2jpm Citations

Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin lactococcin G.

Biochim Biophys Acta 1784 543-54 (2008)
Related entries: 2jpj, 2jpk, 2jpl

Cited: 28 times
EuropePMC logo PMID: 18187052

Abstract

The three-dimensional structures of the two peptides, lactococcin G-alpha (LcnG-alpha; contains 39 residues) and lactococcin G-beta (LcnG-beta, contains 35 residues), that constitute the two-peptide bacteriocin lactococcin G (LcnG) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles and TFE. In DPC, LcnG-alpha has an N-terminal alpha-helix (residues 3-21) that contains a GxxxG helix-helix interaction motif (residues 7-11) and a less well defined C-terminal alpha-helix (residues 24-34), and in between (residues 18-22) there is a second somewhat flexible GxxxG-motif. Its structure in TFE was similar. In DPC, LcnG-beta has an N-terminal alpha-helix (residues 6-19). The region from residues 20 to 35, which also contains a flexible GxxxG-motif (residues 18-22), appeared to be fairly unstructured in DPC. In the presence of TFE, however, the region between and including residues 23 and 32 formed a well defined alpha-helix. The N-terminal helix between and including residues 6 and 19 seen in the presence of DPC, was broken at residues 8 and 9 in the presence of TFE. The N-terminal helices, both in LcnG-alpha and -beta, are amphiphilic. We postulate that LcnG-alpha and -beta have a parallel orientation and interact through helix-helix interactions involving the first GxxxG (residues 7-11) motif in LcnG-alpha and the one (residues 18-22) in LcnG-beta, and that they thus lie in a staggered fashion relative to each other.

Reviews - 2jpm mentioned but not cited (1)

  1. Probiotics-Derived Peptides and Their Immunomodulatory Molecules Can Play a Preventive Role Against Viral Diseases Including COVID-19. Manna S, Chowdhury T, Chakraborty R, Mandal SM. Probiotics Antimicrob Proteins 13 611-623 (2021)


Reviews citing this publication (6)

  1. Bacteriocins of lactic acid bacteria: extending the family. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Appl Microbiol Biotechnol 100 2939-2951 (2016)
  2. Circular bacteriocins: biosynthesis and mode of action. Gabrielsen C, Brede DA, Nes IF, Diep DB. Appl Environ Microbiol 80 6854-6862 (2014)
  3. The expanding structural variety among bacteriocins from Gram-positive bacteria. Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. FEMS Microbiol Rev 42 805-828 (2018)
  4. Heterologous Expression of Biopreservative Bacteriocins With a View to Low Cost Production. Mesa-Pereira B, Rea MC, Cotter PD, Hill C, Ross RP. Front Microbiol 9 1654 (2018)
  5. The forgotten role of food cultures. Bourdichon F, Arias E, Babuchowski A, Bückle A, Bello FD, Dubois A, Fontana A, Fritz D, Kemperman R, Laulund S, McAuliffe O, Miks MH, Papademas P, Patrone V, Sharma DK, Sliwinski E, Stanton C, Von Ah U, Yao S, Morelli L. FEMS Microbiol Lett 368 fnab085 (2021)
  6. Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Nugrahadi PP, Hinrichs WLJ, Frijlink HW, Schöneich C, Avanti C. Pharmaceutics 15 935 (2023)

Articles citing this publication (21)

  1. Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins. Nissen-Meyer J, Oppegård C, Rogne P, Haugen HS, Kristiansen PE. Probiotics Antimicrob Proteins 2 52-60 (2010)
  2. Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Kjos M, Oppegård C, Diep DB, Nes IF, Veening JW, Nissen-Meyer J, Kristensen T. Mol Microbiol 92 1177-1187 (2014)
  3. Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Hu CB, Malaphan W, Zendo T, Nakayama J, Sonomoto K. Appl Environ Microbiol 76 4542-4545 (2010)
  4. The Leaderless Bacteriocin Enterocin K1 Is Highly Potent against Enterococcus faecium: A Study on Structure, Target Spectrum and Receptor. Ovchinnikov KV, Kristiansen PE, Straume D, Jensen MS, Aleksandrzak-Piekarczyk T, Nes IF, Diep DB. Front Microbiol 8 774 (2017)
  5. Structure-Function Analysis of the Two-Peptide Bacteriocin Plantaricin EF. Ekblad B, Kyriakou PK, Oppegård C, Nissen-Meyer J, Kaznessis YN, Kristiansen PE. Biochemistry 55 5106-5116 (2016)
  6. Synthesis of trypsin-resistant variants of the Listeria-active bacteriocin salivaricin P. O'Shea EF, O'Connor PM, Cotter PD, Ross RP, Hill C. Appl Environ Microbiol 76 5356-5362 (2010)
  7. Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Rogne P, Haugen C, Fimland G, Nissen-Meyer J, Kristiansen PE. Peptides 30 1613-1621 (2009)
  8. Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Tüting C, Iacobucci C, Ihling CH, Kastritis PL, Sinz A. Sci Rep 10 12618 (2020)
  9. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice. Ge J, Sun Y, Xin X, Wang Y, Ping W. Sci Rep 6 19366 (2016)
  10. Nisin-induced expression of pediocin in dairy lactic acid bacteria. Renye JA, Somkuti GA. J Appl Microbiol 108 2142-2151 (2010)
  11. The lactococcin G immunity protein recognizes specific regions in both peptides constituting the two-peptide bacteriocin lactococcin G. Oppegård C, Emanuelsen L, Thorbek L, Fimland G, Nissen-Meyer J. Appl Environ Microbiol 76 1267-1273 (2010)
  12. Letter Identification and three-dimensional structure of carnobacteriocin XY, a class IIb bacteriocin produced by Carnobacteria. Acedo JZ, Towle KM, Lohans CT, Miskolzie M, McKay RT, Doerksen TA, Vederas JC, Martin-Visscher LA. FEBS Lett 591 1349-1359 (2017)
  13. Structure analysis of the two-peptide bacteriocin lactococcin G by introducing D-amino acid residues. Oppegård C, Rogne P, Kristiansen PE, Nissen-Meyer J. Microbiology (Reading) 156 1883-1889 (2010)
  14. Structural characterisation of the natively unfolded enterocin EJ97. Neira JL, Contreras LM, de los Paños OR, Sánchez-Hidalgo M, Sánchez-Hidalgo M, Martínez-Bueno M, Maqueda M, Rico M. Protein Eng Des Sel 23 507-518 (2010)
  15. NMR structures and mutational analysis of the two peptides constituting the bacteriocin plantaricin S. Ekblad B, Kristiansen PE. Sci Rep 9 2333 (2019)
  16. The arabidopsis histone methyltransferase SUVR4 binds ubiquitin via a domain with a four-helix bundle structure. Rahman MA, Kristiansen PE, Veiseth SV, Andersen JT, Yap KL, Zhou MM, Sandlie I, Thorstensen T, Aalen RB. Biochemistry 53 2091-2100 (2014)
  17. In Silico Structural Evaluation of Short Cationic Antimicrobial Peptides. Passarini I, Rossiter S, Malkinson J, Zloh M. Pharmaceutics 10 E72 (2018)
  18. The structure of pyogenecin immunity protein, a novel bacteriocin-like immunity protein from Streptococcus pyogenes. Chang C, Coggill P, Bateman A, Finn RD, Cymborowski M, Otwinowski Z, Minor W, Volkart L, Joachimiak A. BMC Struct Biol 9 75 (2009)
  19. Gallocin A, an Atypical Two-Peptide Bacteriocin with Intramolecular Disulfide Bonds Required for Activity. Proutière A, du Merle L, Garcia-Lopez M, Léger C, Voegele A, Chenal A, Harrington A, Tal-Gan Y, Cokelaer T, Trieu-Cuot P, Dramsi S. Microbiol Spectr e0508522 (2023)
  20. The membrane topology of immunity proteins for the two-peptide bacteriocins carnobacteriocin XY, lactococcin G, and lactococcin MN shows structural diversity. Britton AP, van der Ende SR, van Belkum MJ, Martin-Visscher LA. Microbiologyopen 9 e00957 (2020)
  21. Use of the mCherry fluorescent protein to optimize the expression of class I lanthipeptides in Escherichia coli. Van Zyl WF, Van Staden AD, Dicks LMT, Trindade M. Microb Cell Fact 22 149 (2023)