2j98 Citations

Variable oligomerization modes in coronavirus non-structural protein 9.

OpenAccess logo J Mol Biol 383 1081-96 (2008)
Cited: 39 times
EuropePMC logo PMID: 18694760

Abstract

Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.

Articles - 2j98 mentioned but not cited (3)

  1. Variable oligomerization modes in coronavirus non-structural protein 9. Ponnusamy R, Moll R, Weimar T, Mesters JR, Hilgenfeld R. J Mol Biol 383 1081-1096 (2008)
  2. Structural basis for dimerization and RNA binding of avian infectious bronchitis virus nsp9. Hu T, Chen C, Li H, Dou Y, Zhou M, Lu D, Zong Q, Li Y, Yang C, Zhong Z, Singh N, Hu H, Zhang R, Yang H, Su D. Protein Sci 26 1037-1048 (2017)
  3. A novel computational strategy for defining the minimal protein molecular surface representation. Grassmann G, Miotto M, Di Rienzo L, Gosti G, Ruocco G, Milanetti E. PLoS One 17 e0266004 (2022)


Reviews citing this publication (9)

  1. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Snijder EJ, Decroly E, Ziebuhr J. Adv Virus Res 96 59-126 (2016)
  2. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Hilgenfeld R, Peiris M. Antiviral Res 100 286-295 (2013)
  3. Post-translational modifications of coronavirus proteins: roles and function. Fung TS, Liu DX. Future Virol 13 405-430 (2018)
  4. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. Rich RL, Myszka DG. J Mol Recognit 23 1-64 (2010)
  5. Structural and functional insights into non-structural proteins of coronaviruses. Rohaim MA, Rohaim MA, El Naggar RF, Clayton E, Munir M, Munir M. Microb Pathog 150 104641 (2021)
  6. Atlas of coronavirus replicase structure. Neuman BW, Chamberlain P, Bowden F, Joseph J. Virus Res 194 49-66 (2014)
  7. Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins. Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK. Bioinform Biol Insights 15 11779322211025876 (2021)
  8. An Overview of the Crystallized Structures of the SARS-CoV-2. Ionescu MI. Protein J 39 600-618 (2020)
  9. A pocket guide on how to structure SARS-CoV-2 drugs and therapies. Littler DR, MacLachlan BJ, Watson GM, Vivian JP, Gully BS. Biochem Soc Trans 48 2625-2641 (2020)

Articles citing this publication (27)

  1. The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. Tan J, Vonrhein C, Smart OS, Bricogne G, Bollati M, Kusov Y, Hansen G, Mesters JR, Schmidt CL, Hilgenfeld R. PLoS Pathog 5 e1000428 (2009)
  2. Crystal Structure of the SARS-CoV-2 Non-structural Protein 9, Nsp9. Littler DR, Gully BS, Colson RN, Rossjohn J. iScience 23 101258 (2020)
  3. Processing of the SARS-CoV pp1a/ab nsp7-10 region. Krichel B, Falke S, Hilgenfeld R, Redecke L, Uetrecht C. Biochem J 477 1009-1019 (2020)
  4. Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth. Miknis ZJ, Donaldson EF, Umland TC, Rimmer RA, Baric RS, Schultz LW. J Virol 83 3007-3018 (2009)
  5. Coronavirus replication-transcription complex: Vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRp subunit. Slanina H, Madhugiri R, Bylapudi G, Schultheiß K, Karl N, Gulyaeva A, Gorbalenya AE, Linne U, Ziebuhr J. Proc Natl Acad Sci U S A 118 e2022310118 (2021)
  6. Structure and cleavage specificity of the chymotrypsin-like serine protease (3CLSP/nsp4) of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Tian X, Lu G, Gao F, Peng H, Feng Y, Ma G, Bartlam M, Tian K, Yan J, Hilgenfeld R, Gao GF. J Mol Biol 392 977-993 (2009)
  7. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K, Oldfield CJ, Uversky VN. Cell Mol Life Sci 78 1655-1688 (2021)
  8. Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models. Garvin MR, T Prates E, Pavicic M, Jones P, Amos BK, Geiger A, Shah MB, Streich J, Felipe Machado Gazolla JG, Kainer D, Cliff A, Romero J, Keith N, Brown JB, Jacobson D. Genome Biol 21 304 (2020)
  9. Dimerization of Coronavirus nsp9 with Diverse Modes Enhances Its Nucleic Acid Binding Affinity. Zeng Z, Deng F, Shi K, Ye G, Wang G, Fang L, Xiao S, Fu Z, Peng G. J Virol 92 e00692-18 (2018)
  10. Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property. Piotrowski Y, Hansen G, Boomaars-van der Zanden AL, Snijder EJ, Gorbalenya AE, Hilgenfeld R. Protein Sci 18 6-16 (2009)
  11. Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements. Gustin KM, Guan BJ, Dziduszko A, Brian DA. J Virol 83 6087-6097 (2009)
  12. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. J Biol Chem 297 101218 (2021)
  13. A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0. Gervasoni S, Vistoli G, Talarico C, Manelfi C, Beccari AR, Studer G, Tauriello G, Waterhouse AM, Schwede T, Pedretti A. Int J Mol Sci 21 E5152 (2020)
  14. A natural product compound inhibits coronaviral replication in vitro by binding to the conserved Nsp9 SARS-CoV-2 protein. Littler DR, Liu M, McAuley JL, Lowery SA, Illing PT, Gully BS, Purcell AW, Chandrashekaran IR, Perlman S, Purcell DFJ, Quinn RJ, Rossjohn J. J Biol Chem 297 101362 (2021)
  15. Potential Pathogenicity Determinants Identified from Structural Proteomics of SARS-CoV and SARS-CoV-2. Prates ET, Garvin MR, Pavicic M, Jones P, Shah M, Demerdash O, Amos BK, Geiger A, Jacobson D. Mol Biol Evol 38 702-715 (2021)
  16. Structural basis for the multimerization of nonstructural protein nsp9 from SARS-CoV-2. Zhang C, Chen Y, Li L, Yang Y, He J, Chen C, Su D. Mol Biomed 1 5 (2020)
  17. Backbone chemical shift assignments for the SARS-CoV-2 non-structural protein Nsp9: intermediate (ms - μs) dynamics in the C-terminal helix at the dimer interface. Buchko GW, Zhou M, Craig JK, Van Voorhis WC, Myler PJ. Biomol NMR Assign 15 107-116 (2021)
  18. Formation of stable homodimer via the C-terminal alpha-helical domain of coronavirus nonstructural protein 9 is critical for its function in viral replication. Chen B, Fang S, Tam JP, Liu DX. Virology 383 328-337 (2009)
  19. Binding of a pyrimidine RNA base-mimic to SARS-CoV-2 nonstructural protein 9. Littler DR, Mohanty B, Lowery SA, Colson RN, Gully BS, Perlman S, Scanlon MJ, Rossjohn J. J Biol Chem 297 101018 (2021)
  20. Identification of intrinsically disorder regions in non-structural proteins of SARS-CoV-2: New insights into drug and vaccine resistance. Anjum F, Mohammad T, Asrani P, Shafie A, Singh S, Yadav DK, Uversky VN, Hassan MI. Mol Cell Biochem 477 1607-1619 (2022)
  21. NMR-Based Analysis of Nanobodies to SARS-CoV-2 Nsp9 Reveals a Possible Antiviral Strategy Against COVID-19. Esposito G, Hunashal Y, Percipalle M, Venit T, Dieng MM, Fogolari F, Hassanzadeh G, Piano F, Gunsalus KC, Idaghdour Y, Percipalle P. Adv Biol (Weinh) 5 e2101113 (2021)
  22. In silico evaluation of lapachol derivatives binding to the Nsp9 of SARS-CoV-2. Junior NN, Santos IA, Meireles BA, Nicolau MSP, Lapa IR, Aguiar RS, Jardim ACG, José DP. J Biomol Struct Dyn 40 5917-5931 (2022)
  23. Proteolytic Processing of the Coronavirus Replicase Nonstructural Protein 14 Exonuclease Is Not Required for Virus Replication but Alters RNA Synthesis and Viral Fitness. Anderson-Daniels J, Gribble J, Denison M. J Virol 96 e0084122 (2022)
  24. Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19. Dey R, Samadder A, Nandi S. Curr Top Med Chem 22 2410-2434 (2022)
  25. Computational exploration of the dual role of the phytochemical fortunellin: Antiviral activities against SARS-CoV-2 and immunomodulatory abilities against the host. Agrawal S, Pathak E, Mishra R, Mishra V, Parveen A, Mishra SK, Byadgi PS, Dubey SK, Chaudhary AK, Singh V, Chaurasia RN, Atri N. Comput Biol Med 149 106049 (2022)
  26. Expression, crystallization and preliminary crystallographic study of the functional mutant (N60K) of nonstructural protein 9 from Human coronavirus HKU1. Chen X, Tan Y, Wang F, Wang J, Zhao Q, Li S, Fu S, Chen C, Yang H. Acta Crystallogr F Struct Biol Commun 70 1620-1623 (2014)
  27. Inside-out: Antibody-binding reveals potential folding hinge-points within the SARS-CoV-2 replication co-factor nsp9. Pan Y, Chandrashekaran IR, Tennant L, Rossjohn J, Littler DR. PLoS One 18 e0283194 (2023)