2id5 Citations

The structure of the Lingo-1 ectodomain, a module implicated in central nervous system repair inhibition.

Abstract

Nogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies. Here we report on the crystal structure of the ligand-binding ectodomain of human Lingo-1 and show it has a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. The structure, together with biophysical analysis of its solution properties, reveals that in the crystals and in solution Lingo-1 persistently associates with itself to form a stable tetramer and that it is its LRR-Ig-composite fold that drives such assembly. Specifically, in the crystal structure protomers of Lingo-1 associate in a ring-shaped tetramer, with each LRR domain filling an open cleft in an adjacent protomer. The tetramer buries a large surface area (9,200 A2) and may serve as an efficient scaffold to simultaneously bind and assemble the NgR complex components during activation on a membrane. Potential functional binding sites that can be identified on the ectodomain surface, including the site of self-recognition, suggest a model for protein assembly on the membrane.

Articles - 2id5 mentioned but not cited (11)

  1. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. BMC Genomics 8 124 (2007)
  2. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment. Lensink MF, Velankar S, Kryshtafovych A, Huang SY, Schneidman-Duhovny D, Sali A, Segura J, Fernandez-Fuentes N, Viswanath S, Elber R, Grudinin S, Popov P, Neveu E, Lee H, Baek M, Park S, Heo L, Rie Lee G, Seok C, Qin S, Zhou HX, Ritchie DW, Maigret B, Devignes MD, Ghoorah A, Torchala M, Chaleil RA, Bates PA, Ben-Zeev E, Eisenstein M, Negi SS, Weng Z, Vreven T, Pierce BG, Borrman TM, Yu J, Ochsenbein F, Guerois R, Vangone A, Rodrigues JP, van Zundert G, Nellen M, Xue L, Karaca E, Melquiond AS, Visscher K, Kastritis PL, Bonvin AM, Xu X, Qiu L, Yan C, Li J, Ma Z, Cheng J, Zou X, Shen Y, Shen Y, Peterson LX, Kim HR, Roy A, Han X, Esquivel-Rodriguez J, Kihara D, Yu X, Bruce NJ, Fuller JC, Wade RC, Anishchenko I, Kundrotas PJ, Vakser IA, Imai K, Yamada K, Oda T, Nakamura T, Tomii K, Pallara C, Romero-Durana M, Jiménez-García B, Moal IH, Férnandez-Recio J, Joung JY, Kim JY, Joo K, Lee J, Kozakov D, Vajda S, Mottarella S, Hall DR, Beglov D, Mamonov A, Xia B, Bohnuud T, Del Carpio CA, Ichiishi E, Marze N, Kuroda D, Roy Burman SS, Gray JJ, Chermak E, Cavallo L, Oliva R, Tovchigrechko A, Wodak SJ. Proteins 84 Suppl 1 323-348 (2016)
  3. Structural basis for cell surface patterning through NetrinG-NGL interactions. Seiradake E, Coles CH, Perestenko PV, Harlos K, McIlhinney RA, Aricescu AR, Jones EY. EMBO J 30 4479-4488 (2011)
  4. LRRML: a conformational database and an XML description of leucine-rich repeats (LRRs). Wei T, Gong J, Jamitzky F, Heckl WM, Stark RW, Rössle SC. BMC Struct Biol 8 47 (2008)
  5. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs). Xu JG, Huang C, Yang Z, Jin M, Fu P, Zhang N, Luo J, Li D, Liu M, Zhou Y, Zhu Y. J Biol Chem 290 2455-2465 (2015)
  6. Crystal structure of a bony fish beta2-microglobulin: insights into the evolutionary origin of immunoglobulin superfamily constant molecules. Chen W, Gao F, Chu F, Zhang J, Gao GF, Xia C. J Biol Chem 285 22505-22512 (2010)
  7. Leureptin: a soluble, extracellular leucine-rich repeat protein from Manduca sexta that binds lipopolysaccharide. Zhu Y, Ragan EJ, Kanost MR. Insect Biochem Mol Biol 40 713-722 (2010)
  8. Targeting the cis-dimerization of LINGO-1 with low MW compounds affects its downstream signalling. Cobret L, De Tauzia ML, Ferent J, Traiffort E, Hénaoui I, Godin F, Kellenberger E, Rognan D, Pantel J, Bénédetti H, Morisset-Lopez S. Br J Pharmacol 172 841-856 (2015)
  9. I329L: A Dual Action Viral Antagonist of TLR Activation Encoded by the African Swine Fever Virus (ASFV). Correia S, Moura PL, Ventura S, Leitão A, Parkhouse RME. Viruses 15 445 (2023)
  10. 'Hot' macromolecular crystals. Koclega KD, Chruszcz M, Zimmerman MD, Bujacz G, Minor W. Cryst Growth Des 10 580 (2009)
  11. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (17)

  1. Role of leucine-rich repeat proteins in the development and function of neural circuits. de Wit J, Hong W, Luo L, Ghosh A. Annu Rev Cell Dev Biol 27 697-729 (2011)
  2. The NGL family of leucine-rich repeat-containing synaptic adhesion molecules. Woo J, Kwon SK, Kim E. Mol Cell Neurosci 42 1-10 (2009)
  3. Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Proenca CC, Gao KP, Shmelkov SV, Rafii S, Lee FS. Trends Neurosci 34 143-153 (2011)
  4. LINGO-1 antagonists as therapy for multiple sclerosis: in vitro and in vivo evidence. Rudick RA, Mi S, Sandrock AW. Expert Opin Biol Ther 8 1561-1570 (2008)
  5. Receptors for myelin inhibitors: Structures and therapeutic opportunities. Cao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS. Mol Cell Neurosci 43 1-14 (2010)
  6. Structure and function of human plasma carboxypeptidase N, the anaphylatoxin inactivator. Skidgel RA, Erdös EG. Int Immunopharmacol 7 1888-1899 (2007)
  7. Endo-lysosomal pathway and ubiquitin-proteasome system dysfunction in Alzheimer's disease pathogenesis. Cao J, Zhong MB, Toro CA, Zhang L, Cai D. Neurosci Lett 703 68-78 (2019)
  8. Role of LRRTMs in synapse development and plasticity. Roppongi RT, Karimi B, Siddiqui TJ. Neurosci Res 116 18-28 (2017)
  9. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. Khalaj AJ, Hasselmann J, Augello C, Moore S, Tiwari-Woodruff SK. J Steroid Biochem Mol Biol 160 43-52 (2016)
  10. Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth. Thiede-Stan NK, Schwab ME. J Cell Sci 128 2403-2414 (2015)
  11. LINGO1 variants in essential tremor and Parkinson's disease. Deng H, Gu S, Jankovic J. Acta Neurol Scand 125 1-7 (2012)
  12. Structural features of the Nogo receptor signaling complexes at the neuron/myelin interface. Saha N, Kolev M, Nikolov DB. Neurosci Res 87 1-7 (2014)
  13. Neurexins, neuroligins and LRRTMs: synaptic adhesion getting fishy. Wright GJ, Washbourne P. J Neurochem 117 765-778 (2011)
  14. Applications of SPR for the characterization of molecules important in the pathogenesis and treatment of neurodegenerative diseases. Wittenberg NJ, Wootla B, Jordan LR, Denic A, Warrington AE, Oh SH, Rodriguez M. Expert Rev Neurother 14 449-463 (2014)
  15. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Leo H, Kipp M. Int J Mol Sci 23 16093 (2022)
  16. Introducing fluorescence guided surgery into orthopedic oncology: A systematic review of candidate protein targets for Ewing sarcoma. Bosma SE, van Driel PB, Hogendoorn PC, Dijkstra PS, Sier CF. J Surg Oncol 118 906-914 (2018)
  17. Nogo-A and LINGO-1: Two Important Targets for Remyelination and Regeneration. Kalafatakis I, Papagianni F, Theodorakis K, Karagogeos D. Int J Mol Sci 24 4479 (2023)

Articles citing this publication (35)