates Anxiety. Ahrens S, Wu MV, Furlan A, Hwang GR, Paik R, Li H, Penzo MA, Tollkuhn J, Li B. J Neurosci 38 5567-5583 (2018)
  7. Structure and mechanism of kainate receptor modulation by anions. Plested AJ, Mayer ML. Neuron 53 829-841 (2007)
  8. Structural Bases of Desensitization in AMPA Receptor-Auxiliary Subunit Complexes. Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI. Neuron 94 569-580.e5 (2017)
  9. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. Yao Y, Harrison CB, Freddolino PL, Schulten K, Mayer ML. EMBO J 27 2158-2170 (2008)
  10. Structural insights into competitive antagonism in NMDA receptors. Jespersen A, Tajima N, Fernandez-Cuervo G, Garnier-Amblard EC, Furukawa H. Neuron 81 366-378 (2014)
  11. Block of kainate receptor desensitization uncovers a key trafficking checkpoint. Priel A, Selak S, Lerma J, Stern-Bach Y. Neuron 52 1037-1046 (2006)
  12. Gating modes in AMPA receptors. Prieto ML, Wollmuth LP. J Neurosci 30 4449-4459 (2010)
  13. Glutamate receptor desensitization is mediated by changes in quaternary structure of the ligand binding domain. Schauder DM, Kuybeda O, Zhang J, Klymko K, Bartesaghi A, Borgnia MJ, Mayer ML, Subramaniam S. Proc Natl Acad Sci U S A 110 5921-5926 (2013)
  14. Zinc potentiates GluK3 glutamate receptor function by stabilizing the ligand binding domain dimer interface. Veran J, Kumar J, Pinheiro PS, Athané A, Mayer ML, Perrais D, Mulle C. Neuron 76 565-578 (2012)
  15. Modulation of the dimer interface at ionotropic glutamate-like receptor delta2 by D-serine and extracellular calcium. Hansen KB, Naur P, Kurtkaya NL, Kristensen AS, Gajhede M, Kastrup JS, Traynelis SF. J Neurosci 29 907-917 (2009)
  16. Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization. Chaudhry C, Weston MC, Schuck P, Rosenmund C, Mayer ML. EMBO J 28 1518-1530 (2009)
  17. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine. Frydenvang K, Lash LL, Naur P, Postila PA, Pickering DS, Smith CM, Gajhede M, Sasaki M, Sakai R, Pentikaïnen OT, Swanson GT, Kastrup JS. J Biol Chem 284 14219-14229 (2009)
  18. Photoinactivation of glutamate receptors by genetically encoded unnatural amino acids. Klippenstein V, Ghisi V, Wietstruk M, Plested AJ. J Neurosci 34 980-991 (2014)
  19. NMDA receptor activation requires remodelling of intersubunit contacts within ligand-binding heterodimers. Borschel WF, Murthy SE, Kasperek EM, Popescu GK. Nat Commun 2 498 (2011)
  20. Partial agonism and antagonism of the ionotropic glutamate receptor iGLuR5: structures of the ligand-binding core in complex with domoic acid and 2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid. Hald H, Naur P, Pickering DS, Sprogøe D, Madsen U, Timmermann DB, Ahring PK, Liljefors T, Schousboe A, Egebjerg J, Gajhede M, Kastrup JS. J Biol Chem 282 25726-25736 (2007)
  21. Analysis of high-affinity assembly for AMPA receptor amino-terminal domains. Zhao H, Berger AJ, Brown PH, Kumar J, Balbo A, May CA, Casillas E, Laue TM, Patterson GH, Mayer ML, Schuck P. J Gen Physiol 139 371-388 (2012)
  22. Domain organization and function in GluK2 subtype kainate receptors. Das U, Kumar J, Mayer ML, Plested AJ. Proc Natl Acad Sci U S A 107 8463-8468 (2010)
  23. Energetics of glutamate receptor ligand binding domain dimer assembly are modulated by allosteric ions. Chaudhry C, Plested AJ, Schuck P, Mayer ML. Proc Natl Acad Sci U S A 106 12329-12334 (2009)
  24. GluRδ2 assembles four neurexins into trans-synaptic triad to trigger synapse formation. Lee SJ, Uemura T, Yoshida T, Mishina M. J Neurosci 32 4688-4701 (2012)
  25. Coupled control of desensitization and gating by the ligand binding domain of glutamate receptors. Carbone AL, Plested AJ. Neuron 74 845-857 (2012)
  26. A conformational intermediate in glutamate receptor activation. Lau AY, Salazar H, Blachowicz L, Ghisi V, Plested AJ, Roux B. Neuron 79 492-503 (2013)
  27. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes. Alberstein R, Grey R, Zimmet A, Simmons DK, Mayer ML. Proc Natl Acad Sci U S A 112 E6048-57 (2015)
  28. A domain linking the AMPA receptor agonist binding site to the ion pore controls gating and causes lurcher properties when mutated. Schmid SM, Körber C, Herrmann S, Werner M, Hollmann M. J Neurosci 27 12230-12241 (2007)
  29. A nondesensitizing kainate receptor point mutant. Nayeem N, Zhang Y, Schweppe DK, Madden DR, Green T. Mol Pharmacol 76 534-542 (2009)
  30. Atypical functional properties of GluK3-containing kainate receptors. Perrais D, Coussen F, Mulle C. J Neurosci 29 15499-15510 (2009)
  31. Mutations in the transmembrane domain M3 generate spontaneously open orphan glutamate δ1 receptor. Yadav R, Rimerman R, Scofield MA, Dravid SM. Brain Res 1382 1-8 (2011)
  32. Modulation of homomeric and heteromeric kainate receptors by the auxiliary subunit Neto1. Fisher JL, Mott DD. J Physiol 591 4711-4724 (2013)
  33. Structural and functional analysis of two new positive allosteric modulators of GluA2 desensitization and deactivation. Timm DE, Benveniste M, Weeks AM, Nisenbaum ES, Partin KM. Mol Pharmacol 80 267-280 (2011)
  34. Targeting AMPA receptor gating processes with allosteric modulators and mutations. Mitchell NA, Fleck MW. Biophys J 92 2392-2402 (2007)
  35. Conformational flexibility of the ligand-binding domain dimer in kainate receptor gating and desensitization. Nayeem N, Mayans O, Green T. J Neurosci 31 2916-2924 (2011)
  36. Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Mishina M, Uemura T, Yasumura M, Yoshida T. Front Neural Circuits 6 90 (2012)
  37. Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077. Romero-Hernandez A, Furukawa H. Mol Pharmacol 92 22-29 (2017)
  38. The N-terminal domain modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor desensitization. Möykkynen T, Coleman SK, Semenov A, Keinänen K. J Biol Chem 289 13197-13205 (2014)
  39. Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains. Zhao H, Lomash S, Chittori S, Glasser C, Mayer ML, Schuck P. Elife 6 e32056 (2017)
  40. Crosslinking the ligand-binding domain dimer interface locks kainate receptors out of the main open state. Daniels BA, Andrews ED, Aurousseau MR, Accardi MV, Bowie D. J Physiol 591 3873-3885 (2013)
  41. Distinct structural features of cyclothiazide are responsible for effects on peak current amplitude and desensitization kinetics at iGluR2. Hald H, Ahring PK, Timmermann DB, Liljefors T, Gajhede M, Kastrup JS. J Mol Biol 391 906-917 (2009)
  42. Functional characterization and in silico docking of full and partial GluK2 kainate receptor agonists. Fay AM, Corbeil CR, Brown P, Moitessier N, Bowie D. Mol Pharmacol 75 1096-1107 (2009)
  43. Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels. Lomash S, Chittori S, Brown P, Mayer ML. Structure 21 414-425 (2013)
  44. Binding site and interlobe interactions of the ionotropic glutamate receptor GluK3 ligand binding domain revealed by high resolution crystal structure in complex with (S)-glutamate. Venskutonytė R, Frydenvang K, Gajhede M, Bunch L, Pickering DS, Kastrup JS. J Struct Biol 176 307-314 (2011)
  45. Cations but not anions regulate the responsiveness of kainate receptors. Maclean DM, Wong AY, Fay AM, Bowie D. J Neurosci 31 2136-2144 (2011)
  46. Damaging coding variants within kainate receptor channel genes are enriched in individuals with schizophrenia, autism and intellectual disabilities. Koromina M, Flitton M, Blockley A, Mellor IR, Knight HM. Sci Rep 9 19215 (2019)
  47. Crystal structure of the GluR0 ligand-binding core from Nostoc punctiforme in complex with L-glutamate: structural dissection of the ligand interaction and subunit interface. Lee JH, Kang GB, Lim HH, Jin KS, Kim SH, Ree M, Park CS, Kim SJ, Eom SH. J Mol Biol 376 308-316 (2008)
  48. Structural and pharmacological characterization of phenylalanine-based AMPA receptor antagonists at kainate receptors. Venskutonytė R, Frydenvang K, Valadés EA, Szymańska E, Johansen TN, Kastrup JS, Pickering DS. ChemMedChem 7 1793-1798 (2012)
  49. Subunit-selective iGluR antagonists can potentiate heteromeric receptor responses by blocking desensitization. Pollok S, Reiner A. Proc Natl Acad Sci U S A 117 25851-25858 (2020)
  50. Discovery of a new class of ionotropic glutamate receptor antagonists by the rational design of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid. Larsen AM, Venskutonytė R, Valadés EA, Nielsen B, Pickering DS, Bunch L. ACS Chem Neurosci 2 107-114 (2011)
  51. Quantifying water-mediated protein-ligand interactions in a glutamate receptor: a DFT study. Sahai MA, Biggin PC. J Phys Chem B 115 7085-7096 (2011)
  52. Correlating efficacy and desensitization with GluK2 ligand-binding domain movements. Nayeem N, Mayans O, Green T. Open Biol 3 130051 (2013)
  53. Comment Net(o) excitement for kainate receptors. Lerma J. Nat Neurosci 14 808-810 (2011)
  54. Pharmacological and structural characterization of conformationally restricted (S)-glutamate analogues at ionotropic glutamate receptors. Juknaitė L, Venskutonytė R, Assaf Z, Faure S, Gefflaut T, Aitken DJ, Nielsen B, Gajhede M, Kastrup JS, Bunch L, Frydenvang K, Pickering DS. J Struct Biol 180 39-46 (2012)
  55. Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Yonkunas M, Buddhadev M, Flores Canales JC, Kurnikova MG. Biophys J 112 2291-2300 (2017)
  56. Molecular level activation insights from a NR2A/NR2B agonist. Ieong Tou W, Chang SS, Wu D, Lai TW, Wang YT, Hsu CY, Chen CY. J Biomol Struct Dyn 32 683-693 (2014)
  57. Comment Glutamate receptor ion channels: where do all the calories go? Mayer ML. Nat Struct Mol Biol 18 253-254 (2011)
  58. Developmental Transcriptome Analysis of Red-Spotted Apollo Butterfly, Parnassius bremeri. Lee KW, Denison MIJ, Veerappan K, Srinivasan S, Park B, Natarajan S, Chung H, Park J. Int J Mol Sci 23 11533 (2022)
  59. Expression and Functional Analysis of Ctenophore Glutamate Receptor Genes. Mayer ML. Methods Mol Biol 2757 259-268 (2024)