2il8 Citations

Three-dimensional structure of interleukin 8 in solution.

Biochemistry 29 1689-96 (1990)
Cited: 247 times
EuropePMC logo PMID: 2184886

Abstract

The solution structure of the interleukin 8 (IL-8) dimer has been solved by nuclear magnetic resonance (NMR) spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure determination is based on a total of 1880 experimental distance restraints (of which 82 are intersubunit) and 362 torsion angle restraints (comprising phi, psi, and chi 1 torsion angles). A total of 30 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions (excluding residues 1-5 of each subunit) is 0.41 +/- 0.08 A for the backbone atoms and 0.90 +/- 0.08 A for all atoms. The three-dimensional solution structure of the IL-8 dimer reveals a structural motif in which two symmetry-related antiparallel alpha-helices, approximately 24 A long and separated by about 14 A, lie on top of a six-stranded antiparallel beta-sheet platform derived from two three-stranded Greek keys, one from each monomer unit. The general architecture is similar to that of the alpha 1/alpha 2 domains of the human class I histocompatibility antigen HLA-A2. It is suggested that the two alpha-helices form the binding site for the cellular receptor and that the specificity of IL-8, as well as that of a number of related proteins involved in cell-specific chemotaxis, mediation of cell growth, and the inflammatory response, is achieved by the distinct distribution of charged and polar residues at the surface of the helices.

Reviews - 2il8 mentioned but not cited (2)

  1. Demystifying heparan sulfate-protein interactions. Xu D, Esko JD. Annu Rev Biochem 83 129-157 (2014)
  2. The marriage of chemokines and galectins as functional heterodimers. von Hundelshausen P, Wichapong K, Gabius HJ, Mayo KH. Cell Mol Life Sci 78 8073-8095 (2021)

Articles - 2il8 mentioned but not cited (3)

  1. Interactions of interleukin-8 with the human chemokine receptor CXCR1 in phospholipid bilayers by NMR spectroscopy. Park SH, Casagrande F, Cho L, Albrecht L, Opella SJ. J Mol Biol 414 194-203 (2011)
  2. Differences in Sulfotyrosine Binding amongst CXCR1 and CXCR2 Chemokine Ligands. Moussouras NA, Getschman AE, Lackner ER, Veldkamp CT, Dwinell MB, Volkman BF. Int J Mol Sci 18 (2017)
  3. New Insight into Drugs to Alleviate Atopic March via Network Pharmacology-Based Analysis. Oh KK, Adnan M, Cho DH. Curr Issues Mol Biol 44 2257-2274 (2022)


Reviews citing this publication (55)

  1. Human chemokines: an update. Baggiolini M, Dewald B, Moser B. Annu Rev Immunol 15 675-705 (1997)
  2. Chemokine: receptor structure, interactions, and antagonism. Allen SJ, Crown SE, Handel TM. Annu Rev Immunol 25 787-820 (2007)
  3. Chemokines in pathology and medicine. Baggiolini M. J Intern Med 250 91-104 (2001)
  4. Structure, function, and inhibition of chemokines. Fernandez EJ, Lolis E. Annu Rev Pharmacol Toxicol 42 469-499 (2002)
  5. Regulation of protein function by glycosaminoglycans--as exemplified by chemokines. Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE. Annu Rev Biochem 74 385-410 (2005)
  6. Gelatinase B: a tuner and amplifier of immune functions. Opdenakker G, Van den Steen PE, Van Damme J. Trends Immunol 22 571-579 (2001)
  7. Peptidylproline cis/trans isomerases. Galat A, Metcalfe SM. Prog Biophys Mol Biol 63 67-118 (1995)
  8. Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]). Leonard EJ, Yoshimura T. Am J Respir Cell Mol Biol 2 479-486 (1990)
  9. The role of interleukin-8 and its receptors in inflammatory lung disease: implications for therapy. Pease JE, Sabroe I. Am J Respir Med 1 19-25 (2002)
  10. Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Salanga CL, Handel TM. Exp Cell Res 317 590-601 (2011)
  11. Chemokines, a family of chemotactic cytokines. Graves DT, Jiang Y. Crit Rev Oral Biol Med 6 109-118 (1995)
  12. Structural basis of chemokine receptor function--a model for binding affinity and ligand selectivity. Rajagopalan L, Rajarathnam K. Biosci Rep 26 325-339 (2006)
  13. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Kufareva I, Salanga CL, Handel TM. Immunol Cell Biol 93 372-383 (2015)
  14. In vivo, in vitro, and molecular aspects of interleukin-8 and the interleukin-8 receptors. Hoch RC, Schraufstätter IU, Cochrane CG. J Lab Clin Med 128 134-145 (1996)
  15. Properties of pro-inflammatory cell type-specific leukocyte chemotactic cytokines, interleukin 8 (IL-8) and monocyte chemotactic and activating factor (MCAF). Mukaida N, Harada A, Yasumoto K, Matsushima K. Microbiol Immunol 36 773-789 (1992)
  16. Interleukin-8: a review. Hébert CA, Baker JB. Cancer Invest 11 743-750 (1993)
  17. Macromolecular NMR spectroscopy for the non-spectroscopist. Kwan AH, Mobli M, Gooley PR, King GF, Mackay JP. FEBS J 278 687-703 (2011)
  18. Dimerization of chemokine receptors and its functional consequences. Springael JY, Urizar E, Parmentier M. Cytokine Growth Factor Rev 16 611-623 (2005)
  19. Roles of IL-8 in ocular inflammations: a review. Ghasemi H, Ghazanfari T, Yaraee R, Faghihzadeh S, Hassan ZM. Ocul Immunol Inflamm 19 401-412 (2011)
  20. Chemokines from a Structural Perspective. Miller MC, Mayo KH. Int J Mol Sci 18 (2017)
  21. Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Proudfoot AEI, Johnson Z, Bonvin P, Handel TM. Pharmaceuticals (Basel) 10 (2017)
  22. Interleukin 8 and the male genital tract. Lotti F, Maggi M. J Reprod Immunol 100 54-65 (2013)
  23. Relationships between glycosaminoglycan and receptor binding sites in chemokines-the CXCL12 example. Laguri C, Arenzana-Seisdedos F, Lortat-Jacob H. Carbohydr Res 343 2018-2023 (2008)
  24. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. Cell Signal 54 69-80 (2019)
  25. Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single crystals. Billeter M. Q Rev Biophys 25 325-377 (1992)
  26. Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. Gronenborn AM, Clore GM. Crit Rev Biochem Mol Biol 30 351-385 (1995)
  27. Small cytokine superfamily. Sherry B, Cerami A. Curr Opin Immunol 3 56-60 (1991)
  28. Fine tuning the transcriptional regulation of the CXCL1 chemokine. Amiri KI, Richmond A. Prog Nucleic Acid Res Mol Biol 74 1-36 (2003)
  29. Chemokine isoforms and processing in inflammation and immunity. Proost P, Struyf S, Van Damme J, Fiten P, Ugarte-Berzal E, Opdenakker G. J Autoimmun 85 45-57 (2017)
  30. Cytokines: from clone to clinic. Aggarwal BB, Pocsik E. Arch Biochem Biophys 292 335-359 (1992)
  31. Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering. Wang YX, Zuo X, Wang J, Yu P, Butcher SE. Methods 52 180-191 (2010)
  32. Predicting binding energetics from structure: looking beyond DeltaG degrees. Murphy KP. Med Res Rev 19 333-339 (1999)
  33. Chemokine oligomerization in cell signaling and migration. Wang X, Sharp JS, Handel TM, Prestegard JH. Prog Mol Biol Transl Sci 117 531-578 (2013)
  34. Functional aspects of the interaction between interleukin-8 and sulfated glycosaminoglycans. Pichert A, Schlorke D, Franz S, Arnhold J. Biomatter 2 142-148 (2012)
  35. Lymphotactin. Hedrick JA, Zlotnik A. Clin Immunol Immunopathol 87 218-222 (1998)
  36. The molecular and cellular biology of the chemokines. Balkwill F. J Viral Hepat 5 1-14 (1998)
  37. Strain-promoted cycloadditions involving nitrones and alkynes--rapid tunable reactions for bioorthogonal labeling. MacKenzie DA, Sherratt AR, Chigrinova M, Cheung LL, Pezacki JP. Curr Opin Chem Biol 21 81-88 (2014)
  38. The 9E3/CEF4 gene and its product the chicken chemotactic and angiogenic factor (cCAF): potential roles in wound healing and tumor development. Martins-Green M, Hanafusa H. Cytokine Growth Factor Rev 8 221-232 (1997)
  39. Glycosaminoglycan Interactions Fine-Tune Chemokine-Mediated Neutrophil Trafficking: Structural Insights and Molecular Mechanisms. Rajarathnam K, Sepuru KM, Joseph PRB, Sawant KV, Brown AJ. J Histochem Cytochem 66 229-239 (2018)
  40. Protein targets for structure-based drug design. Walkinshaw MD. Med Res Rev 12 317-372 (1992)
  41. Left-handed topology of super-secondary structure formed by aligned alpha-helix and beta-hairpin. Kajava AV. FEBS Lett 302 8-10 (1992)
  42. Interferons alpha/beta and their receptors: place in the hierarchy of cytokines. Zav'Yalov VP, Zav'Yalova GA. APMIS 105 161-186 (1997)
  43. The Structure of a CXCR4:Chemokine Complex. Handel TM. Front Immunol 6 282 (2015)
  44. The molecular basis of selectivity between CC and CXC chemokines: the possibility of chemokine antagonists as anti-inflammatory agents. Wells TN, Lusti-Narasimhan M, Chung CW, Cooke R, Power CA, Peitsch MC, Proudfoot AE. Ann N Y Acad Sci 796 245-256 (1996)
  45. An introduction to chemokines and their roles in transfusion medicine. Davenport RD. Vox Sang 96 183-198 (2009)
  46. Anticytokine Autoantibodies: Association with Infection and Immune Dysregulation. Knight V, Merkel PA, O'Sullivan MD. Antibodies (Basel) 5 (2016)
  47. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  48. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cambier S, Gouwy M, Proost P. Cell Mol Immunol 20 217-251 (2023)
  49. 1H- and 19F-NMR approaches to the study of the structure of proteins larger than 25 kDa. Gettins PG. Int J Biol Macromol 16 227-235 (1994)
  50. Biomolecular structure and dynamics--experiment and theory. Forsén S, Kördel J. J Pharm Biomed Anal 14 233-236 (1996)
  51. Protein Data Bank: A Comprehensive Review of 3D Structure Holdings and Worldwide Utilization by Researchers, Educators, and Students. Burley SK, Berman HM, Duarte JM, Feng Z, Flatt JW, Hudson BP, Lowe R, Peisach E, Piehl DW, Rose Y, Sali A, Sekharan M, Shao C, Vallat B, Voigt M, Westbrook JD, Young JY, Zardecki C. Biomolecules 12 1425 (2022)
  52. Thirty-five years since the discovery of chemotactic cytokines, interleukin-8 and MCAF: A historical overview. Matsushima K, Shichino S, Ueha S. Proc Jpn Acad Ser B Phys Biol Sci 99 213-226 (2023)
  53. Heterologous Interactions with Galectins and Chemokines and Their Functional Consequences. Mayo KH. Int J Mol Sci 24 14083 (2023)
  54. New nuclear magnetic resonance structures and structural methodology. Chazin WJ. Curr Opin Biotechnol 2 520-525 (1991)
  55. Therapeutic inhibition of CXCR1/2: where do we stand? Sitaru S, Budke A, Bertini R, Sperandio M. Intern Emerg Med (2023)

Articles citing this publication (187)

  1. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. Saper MA, Bjorkman PJ, Wiley DC. J Mol Biol 219 277-319 (1991)
  2. Analysis of protein-protein interaction sites using surface patches. Jones S, Thornton JM. J Mol Biol 272 121-132 (1997)
  3. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O'Mahony L, Palomares O, Rhyner C, Ouaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA. J Allergy Clin Immunol 127 701-21.e1-70 (2011)
  4. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Webb LM, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A. Proc Natl Acad Sci U S A 90 7158-7162 (1993)
  5. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues. Tekamp-Olson P, Gallegos C, Bauer D, McClain J, Sherry B, Fabre M, van Deventer S, Cerami A. J Exp Med 172 911-919 (1990)
  6. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Nilges M. Proteins 17 297-309 (1993)
  7. Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M, Matsushima K, Edwards BF, Clore GM, Gronenborn AM. Proc Natl Acad Sci U S A 88 502-506 (1991)
  8. Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. Gong JH, Clark-Lewis I. J Exp Med 181 631-640 (1995)
  9. The structure of human macrophage inflammatory protein-3alpha /CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human beta-defensins. Hoover DM, Boulegue C, Yang D, Oppenheim JJ, Tucker K, Lu W, Lubkowski J. J Biol Chem 277 37647-37654 (2002)
  10. A novel dimer configuration revealed by the crystal structure at 2.4 A resolution of human interleukin-5. Milburn MV, Hassell AM, Lambert MH, Jordan SR, Proudfoot AE, Graber P, Wells TN. Nature 363 172-176 (1993)
  11. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Clore GM, Ernst J, Clubb R, Omichinski JG, Kennedy WM, Sakaguchi K, Appella E, Gronenborn AM. Nat Struct Biol 2 321-333 (1995)
  12. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Lu Z, Murray KS, Van Cleave V, LaVallie ER, Stahl ML, McCoy JM. Biotechnology (N Y) 13 366-372 (1995)
  13. Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Clark-Lewis I, Dewald B, Geiser T, Moser B, Baggiolini M. Proc Natl Acad Sci U S A 90 3574-3577 (1993)
  14. A hypothetical model for the peptide binding domain of hsp70 based on the peptide binding domain of HLA. Rippmann F, Taylor WR, Rothbard JB, Green NM. EMBO J 10 1053-1059 (1991)
  15. Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Terkeltaub R, Zachariae C, Santoro D, Martin J, Peveri P, Matsushima K. Arthritis Rheum 34 894-903 (1991)
  16. Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Skelton NJ, Quan C, Reilly D, Lowman H. Structure 7 157-168 (1999)
  17. A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 functions as a dimer. Zhang Y, Rollins BJ. Mol Cell Biol 15 4851-4855 (1995)
  18. Structural comparisons among the short-chain helical cytokines. Rozwarski DA, Gronenborn AM, Clore GM, Bazan JF, Bohm A, Wlodawer A, Hatada M, Karplus PA. Structure 2 159-173 (1994)
  19. Alpha plus beta folds revisited: some favoured motifs. Orengo CA, Thornton JM. Structure 1 105-120 (1993)
  20. The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Qin J, Clore GM, Gronenborn AM. Structure 2 503-522 (1994)
  21. Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture. Gershengorn MC, Geras-Raaka E, Varma A, Clark-Lewis I. J Clin Invest 102 1469-1472 (1998)
  22. Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES. Characterization of active disaggregated chemokine variants. Czaplewski LG, McKeating J, Craven CJ, Higgins LD, Appay V, Brown A, Dudgeon T, Howard LA, Meyers T, Owen J, Palan SR, Tan P, Wilson G, Woods NR, Heyworth CM, Lord BI, Brotherton D, Christison R, Craig S, Cribbes S, Edwards RM, Evans SJ, Gilbert R, Morgan P, Randle E, Schofield N, Varley PG, Fisher J, Waltho JP, Hunter MG. J Biol Chem 274 16077-16084 (1999)
  23. Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Springael JY, Le Minh PN, Urizar E, Costagliola S, Vassart G, Parmentier M. Mol Pharmacol 69 1652-1661 (2006)
  24. A topology-constrained distance network algorithm for protein structure determination from NOESY data. Huang YJ, Tejero R, Powers R, Montelione GT. Proteins 62 587-603 (2006)
  25. Exploring beta-sheet structure and interactions with chemical model systems. Nowick JS. Acc Chem Res 41 1319-1330 (2008)
  26. The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Lubkowski J, Bujacz G, Boqué L, Domaille PJ, Handel TM, Wlodawer A. Nat Struct Biol 4 64-69 (1997)
  27. TSG-6 inhibits neutrophil migration via direct interaction with the chemokine CXCL8. Dyer DP, Thomson JM, Hermant A, Jowitt TA, Handel TM, Proudfoot AE, Day AJ, Milner CM. J Immunol 192 2177-2185 (2014)
  28. Role of the GRO family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. Schwartz D, Andalibi A, Chaverri-Almada L, Berliner JA, Kirchgessner T, Fang ZT, Tekamp-Olson P, Lusis AJ, Gallegos C, Fogelman AM. J Clin Invest 94 1968-1973 (1994)
  29. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Pichert A, Samsonov SA, Theisgen S, Thomas L, Baumann L, Schiller J, Beck-Sickinger AG, Huster D, Pisabarro MT. Glycobiology 22 134-145 (2012)
  30. Interleukin-8 receptor-mediated chemotaxis of normal human epidermal cells. Michel G, Kemény L, Peter RU, Beetz A, Ried C, Arenberger P, Ruzicka T. FEBS Lett 305 241-243 (1992)
  31. Monomeric and dimeric CXCL8 are both essential for in vivo neutrophil recruitment. Das ST, Rajagopalan L, Guerrero-Plata A, Sai J, Richmond A, Garofalo RP, Rajarathnam K. PLoS One 5 e11754 (2010)
  32. RANTES and MCP-3 antagonists bind multiple chemokine receptors. Gong JH, Uguccioni M, Dewald B, Baggiolini M, Clark-Lewis I. J Biol Chem 271 10521-10527 (1996)
  33. The CC-chemokine RANTES increases the attachment of human immunodeficiency virus type 1 to target cells via glycosaminoglycans and also activates a signal transduction pathway that enhances viral infectivity. Trkola A, Gordon C, Matthews J, Maxwell E, Ketas T, Czaplewski L, Proudfoot AE, Moore JP. J Virol 73 6370-6379 (1999)
  34. The monomer-dimer equilibrium and glycosaminoglycan interactions of chemokine CXCL8 regulate tissue-specific neutrophil recruitment. Gangavarapu P, Rajagopalan L, Kolli D, Guerrero-Plata A, Garofalo RP, Rajarathnam K. J Leukoc Biol 91 259-265 (2012)
  35. Solution structure of the MEF2A-DNA complex: structural basis for the modulation of DNA bending and specificity by MADS-box transcription factors. Huang K, Louis JM, Donaldson L, Lim FL, Sharrocks AD, Clore GM. EMBO J 19 2615-2628 (2000)
  36. CXC chemokines connective tissue activating peptide-III and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes. Hoogewerf AJ, Leone JW, Reardon IM, Howe WJ, Asa D, Heinrikson RL, Ledbetter SR. J Biol Chem 270 3268-3277 (1995)
  37. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Yang XL, Skene RJ, McRee DE, Schimmel P. Proc Natl Acad Sci U S A 99 15369-15374 (2002)
  38. Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level. Nesmelova IV, Sham Y, Dudek AZ, van Eijk LI, Wu G, Slungaard A, Mortari F, Griffioen AW, Mayo KH. J Biol Chem 280 4948-4958 (2005)
  39. Identification of a glycosaminoglycan-binding site in chemokine macrophage inflammatory protein-1alpha. Koopmann W, Krangel MS. J Biol Chem 272 10103-10109 (1997)
  40. Mapping the binding surface of interleukin-8 complexed with an N-terminal fragment of the type 1 human interleukin-8 receptor. Clubb RT, Omichinski JG, Clore GM, Gronenborn AM. FEBS Lett 338 93-97 (1994)
  41. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions. Joseph PR, Mosier PD, Desai UR, Rajarathnam K. Biochem J 472 121-133 (2015)
  42. Arrest Functions of the MIF Ligand/Receptor Axes in Atherogenesis. Tillmann S, Bernhagen J, Noels H. Front Immunol 4 115 (2013)
  43. Monomeric variants of IL-8: effects of side chain substitutions and solution conditions upon dimer formation. Lowman HB, Fairbrother WJ, Slagle PH, Kabakoff R, Liu J, Shire S, Hébert CA. Protein Sci 6 598-608 (1997)
  44. Heparin binding to platelet factor-4. An NMR and site-directed mutagenesis study: arginine residues are crucial for binding. Mayo KH, Ilyina E, Roongta V, Dundas M, Joseph J, Lai CK, Maione T, Daly TJ. Biochem J 312 ( Pt 2) 357-365 (1995)
  45. Stereospecific assignment of beta-methylene protons in larger proteins using 3D 15N-separated Hartmann-Hahn and 13C-separated rotating frame Overhauser spectroscopy. Clore GM, Bax A, Gronenborn AM. J Biomol NMR 1 13-22 (1991)
  46. Fell-Muir Lecture: Heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra. Gallagher J. Int J Exp Pathol 96 203-231 (2015)
  47. A recipe for designing water-soluble, beta-sheet-forming peptides. Mayo KH, Ilyina E, Park H. Protein Sci 5 1301-1315 (1996)
  48. Structural rearrangement of human lymphotactin, a C chemokine, under physiological solution conditions. Kuloğlu ES, McCaslin DR, Markley JL, Volkman BF. J Biol Chem 277 17863-17870 (2002)
  49. Dimer dissociation is essential for interleukin-8 (IL-8) binding to CXCR1 receptor. Fernando H, Chin C, Rösgen J, Rajarathnam K. J Biol Chem 279 36175-36178 (2004)
  50. Solution structure of B. subtilis acyl carrier protein. Xu GY, Tam A, Lin L, Hixon J, Fritz CC, Powers R. Structure 9 277-287 (2001)
  51. A model of the platelet factor 4 complex with heparin. Stuckey JA, St Charles R, Edwards BF. Proteins 14 277-287 (1992)
  52. Receptor recognition and specificity of interleukin-8 is determined by residues that cluster near a surface-accessible hydrophobic pocket. Hammond ME, Shyamala V, Siani MA, Gallegos CA, Feucht PH, Abbott J, Lapointe GR, Moghadam M, Khoja H, Zakel J, Tekamp-Olson P. J Biol Chem 271 8228-8235 (1996)
  53. CXC and CC chemokines form mixed heterodimers: association free energies from molecular dynamics simulations and experimental correlations. Nesmelova IV, Sham Y, Gao J, Mayo KH. J Biol Chem 283 24155-24166 (2008)
  54. Crystal structures of oligomeric forms of the IP-10/CXCL10 chemokine. Swaminathan GJ, Holloway DE, Colvin RA, Campanella GK, Papageorgiou AC, Luster AD, Acharya KR. Structure 11 521-532 (2003)
  55. Cross-linking and mutational analysis of the oligomerization state of the cytokine macrophage migration inhibitory factor (MIF). Mischke R, Kleemann R, Brunner H, Bernhagen J. FEBS Lett 427 85-90 (1998)
  56. Probing receptor binding activity of interleukin-8 dimer using a disulfide trap. Rajarathnam K, Prado GN, Fernando H, Clark-Lewis I, Navarro J. Biochemistry 45 7882-7888 (2006)
  57. The crystal structure of recombinant human neutrophil-activating peptide-2 (M6L) at 1.9-A resolution. Malkowski MG, Wu JY, Lazar JB, Johnson PH, Edwards BF. J Biol Chem 270 7077-7087 (1995)
  58. Mutation of Leu25 and Val27 introduces CC chemokine activity into interleukin-8. Lusti-Narasimhan M, Power CA, Allet B, Alouani S, Bacon KB, Mermod JJ, Proudfoot AE, Wells TN. J Biol Chem 270 2716-2721 (1995)
  59. Solution structure of human IL-13 and implication for receptor binding. Moy FJ, Diblasio E, Wilhelm J, Powers R. J Mol Biol 310 219-230 (2001)
  60. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1beta. Zhang L, Derider M, McCornack MA, Jao SC, Isern N, Ness T, Moyer R, LiWang PJ. Proc Natl Acad Sci U S A 103 13985-13990 (2006)
  61. Structural basis for differential binding of the interleukin-8 monomer and dimer to the CXCR1 N-domain: role of coupled interactions and dynamics. Ravindran A, Joseph PR, Rajarathnam K. Biochemistry 48 8795-8805 (2009)
  62. Structural characterization of a monomeric chemokine: monocyte chemoattractant protein-3. Kim KS, Rajarathnam K, Clark-Lewis I, Sykes BD. FEBS Lett 395 277-282 (1996)
  63. High-resolution solution structure of reduced French bean plastocyanin and comparison with the crystal structure of poplar plastocyanin. Moore JM, Lepre CA, Gippert GP, Chazin WJ, Case DA, Wright PE. J Mol Biol 221 533-555 (1991)
  64. Peptides related to the carboxyl terminus of human platelet factor IV with antibacterial activity. Darveau RP, Blake J, Seachord CL, Cosand WL, Cunningham MD, Cassiano-Clough L, Maloney G. J Clin Invest 90 447-455 (1992)
  65. Conformation of endothelin in aqueous ethylene glycol determined by 1H-NMR and molecular dynamics simulations. Krystek SR, Bassolino DA, Novotny J, Chen C, Marschner TM, Andersen NH. FEBS Lett 281 212-218 (1991)
  66. Exchanging interleukin-8 and melanoma growth-stimulating activity receptor binding specificities. Lowman HB, Slagle PH, DeForge LE, Wirth CM, Gillece-Castro BL, Bourell JH, Fairbrother WJ. J Biol Chem 271 14344-14352 (1996)
  67. A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: support from isothermal fluorescence titrations. Krieger E, Geretti E, Brandner B, Goger B, Wells TN, Kungl AJ. Proteins 54 768-775 (2004)
  68. Conformational analysis of protein structures derived from NMR data. MacArthur MW, Thornton JM. Proteins 17 232-251 (1993)
  69. Monomeric solution structure of the prototypical 'C' chemokine lymphotactin. Kuloglu ES, McCaslin DR, Kitabwalla M, Pauza CD, Markley JL, Volkman BF. Biochemistry 40 12486-12496 (2001)
  70. Crystal structure of recombinant native SDF-1alpha with additional mutagenesis studies: an attempt at a more comprehensive interpretation of accumulated structure-activity relationship data. Ohnishi Y, Senda T, Nandhagopal N, Sugimoto K, Shioda T, Nagal Y, Mitsui Y. J Interferon Cytokine Res 20 691-700 (2000)
  71. MIF-chemokine receptor interactions in atherogenesis are dependent on an N-loop-based 2-site binding mechanism. Kraemer S, Lue H, Zernecke A, Kapurniotu A, Andreetto E, Frank R, Lennartz B, Weber C, Bernhagen J. FASEB J 25 894-906 (2011)
  72. Structural basis of CXC chemokine receptor 2 activation and signalling. Liu K, Wu L, Yuan S, Wu M, Xu Y, Sun Q, Li S, Zhao S, Hua T, Liu ZJ. Nature 585 135-140 (2020)
  73. CXCL17, an orphan chemokine, acts as a novel angiogenic and anti-inflammatory factor. Lee WY, Wang CJ, Lin TY, Hsiao CL, Luo CW. Am J Physiol Endocrinol Metab 304 E32-40 (2013)
  74. GBPM: GRID-based pharmacophore model: concept and application studies to protein-protein recognition. Ortuso F, Langer T, Alcaro S. Bioinformatics 22 1449-1455 (2006)
  75. Generation of interleukin-8 by plasmin from AVLPR-interleukin-8, the human fibroblast-derived neutrophil chemotactic factor. Nakagawa H, Hatakeyama S, Ikesue A, Miyai H. FEBS Lett 282 412-414 (1991)
  76. NMR analysis of the structure, dynamics, and unique oligomerization properties of the chemokine CCL27. Jansma AL, Kirkpatrick JP, Hsu AR, Handel TM, Nietlispach D. J Biol Chem 285 14424-14437 (2010)
  77. The role of Tyr13 and Lys15 of interleukin-8 in the high affinity interaction with the interleukin-8 receptor type A. Schraufstätter IU, Ma M, Oades ZG, Barritt DS, Cochrane CG. J Biol Chem 270 10428-10431 (1995)
  78. Thermodynamic characterization of interleukin-8 monomer binding to CXCR1 receptor N-terminal domain. Fernando H, Nagle GT, Rajarathnam K. FEBS J 274 241-251 (2007)
  79. Determination of multicomponent protein structures in solution using global orientation and shape restraints. Wang J, Zuo X, Yu P, Byeon IJ, Jung J, Wang X, Dyba M, Seifert S, Schwieters CD, Qin J, Gronenborn AM, Wang YX. J Am Chem Soc 131 10507-10515 (2009)
  80. IL-8 single-chain homodimers and heterodimers: interactions with chemokine receptors CXCR1, CXCR2, and DARC. Leong SR, Lowman HB, Liu J, Shire S, Deforge LE, Gillece-Castro BL, McDowell R, Hébert CA. Protein Sci 6 609-617 (1997)
  81. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens. Kwakman PH, de Boer L, Ruyter-Spira CP, Creemers-Molenaar T, Helsper JP, Vandenbroucke-Grauls CM, Zaat SA, te Velde AA. Eur J Clin Microbiol Infect Dis 30 251-257 (2011)
  82. Accurate NMR structures through minimization of an extended hybrid energy. Nilges M, Bernard A, Bardiaux B, Malliavin T, Habeck M, Rieping W. Structure 16 1305-1312 (2008)
  83. Molecular basis of glycosaminoglycan heparin binding to the chemokine CXCL1 dimer. Poluri KM, Joseph PRB, Sawant KV, Rajarathnam K. J Biol Chem 288 25143-25153 (2013)
  84. Design and receptor interactions of obligate dimeric mutant of chemokine monocyte chemoattractant protein-1 (MCP-1). Tan JH, Canals M, Ludeman JP, Wedderburn J, Boston C, Butler SJ, Carrick AM, Parody TR, Taleski D, Christopoulos A, Payne RJ, Stone MJ. J Biol Chem 287 14692-14702 (2012)
  85. An automated method for modeling proteins on known templates using distance geometry. Srinivasan S, March CJ, Sudarsanam S. Protein Sci 2 277-289 (1993)
  86. Production of chemotactic factor, interleukin-8, from hepatocytes exposed to ethanol. Shiratori Y, Takada H, Hikiba Y, Nakata R, Okano K, Komatsu Y, Niwa Y, Matsumura M, Shiina S, Omata M. Hepatology 18 1477-1482 (1993)
  87. High-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a hydroxamic acid inhibitor. Moy FJ, Chanda PK, Chen JM, Cosmi S, Edris W, Levin JI, Powers R. J Mol Biol 302 671-689 (2000)
  88. Probing the role of CXC motif in chemokine CXCL8 for high affinity binding and activation of CXCR1 and CXCR2 receptors. Joseph PR, Sarmiento JM, Mishra AK, Das ST, Garofalo RP, Navarro J, Rajarathnam K. J Biol Chem 285 29262-29269 (2010)
  89. Solution structure of the tumor necrosis factor receptor-1 death domain. Sukits SF, Lin LL, Hsu S, Malakian K, Powers R, Xu GY. J Mol Biol 310 895-906 (2001)
  90. Chemotactic factor in the pregnant rabbit uterine cervix. Uchiyama T, Ito A, Ikesue A, Nakagawa H, Mori Y. Am J Obstet Gynecol 167 1417-1422 (1992)
  91. Comparison of the solution nuclear magnetic resonance and crystal structures of interleukin-8. Possible implications for the mechanism of receptor binding. Clore GM, Gronenborn AM. J Mol Biol 217 611-620 (1991)
  92. Solution conformations of proline rings in proteins studied by NMR spectroscopy. Cai M, Huang Y, Liu J, Krishnamoorthi R. J Biomol NMR 6 123-128 (1995)
  93. The solution structure of the anti-HIV chemokine vMIP-II. Liwang AC, Wang ZX, Sun Y, Peiper SC, Liwang PJ. Protein Sci 8 2270-2280 (1999)
  94. Site-directed mutagenesis of monocyte chemoattractant protein-1 identifies two regions of the polypeptide essential for biological activity. Beall CJ, Mahajan S, Kuhn DE, Kolattukudy PE. Biochem J 313 ( Pt 2) 633-640 (1996)
  95. Structural determinants involved in the regulation of CXCL14/BRAK expression by the 26 S proteasome. Peterson FC, Thorpe JA, Harder AG, Volkman BF, Schwarze SR. J Mol Biol 363 813-822 (2006)
  96. A highly sensitive enzyme-linked immunosorbent assay for the measurement of interleukin-8 in biological fluids. Ida N, Sakurai S, Hosoi K, Kunitomo T. J Immunol Methods 156 27-38 (1992)
  97. Representing an ensemble of NMR-derived protein structures by a single structure. Sutcliffe MJ. Protein Sci 2 936-944 (1993)
  98. Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain. Joseph PR, Rajarathnam K. Protein Sci 24 81-92 (2015)
  99. Solution structure of Archaeglobus fulgidis peptidyl-tRNA hydrolase (Pth2) provides evidence for an extensive conserved family of Pth2 enzymes in archea, bacteria, and eukaryotes. Powers R, Mirkovic N, Goldsmith-Fischman S, Acton TB, Chiang Y, Huang YJ, Ma L, Rajan PK, Cort JR, Kennedy MA, Liu J, Rost B, Honig B, Murray D, Montelione GT. Protein Sci 14 2849-2861 (2005)
  100. Functional and receptor binding characterization of recombinant murine macrophage inflammatory protein 2: sequence analysis and mutagenesis identify receptor binding epitopes. Jerva LF, Sullivan G, Lolis E. Protein Sci 6 1643-1652 (1997)
  101. Molecular cloning and sequencing of the banded dogfish (Triakis scyllia) interleukin-8 cDNA. Inoue Y, Haruta C, Usui K, Moritomo T, Nakanishi T. Fish Shellfish Immunol 14 275-281 (2003)
  102. Identification of CC chemokine receptor 7 residues important for receptor activation. Ott TR, Pahuja A, Nickolls SA, Alleva DG, Struthers RS. J Biol Chem 279 42383-42392 (2004)
  103. Structural perspectives on antimicrobial chemokines. Nguyen LT, Vogel HJ. Front Immunol 3 384 (2012)
  104. X-ray crystallographic structure of an artificial beta-sheet dimer. Khakshoor O, Lin AJ, Korman TP, Sawaya MR, Tsai SC, Eisenberg D, Nowick JS. J Am Chem Soc 132 11622-11628 (2010)
  105. Adhesion/growth-regulatory galectins tested in combination: evidence for formation of hybrids as heterodimers. Miller MC, Ludwig AK, Wichapong K, Kaltner H, Kopitz J, Gabius HJ, Mayo KH. Biochem J 475 1003-1018 (2018)
  106. Dynamic conformational switching in the chemokine ligand is essential for G-protein-coupled receptor activation. Joseph PR, Sawant KV, Isley A, Pedroza M, Garofalo RP, Richardson RM, Rajarathnam K. Biochem J 456 241-251 (2013)
  107. Nuclear magnetic resonance solution structure of truncated human GRObeta [5-73] and its structural comparison with CXC chemokine family members GROalpha and IL-8. Qian YQ, Johanson KO, McDevitt P. J Mol Biol 294 1065-1072 (1999)
  108. Purification and biochemical characterisation of human and murine stem cell inhibitors (SCI). Graham GJ, Freshney MG, Donaldson D, Pragnell IB. Growth Factors 7 151-160 (1992)
  109. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity. Sepuru KM, Poluri KM, Rajarathnam K. PLoS One 9 e93228 (2014)
  110. Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine oligomerization. Dyer DP, Migliorini E, Salanga CL, Thakar D, Handel TM, Richter RP. Open Biol 7 (2017)
  111. Semisynthesis and application of carboxyfluorescein-labelled biologically active human interleukin-8. David R, Machova Z, Beck-Sickinger AG. Biol Chem 384 1619-1630 (2003)
  112. The heterodimerization of platelet-derived chemokines. Carlson J, Baxter SA, Dréau D, Nesmelova IV. Biochim Biophys Acta 1834 158-168 (2013)
  113. Analysis of hydrophobicity in the alpha and beta chemokine families and its relevance to dimerization. Covell DG, Smythers GW, Gronenborn AM, Clore GM. Protein Sci 3 2064-2072 (1994)
  114. In silico analysis reveals sequential interactions and protein conformational changes during the binding of chemokine CXCL-8 to its receptor CXCR1. Liou JW, Chang FT, Chung Y, Chen WY, Fischer WB, Hsu HJ. PLoS One 9 e94178 (2014)
  115. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins. Joseph PR, Poluri KM, Gangavarapu P, Rajagopalan L, Raghuwanshi S, Richardson RM, Garofalo RP, Rajarathnam K. Biophys J 105 1491-1501 (2013)
  116. Structural Basis of Native CXCL7 Monomer Binding to CXCR2 Receptor N-Domain and Glycosaminoglycan Heparin. Brown AJ, Sepuru KM, Rajarathnam K. Int J Mol Sci 18 (2017)
  117. The N-terminal domain of CCL21 reconstitutes high affinity binding, G protein activation, and chemotactic activity, to the C-terminal domain of CCL19. Ott TR, Lio FM, Olshefski D, Liu XJ, Ling N, Struthers RS. Biochem Biophys Res Commun 348 1089-1093 (2006)
  118. The amino-terminal residues in the crystal structure of connective tissue activating peptide-III (des10) block the ELR chemotactic sequence. Malkowski MG, Lazar JB, Johnson PH, Edwards BF. J Mol Biol 266 367-380 (1997)
  119. The dynamics of interleukin-8 and its interaction with human CXC receptor I peptide. Kendrick AA, Holliday MJ, Isern NG, Zhang F, Camilloni C, Huynh C, Vendruscolo M, Armstrong G, Eisenmesser EZ. Protein Sci 23 464-480 (2014)
  120. Dimeric peptides of the C-terminal region of CXCL14 function as CXCL12 inhibitors. Tanegashima K, Tsuji K, Suzuki K, Shigenaga A, Otaka A, Hara T. FEBS Lett 587 3770-3775 (2013)
  121. Molecular cloning and sequencing of the silver chimaera (Chimaera phantasma) interleukin-8 cDNA. Inoue Y, Endo M, Haruta C, Taniuchi T, Moritomo T, Nakanishi T. Fish Shellfish Immunol 15 269-274 (2003)
  122. Structure and bioactivity of recombinant human CTAP-III and NAP-2. Proudfoot AE, Peitsch MC, Power CA, Allet B, Mermod JJ, Bacon K, Wells TN. J Protein Chem 16 37-49 (1997)
  123. Structure of chemokine-derived antimicrobial Peptide interleukin-8alpha and interaction with detergent micelles and oriented lipid bilayers. Bourbigot S, Fardy L, Waring AJ, Yeaman MR, Booth V. Biochemistry 48 10509-10521 (2009)
  124. Structure of monomeric Interleukin-8 and its interactions with the N-terminal Binding Site-I of CXCR1 by solution NMR spectroscopy. Berkamp S, Park SH, De Angelis AA, Marassi FM, Opella SJ. J Biomol NMR 69 111-121 (2017)
  125. Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity. Couñago RM, Knapp KM, Nakatani Y, Fleming SB, Corbett M, Wise LM, Mercer AA, Krause KL. Structure 23 1199-1213 (2015)
  126. 1H NMR evidence that Glu-38 interacts with the N-terminal functional domain in interleukin-8. Rajarathnam K, Clark-Lewis I, Dewald B, Baggiolini M, Sykes BD. FEBS Lett 399 43-46 (1996)
  127. Biological activity of the growth factor-induced cytokine N51: structure-function analysis using N51/Interleukin-8 chimeric molecules. Heinrich JN, O'Rourke EC, Chen L, Gray H, Dorfman KS, Bravo R. Mol Cell Biol 14 2849-2861 (1994)
  128. Chemokine CXCL7 Heterodimers: Structural Insights, CXCR2 Receptor Function, and Glycosaminoglycan Interactions. Brown AJ, Joseph PR, Sawant KV, Rajarathnam K. Int J Mol Sci 18 (2017)
  129. Continuum solvent molecular dynamics study of flexibility in interleukin-8. Cornell W, Abseher R, Nilges M, Case DA. J Mol Graph Model 19 136-145 (2001)
  130. Molecular requirements for sorting of the chemokine interleukin-8/CXCL8 to endothelial Weibel-Palade bodies. Hol J, Küchler AM, Johansen FE, Dalhus B, Haraldsen G, Oynebråten I. J Biol Chem 284 23532-23539 (2009)
  131. NMR structure and dynamics of monomeric neutrophil-activating peptide 2. Young H, Roongta V, Daly TJ, Mayo KH. Biochem J 338 ( Pt 3) 591-598 (1999)
  132. Receptor-binding conformation of the "ELR" motif of IL-8: X-ray structure of the L5C/H33C variant at 2.35 A resolution. Gerber N, Lowman H, Artis DR, Eigenbrot C. Proteins 38 361-367 (2000)
  133. Structural change and receptor binding in a chemokine mutant with a rearranged disulfide: X-ray structure of E38C/C50AIL-8 at 2 A resolution. Eigenbrot C, Lowman HB, Chee L, Artis DR. Proteins 27 556-566 (1997)
  134. Adhesive dynamics simulation of G-protein-mediated chemokine-activated neutrophil adhesion. Caputo KE, Hammer DA. Biophys J 96 2989-3004 (2009)
  135. Heparin-bound chemokine CXCL8 monomer and dimer are impaired for CXCR1 and CXCR2 activation: implications for gradients and neutrophil trafficking. Joseph PRB, Sawant KV, Rajarathnam K. Open Biol 7 (2017)
  136. Multiple native-like conformations trapped via self-association-induced hydrophobic collapse of the 33-residue beta-sheet domain from platelet factor 4. Ilyina E, Mayo KH. Biochem J 306 ( Pt 2) 407-419 (1995)
  137. Role of intramolecular disulfides in stability and structure of a noncovalent homodimer. Rajagopalan L, Chin CC, Rajarathnam K. Biophys J 93 2129-2134 (2007)
  138. Secondary structure of neutrophil-activating peptide-2 determined by 1H-nuclear magnetic resonance spectroscopy. Mayo KH, Yang Y, Daly TJ, Barry JK, La Rosa GJ. Biochem J 304 ( Pt 2) 371-376 (1994)
  139. Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex. Halouska S, Zhou Y, Becker DF, Powers R. Proteins 75 12-27 (2009)
  140. Interleukin-8 is a cyclosporin A binding protein. Bang H, Brune K, Nager C, Feige U. Experientia 49 533-538 (1993)
  141. Investigation of the 'switch-epitope' concept with random peptide libraries displayed as thioredoxin loop fusions. Tripp BC, Lu Z, Bourque K, Sookdeo H, McCoy JM. Protein Eng 14 367-377 (2001)
  142. Limited and defined truncation at the C terminus enhances receptor binding and degranulation activity of the neutrophil-activating peptide 2 (NAP-2). Comparison of native and recombinant NAP-2 variants. Ehlert JE, Petersen F, Kubbutat MH, Gerdes J, Flad HD, Brandt E. J Biol Chem 270 6338-6344 (1995)
  143. Mapping of MCP-1 functional domains by peptide analysis and site-directed mutagenesis. Steitz SA, Hasegawa K, Chiang SL, Cobb RR, Castro MA, Lobl TJ, Yamada M, Lazarides E, Cardarelli PM. FEBS Lett 430 158-164 (1998)
  144. Measuring protein self-diffusion in protein-protein mixtures using a pulsed gradient spin-echo technique with WATERGATE and isotope filtering. Nesmelova IV, Idiyatullin D, Mayo KH. J Magn Reson 166 129-133 (2004)
  145. NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II. Mori M, Liu D, Kumar S, Huang Z. Biochem Biophys Res Commun 335 651-658 (2005)
  146. Identification and expression profiles of IL-8 in bighead carp (Aristichthys nobilis) in response to microcystin-LR. Li H, Cai Y, Xie P, Li G, Hao L, Xiong Q. Arch Environ Contam Toxicol 65 537-545 (2013)
  147. 1H assignment and secondary structure determination of human melanoma growth stimulating activity (MGSA) by NMR spectroscopy. Fairbrother WJ, Reilly D, Colby T, Horuk R. FEBS Lett 330 302-306 (1993)
  148. A novel molecular variant of the neutrophil-activating peptide NAP-2 with enhanced biological activity is truncated at the C-terminus: identification by antibodies with defined epitope specificity. Brandt E, Petersen F, Flad HD. Mol Immunol 30 979-991 (1993)
  149. An artificial CO-releasing metalloprotein built by histidine-selective metallation. Albuquerque IS, Jeremias HF, Chaves-Ferreira M, Matak-Vinkovic D, Boutureira O, Romão CC, Bernardes GJ. Chem Commun (Camb) 51 3993-3996 (2015)
  150. Crystal structure of viral macrophage inflammatory protein I encoded by Kaposi's sarcoma-associated herpesvirus at 1.7A. Luz JG, Yu M, Su Y, Wu Z, Zhou Z, Sun R, Wilson IA. J Mol Biol 352 1019-1028 (2005)
  151. Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR. Park SH, Berkamp S, Radoicic J, De Angelis AA, Opella SJ. Biophys J 113 2695-2705 (2017)
  152. A new protocol for high-yield purification of recombinant human CXCL8((3-72))K11R/G31P expressed in Escherichia coli. Cheng HT, Huang KC, Yu HY, Gao KJ, Zhao X, Li F, Town J, Gordon JR, Cheng JW. Protein Expr Purif 61 65-72 (2008)
  153. CCR2 and CCR5 receptor-binding properties of herpesvirus-8 vMIP-II based on sequence analysis and its solution structure. Shao W, Fernandez E, Sachpatzidis A, Wilken J, Thompson DA, Schweitzer BI, Lolis E. Eur J Biochem 268 2948-2959 (2001)
  154. Chemical modification of a variant of human MIP-1alpha; implications for dimer structure. Ashfield JT, Meyers T, Lowne D, Varley PG, Arnold JR, Tan P, Yang JC, Czaplewski LG, Dudgeon T, Fisher J. Protein Sci 9 2047-2053 (2000)
  155. Critical sites: a semantic approach to protein sequences. Application to the HIV-1 envelope molecule. Zagury JF, Cantalloube H, Bernard J, Lachgar A, Fall L, Achour A, Mbika JP, Cosme MH, Pellion F, Issing W. Biomed Pharmacother 46 343-351 (1992)
  156. Crystallization studies of glycosylated and unglycosylated human recombinant interleukin-2. Stura EA, Chen P, Wilmot CM, Arevalo JH, Wilson IA. Proteins 12 24-30 (1992)
  157. Disulfide trapping of protein complexes on the yeast surface. Lim KH, Madabhushi SR, Mann J, Neelamegham S, Park S. Biotechnol Bioeng 106 27-41 (2010)
  158. Human recombinant interferon-inducible protein-10: intact disulfide bridges are not required for inhibition of hematopoietic progenitors and chemotaxis of T lymphocytes and monocytes. Crow M, Taub DD, Cooper S, Broxmeyer HE, Sarris AH. J Hematother Stem Cell Res 10 147-156 (2001)
  159. Identification of the dimerisation interface of human interleukin-8 by IL-8-variants containing the photoactivatable amino acid benzoyl-phenylalanine. David R, Beck-Sickinger AG. Eur Biophys J 36 385-391 (2007)
  160. The three dimensional structure of rat cytokine CINC/Gro in solution by homonuclear 3D NMR. Hanzawa H, Haruyama H, Watanabe K, Tsurufuji S. FEBS Lett 354 207-212 (1994)
  161. Computational studies of CXCR1, the receptor of IL-8/CXCL8, using molecular dynamics and electrostatics. Huynh N, Mallik B, Zhang L, Martins-Green M, Morikis D. Biopolymers 89 52-61 (2008)
  162. Cross-linking of human neutrophil surface proteins to iodinated interleukin 8 or neutrophil activating peptide-2 results in at least four separable proteins. Besemer J, Schnitzel W, Monschein U, Ryffel B. Cytokine 5 512-519 (1993)
  163. Crystallization and preliminary X-ray crystallographic study of interleukin-8. Auer M, Kallen J, Schleischitz S, Walkinshaw MD, Wasserbauer E, Ehn G, Lindley IJ. FEBS Lett 265 30-32 (1990)
  164. Molecular characterization and gene expression analysis of the pro-inflammatory cytokines IL-1β and IL-8 in the South American fish Piaractus mesopotamicus challenged with Aeromonas dhakensis. Carriero MM, Henrique-Silva F, Meira CM, Gato IMQ, Caetano AR, Lobo FP, Alves AL, Varela ES, Maia AAM. Genet Mol Biol 43 e20200006 (2020)
  165. NMR structure determination of the tetramerization domain of the Mnt repressor: An asymmetric alpha-helical assembly in slow exchange. Nooren IM, George AV, Kaptein R, Sauer RT, Boelens R. J Biomol NMR 15 39-53 (1999)
  166. Distinct Differences in Structural States of Conserved Histidines in Two Related Proteins: NMR Studies of the Chemokines CXCL1 and CXCL8 in the Free Form and Macromolecular Complexes. Sepuru KM, Rajarathnam K. Biochemistry 57 5969-5977 (2018)
  167. Dynamics-Derived Insights into Complex Formation between the CXCL8 Monomer and CXCR1 N-Terminal Domain: An NMR Study. Joseph PRB, Spyracopoulos L, Rajarathnam K. Molecules 23 (2018)
  168. Effects of K11R and G31P Mutations on the Structure and Biological Activities of CXCL8: Solution Structure of Human CXCL8(3-72)K11R/G31P. Cheng HT, Yu HY, Gordon JR, Li F, Cheng JW. Molecules 22 (2017)
  169. Homology modeling and molecular dynamics simulations of lymphotactin. Buyong, Xiong J, Lubkowski J, Nussinov R. Protein Sci 9 2192-2199 (2000)
  170. Identification of amino acids involved in the binding of hMIP-1 alpha to CC-CKR1, a MIP-1 alpha receptor found on neutrophils. Crisman JM, Elder PJ, Wilkie NM, Kolattukudy PE. Mol Cell Biochem 195 245-256 (1999)
  171. NMR in the Analysis of Functional Chemokine Interactions and Drug Discovery. Ziarek JJ, Volkman BF. Drug Discov Today Technol 9 e293-e299 (2012)
  172. Preliminary crystallographic analysis of murine macrophage inflammatory protein 2. Lolis E, Sweet RM, Cousens LS, Tekamp-Olson P, Sherry BA, Cerami A. J Mol Biol 225 913-915 (1992)
  173. Structural Evidence for the Tetrameric Assembly of Chemokine CCL11 and the Glycosaminoglycan Arixtra™. Dykstra AB, Sweeney MD, Leary JA. Biomolecules 3 905-922 (2013)
  174. Structure and activity of a chimeric interleukin-8-melanoma-growth-stimulatory-activity protein. Sticht H, Auer M, Schmitt B, Besemer J, Horcher M, Kirsch T, Lindley IJ, Rösch P. Eur J Biochem 235 26-35 (1996)
  175. A neutralizing monoclonal antibody specific for the dimer interface region of IL-8. Deforge LE, Lowman HB, Leong SR, Chuntharapai A, Jin Kim K, Hébert CA. Cytokine 12 1620-1629 (2000)
  176. Purification, crystallization and preliminary X-ray diffraction analysis of recombinant human neutrophil-activating peptide 2 (rhNAP-2). Kungl AJ, Machius M, Huber R, Schwer C, Lam C, Aschauer H, Ehn G, Lindley IJ, Auer M. FEBS Lett 347 300-303 (1994)
  177. Revealing Unknown Protein Structures Using Computational Conformational Sampling Guided by Experimental Hydrogen-Exchange Data. Devaurs D, Antunes DA, Kavraki LE. Int J Mol Sci 19 (2018)
  178. Congress 10th International Conference on Methods in Protein Structure Analysis. September 8-13, 1994, Snowbird, Utah. Short communications and abstracts. J Protein Chem 13 431-543 (1994)
  179. A highly efficient method for the production and purification of recombinant human CXCL8. McKenna S, Giblin SP, Bunn RA, Xu Y, Matthews SJ, Pease JE. PLoS One 16 e0258270 (2021)
  180. CASP5 and CR1 as potential biomarkers for Kawasaki disease: an Integrated Bioinformatics-Experimental Study. Rahmati Y, Mollanoori H, Najafi S, Esmaeili S, Alivand MR. BMC Pediatr 21 566 (2021)
  181. Crystal structure of Pyrococcus furiosus PF2050, a member of the DUF2666 protein family. Han BG, Jeong KC, Cho JW, Jeong BC, Song HK, Lee JY, Shin DH, Lee S, Lee BI. FEBS Lett 586 1384-1388 (2012)
  182. Efficient production of fluorophore-labeled CC chemokines for biophysical studies using recombinant enterokinase and recombinant sortase. Guan W, Zhang N, Bains A, Sadqi M, Dupureur CM, LiWang PJ. Biopolymers e23557 (2023)
  183. Identification of a Ligand-Binding Site on the Staphylococcus aureus DnaG Primase C-Terminal Domain. Catazaro J, Periago J, Shortridge MD, Worley B, Kirchner A, Powers R, Griep MA. Biochemistry 56 932-943 (2017)
  184. Macrophages and neutrophils are necessary for ER stress-induced β cell loss. Yang B, Yang L, Wang Y, Maddison LA, Tang Z, Haigh S, Gong Y, Zhang Y, Covington BA, Bosma KJ, Tong X, Page-McCaw P, Gannon M, Deng Q, Chen W. Cell Rep 40 111255 (2022)
  185. Nuclear overhauser spectroscopy of chiral CHD methylene groups. Augustyniak R, Stanek J, Colaux H, Bodenhausen G, Koźmiński W, Herrmann T, Ferrage F. J Biomol NMR 64 27-37 (2016)
  186. Structural basis of CXC chemokine receptor 1 ligand binding and activation. Ishimoto N, Park JH, Kawakami K, Tajiri M, Mizutani K, Akashi S, Tame JRH, Inoue A, Park SY. Nat Commun 14 4107 (2023)
  187. The non-ELR CXC chemokine encoded by human cytomegalovirus UL146 genotype 5 contains a C-terminal β-hairpin and induces neutrophil migration as a selective CXCR2 agonist. Berg C, Wedemeyer MJ, Melynis M, Schlimgen RR, Hansen LH, Våbenø J, Peterson FC, Volkman BF, Rosenkilde MM, Lüttichau HR. PLoS Pathog 18 e1010355 (2022)


Related citations provided by authors (1)

  1. Determination of the secondary structure of interleukin-8 by nuclear magnetic resonance spectroscopy.. Clore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM J Biol Chem 264 18907-11 (1989)