2iu9 Citations

Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis.

Proc Natl Acad Sci U S A 104 4321-6 (2007)
Related entries: 2iu8, 2iua

Cited: 47 times
EuropePMC logo PMID: 17360522

Abstract

The external layer of the Gram-negative bacterial outer membrane is primarily composed of a protective, selectively permeable LPS. The biosynthesis of LPS relies on UDP-3-O-acyl-glucosamine N-acyltransferase (LpxD), which transfers 3-hydroxy-arachidic acid from acyl carrier protein to the 2' amine of UDP-3-O-myristoyl glucosamine in Chlamydia trachomatis. Our crystallographic study reveals that LpxD is a homotrimer, each subunit of which is constructed from a novel combination of an N-terminal uridine-binding domain, a core lipid-binding domain, and a C-terminal helical extension. Highly conserved residues dominate nucleotide binding. Phe-43 and Tyr-49 form pi-stacking interactions with uracil, and Asn-46 and His-284 form hydrogen bonds with the phosphate groups. These interactions place the glucosamine moiety at the catalytic center formed by two adjacent subunits. Here His-247 and His-284 contribute to a mechanism involving nucleophilic attack by the amine of one substrate on the carbonyl carbon of an acyl carrier protein thioester conjugate. Serendipitously, our study reveals a fatty acid (FA) binding groove near the catalytic center. MS elucidated the presence of a FA mixture binding to LpxD, with palmitic acid the most prevalent. The placement of UDP-N-acetylglucosamine and the FA provides details of N-acyltransferase ligand interactions and allows for a description of structure and reactivity at an early stage of LPS assembly.

Reviews - 2iu9 mentioned but not cited (1)

Articles - 2iu9 mentioned but not cited (5)

  1. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Buetow L, Smith TK, Dawson A, Fyffe S, Hunter WN. Proc Natl Acad Sci U S A 104 4321-4326 (2007)
  2. Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis. Bartling CM, Raetz CR. Biochemistry 47 5290-5302 (2008)
  3. Structure determination of LpxD from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Badger J, Chie-Leon B, Logan C, Sridhar V, Sankaran B, Zwart PH, Nienaber V. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 6-9 (2013)
  4. The structure of LpxD from Pseudomonas aeruginosa at 1.3 Å resolution. Badger J, Chie-Leon B, Logan C, Sridhar V, Sankaran B, Zwart PH, Nienaber V. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 749-752 (2011)
  5. A novel computational strategy for defining the minimal protein molecular surface representation. Grassmann G, Miotto M, Di Rienzo L, Gosti G, Ruocco G, Milanetti E. PLoS One 17 e0266004 (2022)


Reviews citing this publication (9)

  1. Biosynthesis and export of bacterial lipopolysaccharides. Whitfield C, Trent MS. Annu Rev Biochem 83 99-128 (2014)
  2. Lipopolysaccharide: Biosynthetic pathway and structure modification. Wang X, Quinn PJ. Prog Lipid Res 49 97-107 (2010)
  3. Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Byers DM, Gong H. Biochem Cell Biol 85 649-662 (2007)
  4. The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer. Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS. Annu Rev Microbiol 70 255-278 (2016)
  5. Acyltransferases in bacteria. Röttig A, Steinbüchel A. Microbiol Mol Biol Rev 77 277-321 (2013)
  6. Kdo2 -lipid A: structural diversity and impact on immunopharmacology. Wang X, Quinn PJ, Yan A. Biol Rev Camb Philos Soc 90 408-427 (2015)
  7. Structure, inhibition, and regulation of essential lipid A enzymes. Zhou P, Zhao J. Biochim Biophys Acta Mol Cell Biol Lipids 1862 1424-1438 (2017)
  8. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. RSC Med Chem 14 1446-1471 (2023)
  9. Targeting LPS biosynthesis and transport in gram-negative bacteria in the era of multi-drug resistance. Romano KP, Hung DT. Biochim Biophys Acta Mol Cell Res 1870 119407 (2023)

Articles citing this publication (32)

  1. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, Hoshi N, Hatano N, Ozawa G, Sasaki N, Mizoguchi T, Amin HZ, Hirota Y, Ogawa W, Yamada T, Hirata KI. Circulation 138 2486-2498 (2018)
  2. Discovery of new biosynthetic pathways: the lipid A story. Raetz CR, Guan Z, Ingram BO, Six DA, Song F, Wang X, Zhao J. J Lipid Res 50 Suppl S103-8 (2009)
  3. Novel structure of the conserved gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. Suits MD, Sperandeo P, Dehò G, Polissi A, Jia Z. J Mol Biol 380 476-488 (2008)
  4. LPS remodeling is an evolved survival strategy for bacteria. Li Y, Powell DA, Shaffer SA, Rasko DA, Pelletier MR, Leszyk JD, Scott AJ, Masoudi A, Goodlett DR, Wang X, Raetz CR, Ernst RK. Proc Natl Acad Sci U S A 109 8716-8721 (2012)
  5. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Williams AH, Raetz CR. Proc Natl Acad Sci U S A 104 13543-13550 (2007)
  6. Chasing acyl carrier protein through a catalytic cycle of lipid A production. Masoudi A, Raetz CR, Zhou P, Pemble CW. Nature 505 422-426 (2014)
  7. Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Bartling CM, Raetz CR. Biochemistry 48 8672-8683 (2009)
  8. Global transcriptomic response of Leptospira interrogans serovar Copenhageni upon exposure to serum. Patarakul K, Lo M, Adler B. BMC Microbiol 10 31 (2010)
  9. Crystal structure and catalytic mechanism of PglD from Campylobacter jejuni. Olivier NB, Imperiali B. J Biol Chem 283 27937-27946 (2008)
  10. Acyl chain specificity of the acyltransferases LpxA and LpxD and substrate availability contribute to lipid A fatty acid heterogeneity in Porphyromonas gingivalis. Bainbridge BW, Karimi-Naser L, Reife R, Blethen F, Ernst RK, Darveau RP. J Bacteriol 190 4549-4558 (2008)
  11. Dual targeting antibacterial peptide inhibitor of early lipid A biosynthesis. Jenkins RJ, Dotson GD. ACS Chem Biol 7 1170-1177 (2012)
  12. Nucleotide substrate recognition by UDP-N-acetylglucosamine acyltransferase (LpxA) in the first step of lipid A biosynthesis. Ulaganathan V, Buetow L, Hunter WN. J Mol Biol 369 305-312 (2007)
  13. Mutagenesis and Functional Analysis of the Bacterial Arginine Glycosyltransferase Effector NleB1 from Enteropathogenic Escherichia coli. Wong Fok Lung T, Giogha C, Creuzburg K, Ong SY, Pollock GL, Zhang Y, Fung KY, Pearson JS, Hartland EL. Infect Immun 84 1346-1360 (2016)
  14. Expression of the lipopolysaccharide biosynthesis gene lpxD affects biofilm formation of Pseudomonas aeruginosa. Alshalchi SA, Anderson GG. Arch Microbiol 197 135-145 (2015)
  15. A structure-based approach to ligand discovery for 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase: a target for antimicrobial therapy. Ramsden NL, Buetow L, Dawson A, Kemp LA, Ulaganathan V, Brenk R, Klebe G, Hunter WN. J Med Chem 52 2531-2542 (2009)
  16. Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography. Kroeck KG, Sacco MD, Smith EW, Zhang X, Shoun D, Akhtar A, Darch SE, Cohen F, Andrews LD, Knox JE, Chen Y. Sci Rep 9 15450 (2019)
  17. Structural basis for the recognition of peptide RJPXD33 by acyltransferases in lipid A biosynthesis. Jenkins RJ, Heslip KA, Meagher JL, Stuckey JA, Dotson GD. J Biol Chem 289 15527-15535 (2014)
  18. The three-dimensional Structure of a mycobacterial DapD provides insights into DapD diversity and reveals unexpected particulars about the enzymatic mechanism. Schuldt L, Weyand S, Kefala G, Weiss MS. J Mol Biol 389 863-879 (2009)
  19. Identification of three genes encoding for the late acyltransferases of lipid A in Cronobacter sakazakii. Cai L, Li Y, Tao G, Guo W, Zhang C, Wang X. Mar Drugs 11 377-386 (2013)
  20. PXO_00987, a putative acetyltransferase, is required for flagellin glycosylation, and regulates flagellar motility, exopolysaccharide production, and biofilm formation in Xanthomonas oryzae pv. oryzae. Li H, Yu C, Chen H, Tian F, He C. Microb Pathog 85 50-57 (2015)
  21. A continuous fluorescent enzyme assay for early steps of lipid A biosynthesis. Jenkins RJ, Dotson GD. Anal Biochem 425 21-27 (2012)
  22. Immunosuppression broadens evolutionary pathways to drug resistance and treatment failure during Acinetobacter baumannii pneumonia in mice. Huo W, Busch LM, Hernandez-Bird J, Hamami E, Marshall CW, Geisinger E, Cooper VS, van Opijnen T, Rosch JW, Isberg RR. Nat Microbiol 7 796-809 (2022)
  23. Cj1123c (PglD), a multifaceted acetyltransferase from Campylobacter jejuni. Demendi M, Creuzenet C. Biochem Cell Biol 87 469-483 (2009)
  24. The C-terminus of Bienertia sinuspersici Toc159 contains essential elements for its targeting and anchorage to the chloroplast outer membrane. Lung SC, Smith MD, Weston JK, Gwynne W, Secord N, Chuong SD. Front Plant Sci 5 722 (2014)
  25. Drug Target Identification and Elucidation of Natural Inhibitors for Bordetella petrii: An In Silico Study. Rath SN, Ray M, Pattnaik A, Pradhan SK. Genomics Inform 14 241-254 (2016)
  26. New virulence factor CSK29544_02616 as LpxA binding partner in Cronobacter sakazakii. Kim S, Yoon H, Ryu S. Sci Rep 8 835 (2018)
  27. Pathway Driven Target Selection in Klebsiella pneumoniae: Insights Into Carbapenem Exposure. Serral F, Pardo AM, Sosa E, Palomino MM, Nicolás MF, Turjanski AG, Ramos PIP, Fernández Do Porto D. Front Cell Infect Microbiol 12 773405 (2022)
  28. Benchmarking tools for detecting longitudinal differential expression in proteomics data allows establishing a robust reproducibility optimization regression approach. Välikangas T, Suomi T, Chandler CE, Scott AJ, Tran BQ, Ernst RK, Goodlett DR, Elo LL. Nat Commun 13 7877 (2022)
  29. Benzo[a]pyrene stress impacts adaptive strategies and ecological functions of earthworm intestinal viromes. Xia R, Sun M, Balcázar JL, Yu P, Hu F, Alvarez PJJ. ISME J 17 1004-1014 (2023)
  30. Crystal structures of acyl carrier protein in complex with two catalytic partners show a dynamic role in cellular metabolism. Newmister SA, Sherman DH. Chembiochem 15 1079-1081 (2014)
  31. Genome taxonomy of the genus Thalassotalea and proposal of Thalassotalea hakodatensis sp. nov. isolated from sea cucumber larvae. Yamano R, Yu J, Haditomo AHC, Jiang C, Mino S, Romalde JL, Kang K, Sakai Y, Sawabe T. PLoS One 18 e0286693 (2023)
  32. The structure of lipopolysaccharide transport protein B (LptB) from Burkholderia pseudomallei. Pankov G, Dawson A, Hunter WN. Acta Crystallogr F Struct Biol Commun 75 227-232 (2019)