2jgu Citations

Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus.

Int J Biol Macromol 42 356-61 (2008)

Abstract

We have determined a 2.6A resolution crystal structure of Pfu DNA polymerase, the most commonly used high fidelity PCR enzyme, from Pyrococcus furiosus. Although the structures of Pfu and KOD1 are highly similar, the structure of Pfu elucidates the electron density of the interface between the exonuclease and thumb domains, which has not been previously observed in the KOD1 structure. The interaction of these two domains is known to coordinate the proofreading and polymerization activity of DNA polymerases, especially via H147 that is present within the loop (residues 144-158) of the exonuclease domain. In our structure of Pfu, however, E148 rather than H147 is located at better position to interact with the thumb domain. In addition, the structural analysis of Pfu and KOD1 shows that both the Y-GG/A and beta-hairpin motifs of Pfu are found to differ with that of KOD1, and may explain differences in processivity. This information enables us to better understand the mechanisms of polymerization and proofreading of DNA polymerases.

Articles - 2jgu mentioned but not cited (7)

  1. Structural insight into translesion synthesis by DNA Pol II. Wang F, Yang W. Cell 139 1279-1289 (2009)
  2. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV. Biol Direct 4 11 (2009)
  3. Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase ε. Parkash V, Kulkarni Y, Ter Beek J, Shcherbakova PV, Kamerlin SCL, Johansson E. Nat Commun 10 373 (2019)
  4. Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly cy-dye labelled DNA. Wynne SA, Pinheiro VB, Holliger P, Leslie AG. PLoS One 8 e70892 (2013)
  5. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction. Elshawadfy AM, Keith BJ, Ee Ooi H, Kinsman T, Heslop P, Connolly BA. Front Microbiol 5 224 (2014)
  6. A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data. Lancaster WA, Praissman JL, Poole FL, Cvetkovic A, Menon AL, Scott JW, Jenney FE, Thorgersen MP, Kalisiak E, Apon JV, Trauger SA, Siuzdak G, Tainer JA, Adams MW. BMC Bioinformatics 12 64 (2011)
  7. An archaeal family-B DNA polymerase variant able to replicate past DNA damage: occurrence of replicative and translesion synthesis polymerases within the B family. Jozwiakowski SK, Keith BJ, Gilroy L, Doherty AJ, Connolly BA. Nucleic Acids Res 42 9949-9963 (2014)


Reviews citing this publication (5)

  1. DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides. Laos R, Thomson JM, Benner SA. Front Microbiol 5 565 (2014)
  2. Archaeal DNA polymerases in biotechnology. Zhang L, Kang M, Xu J, Huang Y. Appl Microbiol Biotechnol 99 6585-6597 (2015)
  3. DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions. Ordóñez CD, Redrejo-Rodríguez M. Int J Mol Sci 24 9331 (2023)
  4. Extremophiles: the species that evolve and survive under hostile conditions. Rekadwad BN, Li WJ, Gonzalez JM, Punchappady Devasya R, Ananthapadmanabha Bhagwath A, Urana R, Parwez K. 3 Biotech 13 316 (2023)
  5. Molecular Biology Applications of Psychrophilic Enzymes: Adaptations, Advantages, Expression, and Prospective. Xu H, Xu D, Liu Y. Appl Biochem Biotechnol (2024)

Articles citing this publication (21)

  1. Synthetic genetic polymers capable of heredity and evolution. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P. Science 336 341-344 (2012)
  2. Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex. Mayanagi K, Kiyonari S, Nishida H, Saito M, Kohda D, Ishino Y, Shirai T, Morikawa K. Proc Natl Acad Sci U S A 108 1845-1849 (2011)
  3. A cluster of pathogenic mutations in the 3'-5' exonuclease domain of DNA polymerase gamma defines a novel module coupling DNA synthesis and degradation. Szczepanowska K, Foury F. Hum Mol Genet 19 3516-3529 (2010)
  4. Structures of KOD and 9°N DNA polymerases complexed with primer template duplex. Bergen K, Betz K, Welte W, Diederichs K, Marx A. Chembiochem 14 1058-1062 (2013)
  5. Label-free optical detection of single enzyme-reactant reactions and associated conformational changes. Kim E, Baaske MD, Schuldes I, Wilsch PS, Vollmer F. Sci Adv 3 e1603044 (2017)
  6. Structural determinant for switching between the polymerase and exonuclease modes in the PCNA-replicative DNA polymerase complex. Nishida H, Mayanagi K, Kiyonari S, Sato Y, Oyama T, Ishino Y, Morikawa K. Proc Natl Acad Sci U S A 106 20693-20698 (2009)
  7. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues. Killelea T, Ghosh S, Tan SS, Heslop P, Firbank SJ, Kool ET, Connolly BA. Biochemistry 49 5772-5781 (2010)
  8. Molecular recognition of canonical and deaminated bases by P. abyssi family B DNA polymerase. Gouge J, Ralec C, Henneke G, Delarue M. J Mol Biol 423 315-336 (2012)
  9. Evolutionary analysis of HBV "S" antigen genetic diversity in Iranian blood donors: a nationwide study. Pourkarim MR, Sharifi Z, Soleimani A, Amini-Bavil-Olyaee S, Elsadek Fakhr A, Sijmons S, Vercauteren J, Karimi G, Lemey P, Maes P, Alavian SM, Van Ranst M. J Med Virol 86 144-155 (2014)
  10. Structural basis for TNA synthesis by an engineered TNA polymerase. Chim N, Shi C, Sau SP, Nikoomanzar A, Chaput JC. Nat Commun 8 1810 (2017)
  11. Rapid incorporation kinetics and improved fidelity of a novel class of 3'-OH unblocked reversible terminators. Gardner AF, Wang J, Wu W, Karouby J, Li H, Stupi BP, Jack WE, Hersh MN, Metzker ML. Nucleic Acids Res 40 7404-7415 (2012)
  12. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges. Zhong Y, Huang L, Zhang Z, Xiong Y, Sun L, Weng J. Int J Nanomedicine 11 5989-6002 (2016)
  13. Secondary Interaction Interfaces with PCNA Control Conformational Switching of DNA Polymerase PolB from Polymerization to Editing. Xu X, Yan C, Kossmann BR, Ivanov I. J Phys Chem B 120 8379-8388 (2016)
  14. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea. Takahashi M, Takahashi E, Joudeh LI, Marini M, Das G, Elshenawy MM, Akal A, Sakashita K, Alam I, Tehseen M, Sobhy MA, Stingl U, Merzaban JS, Di Fabrizio E, Hamdan SM. FASEB J 32 3346-3360 (2018)
  15. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative. Hansen CJ, Wu L, Fox JD, Arezi B, Hogrefe HH. Nucleic Acids Res 39 1801-1810 (2011)
  16. A simple method for in-house Pfu DNA polymerase purification for high-fidelity PCR amplification. Sankar PS, Citartan M, Siti AA, Skryabin BV, Rozhdestvensky TS, Khor GH, Tang TH. Iran J Microbiol 11 181-186 (2019)
  17. Crystal structure of Deep Vent DNA polymerase. Hikida Y, Kimoto M, Hirao I, Yokoyama S. Biochem Biophys Res Commun 483 52-57 (2017)
  18. Effects of lateral spacing on enzymatic on-chip DNA polymerization. Kim ES, Hong BJ, Park CW, Kim Y, Park JW, Choi KY. Biosens Bioelectron 26 2566-2573 (2011)
  19. Role of disulfide bridges in archaeal family-B DNA polymerases. Killelea T, Connolly BA. Chembiochem 12 1330-1336 (2011)
  20. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli. Zheng W, Wang Q, Bi Q. Protein J 35 145-153 (2016)
  21. Thermally controlled intein splicing of engineered DNA polymerases provides a robust and generalizable solution for accurate and sensitive molecular diagnostics. Wang Y, Shi Y, Hellinga HW, Beese LS. Nucleic Acids Res 51 5883-5894 (2023)