2j33 Citations

Role of loop bundle hydrogen bonds in the maturation and activity of (Pro)caspase-3.

Biochemistry 45 13249-63 (2006)
Related entries: 2j30, 2j31, 2j32

Cited: 43 times
EuropePMC logo PMID: 17073446

Abstract

During maturation, procaspase-3 is cleaved at D175, which resides in a linker that connects the large and small subunits. The intersubunit linker also connects two active site loops that rearrange following cleavage and, in part, form the so-called loop bundle. As a result of chain cleavage, new hydrogen bonds and van der Waals contacts form among three active site loops. The new interactions are predicted to stabilize the active site. One unresolved issue is the extent to which the loop bundle residues also stabilize the procaspase active site. We examined the effects of replacing four loop bundle residues (E167, D169, E173, and Y203) on the biochemical and structural properties of the (pro)caspase. We show that replacing the residues affects the activity of the procaspase as well as the mature caspase, with D169A and E167A replacements having the largest effects. Replacement of D169 prevents caspase-3 autoactivation, and its cleavage at D175 no longer leads to an active enzyme. In addition, the E173A mutation, when coupled to a second mutation in the procaspase, D175A, may alter the substrate specificity of the procaspase. The mutations affected the active site environment as assessed by changes in fluorescence emission, accessibility to quencher, and cleavage by either trypsin or V8 proteases. High-resolution X-ray crystallographic structures of E167A, D173A, and Y203F caspases show that changes in the active site environment may be due to the increased flexibility of several residues in the N-terminus of the small subunit. Overall, the results show that these residues are important for stabilizing the procaspase active site as well as that of the mature caspase.

Reviews - 2j33 mentioned but not cited (1)

  1. Small Molecule Active Site Directed Tools for Studying Human Caspases. Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Chem. Rev. 115 12546-12629 (2015)

Articles - 2j33 mentioned but not cited (3)

  1. Role of loop bundle hydrogen bonds in the maturation and activity of (Pro)caspase-3. Feeney B, Pop C, Swartz P, Mattos C, Clark AC. Biochemistry 45 13249-13263 (2006)
  2. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. Maciag JJ, Mackenzie SH, Tucker MB, Schipper JL, Swartz P, Clark AC. Proc. Natl. Acad. Sci. U.S.A. 113 E6080-E6088 (2016)
  3. Computational screening for new neuroprotective ingredients against Alzheimer's disease from bilberry by cheminformatics approaches. Xiao R, Liang R, Cai YH, Dong J, Zhang L. Front Nutr 9 1061552 (2022)


Reviews citing this publication (3)

  1. Targeting cell death in tumors by activating caspases. MacKenzie SH, Clark AC. Curr Cancer Drug Targets 8 98-109 (2008)
  2. The Role of Caspase-2 in Regulating Cell Fate. Vigneswara V, Ahmed Z. Cells 9 (2020)
  3. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. Boudreau MW, Peh J, Hergenrother PJ. ACS Chem. Biol. 14 2335-2348 (2019)

Articles citing this publication (36)

  1. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Gray DC, Mahrus S, Wells JA. Cell 142 637-646 (2010)
  2. A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Walters J, Pop C, Scott FL, Drag M, Swartz P, Mattos C, Salvesen GS, Clark AC. Biochem. J. 424 335-345 (2009)
  3. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. Peterson QP, Goode DR, West DC, Ramsey KN, Lee JJ, Hergenrother PJ. J. Mol. Biol. 388 144-158 (2009)
  4. Matrine induces apoptosis in gastric carcinoma cells via alteration of Fas/FasL and activation of caspase-3. Dai ZJ, Gao J, Ji ZZ, Wang XJ, Ren HT, Liu XX, Wu WY, Kang HF, Guan HT. J Ethnopharmacol 123 91-96 (2009)
  5. Procaspase-3 activation as an anti-cancer strategy: structure-activity relationship of procaspase-activating compound 1 (PAC-1) and its cellular co-localization with caspase-3. Peterson QP, Hsu DC, Goode DR, Novotny CJ, Totten RK, Hergenrother PJ. J. Med. Chem. 52 5721-5731 (2009)
  6. L2' loop is critical for caspase-7 active site formation. Witkowski WA, Hardy JA. Protein Sci. 18 1459-1468 (2009)
  7. Scutellaria barbate extract induces apoptosis of hepatoma H22 cells via the mitochondrial pathway involving caspase-3. Dai ZJ, Wang XJ, Li ZF, Ji ZZ, Ren HT, Tang W, Liu XX, Kang HF, Guan HT, Song LQ. World J. Gastroenterol. 14 7321-7328 (2008)
  8. Structural snapshots reveal distinct mechanisms of procaspase-3 and -7 activation. Thomsen ND, Koerber JT, Wells JA. Proc. Natl. Acad. Sci. U.S.A. 110 8477-8482 (2013)
  9. Specificity of a protein-protein interface: local dynamics direct substrate recognition of effector caspases. Fuchs JE, von Grafenstein S, Huber RG, Wallnoefer HG, Liedl KR. Proteins 82 546-555 (2014)
  10. Allosteric modulation of caspase 3 through mutagenesis. Walters J, Schipper JL, Swartz P, Mattos C, Clark AC. Biosci. Rep. 32 401-411 (2012)
  11. Large-scale preparation of active caspase-3 in E. coli by designing its thrombin-activatable precursors. Kang HJ, Lee YM, Jeong YJ, Park K, Jang M, Park SG, Bae KH, Kim M, Chung SJ. BMC Biotechnol. 8 92 (2008)
  12. Gasdermin E-derived caspase-3 inhibitors effectively protect mice from acute hepatic failure. Xu WF, Zhang Q, Ding CJ, Sun HY, Che Y, Huang H, Wang Y, Wu JW, Hao HP, Cao LJ. Acta Pharmacol Sin 42 68-76 (2021)
  13. HOXC13 promotes proliferation of esophageal squamous cell carcinoma via repressing transcription of CASP3. Luo J, Wang Z, Huang J, Yao Y, Sun Q, Wang J, Shen Y, Xu L, Ren B. Cancer Sci. 109 317-329 (2018)
  14. Thermodynamic, enzymatic and structural effects of removing a salt bridge at the base of loop 4 in (pro)caspase-3. Walters J, Swartz P, Mattos C, Clark AC. Arch. Biochem. Biophys. 508 31-38 (2011)
  15. Human caspase-3 inhibition by Z-tLeu-Asp-H: tLeu(P2) counterbalances Asp(P4) and Glu(P3) specific inhibitor truncation. Colantonio P, Leboffe L, Bolli A, Marino M, Ascenzi P, Luisi G. Biochem. Biophys. Res. Commun. 377 757-762 (2008)
  16. Modifying caspase-3 activity by altering allosteric networks. Cade C, Swartz P, MacKenzie SH, Clark AC. Biochemistry 53 7582-7595 (2014)
  17. Ursolic Acid, a Natural Nutraceutical Agent, Targets Caspase3 and Alleviates Inflammation-Associated Downstream Signal Transduction. Ma X, Zhang Y, Wang Z, Shen Y, Zhang M, Nie Q, Hou Y, Bai G. Mol Nutr Food Res 61 (2017)
  18. Ursolic acid reduces hepatocellular apoptosis and alleviates alcohol-induced liver injury via irreversible inhibition of CASP3 in vivo. Ma XY, Zhang M, Fang G, Cheng CJ, Wang MK, Han YM, Hou XT, Hao EW, Hou YY, Bai G. Acta Pharmacol Sin 42 1101-1110 (2021)
  19. FBS or BSA Inhibits EGCG Induced Cell Death through Covalent Binding and the Reduction of Intracellular ROS Production. Zhang Y, Xu YY, Sun WJ, Zhang MH, Zheng YF, Shen HM, Yang J, Zhu XQ. Biomed Res Int 2016 5013409 (2016)
  20. Modifications to a common phosphorylation network provide individualized control in caspases. Thomas ME, Grinshpon R, Swartz P, Clark AC. J. Biol. Chem. 293 5447-5461 (2018)
  21. Molecular insight into the role of the leucine residue on the L2 loop in the catalytic activity of caspases 3 and 7. Kang HJ, Lee YM, Jeong MS, Kim M, Bae KH, Kim SJ, Chung SJ. Biosci. Rep. 32 305-313 (2012)
  22. Structural insights into the calcium-dependent interaction between calbindin-D28K and caspase-3. Bobay BG, Stewart AL, Tucker AT, Thompson RJ, Varney KM, Cavanagh J. FEBS Lett. 586 3582-3589 (2012)
  23. Synthesis, Characterization, In Vitro Anticancer Potentiality, and Antimicrobial Activities of Novel Peptide-Glycyrrhetinic-Acid-Based Derivatives. Moustafa GO, Shalaby A, Naglah AM, Mounier MM, El-Sayed H, Anwar MM, Nossier ES. Molecules 26 4573 (2021)
  24. Phage display and structural studies reveal plasticity in substrate specificity of caspase-3a from zebrafish. Tucker MB, MacKenzie SH, Maciag JJ, Dirscherl Ackerman H, Swartz P, Yoder JA, Hamilton PT, Clay Clark A. Protein Sci. 25 2076-2088 (2016)
  25. Structural asymmetry of procaspase-7 bound to a specific inhibitor. Kang HJ, Lee YM, Bae KH, Kim SJ, Chung SJ. Acta Crystallogr. D Biol. Crystallogr. 69 1514-1521 (2013)
  26. Synthesis, structure and reactivity of azosalophen complexes of vanadium(IV): studies on cytotoxic properties. Pattanayak P, Pratihar JL, Patra D, Mitra S, Bhattacharyya A, Lee HM, Chattopadhyay S. Dalton Trans 6220-6230 (2009)
  27. Redesigning the procaspase-8 dimer interface for improved dimerization. Ma C, MacKenzie SH, Clark AC. Protein Sci. 23 442-453 (2014)
  28. The CaspBase: a curated database for evolutionary biochemical studies of caspase functional divergence and ancestral sequence inference. Grinshpon RD, Williford A, Titus-McQuillan J, Clay Clark A. Protein Sci. 27 1857-1870 (2018)
  29. Caspases from scleractinian coral show unique regulatory features. Shrestha S, Tung J, Grinshpon RD, Swartz P, Hamilton PT, Dimos B, Mydlarz L, Clark AC. J Biol Chem 295 14578-14591 (2020)
  30. Design of a Human Rhinovirus-14 3C Protease-Inducible Caspase-3. Wagner HJ, Weber W. Molecules 24 (2019)
  31. Evolution of the folding landscape of effector caspases. Shrestha S, Clark AC. J Biol Chem 297 101249 (2021)
  32. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker. Alves J, Garay-Malpartida M, Occhiucci JM, Belizário JE. Biochem. Cell Biol. 95 634-643 (2017)
  33. Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma. Sarkar A, Balakrishnan K, Chen J, Patel V, Neelapu SS, McMurray JS, Gandhi V. Oncotarget 7 3461-3476 (2016)
  34. Network pharmacology and experimental validation to reveal the target of matrine against PRRSV. Zhao Y, Ling X, Zhang H, Sun P, Sun Y, Yin W, Fan K, Yang H, Zhong J, Zhang Z, Wang J, Li H, Sun N. iScience 26 106371 (2023)
  35. New pyridine and chromene scaffolds as potent vasorelaxant and anticancer agents. Dawood DH, Srour AM, Saleh DO, Huff KJ, Greco F, Osborn HMI. RSC Adv 11 29441-29452 (2021)
  36. Resurrection of ancestral effector caspases identifies novel networks for evolution of substrate specificity. Grinshpon RD, Shrestha S, Titus-McQuillan J, Hamilton PT, Swartz PD, Clark AC. Biochem. J. 476 3475-3492 (2019)