2k05 Citations

Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12.

Sci Signal 1 ra4 (2008)
Related entries: 2k01, 2k03, 2k04

Cited: 183 times
EuropePMC logo PMID: 18799424

Abstract

Stem cell homing and breast cancer metastasis are orchestrated by the chemokine stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4. Here, we report the nuclear magnetic resonance structure of a constitutively dimeric SDF-1 in complex with a CXCR4 fragment that contains three sulfotyrosine residues important for a high-affinity ligand-receptor interaction. CXCR4 bridged the SDF-1 dimer interface so that sulfotyrosines sTyr7 and sTyr12 of CXCR4 occupied positively charged clefts on opposing chemokine subunits. Dimeric SDF-1 induced intracellular Ca2+ mobilization but had no chemotactic activity; instead, it prevented native SDF-1-induced chemotaxis, suggesting that it acted as a potent partial agonist. Our work elucidates the structural basis for sulfotyrosine recognition in the chemokine-receptor interaction and suggests a strategy for CXCR4-targeted drug development.

Reviews - 2k05 mentioned but not cited (3)

Articles - 2k05 mentioned but not cited (22)

  1. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC. Science 330 1066-1071 (2010)
  2. Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation. Kufareva I, Stephens BS, Holden LG, Qin L, Zhao C, Kawamura T, Abagyan R, Handel TM. Proc Natl Acad Sci U S A 111 E5363-72 (2014)
  3. Targeting SDF-1/CXCL12 with a ligand that prevents activation of CXCR4 through structure-based drug design. Veldkamp CT, Ziarek JJ, Peterson FC, Chen Y, Volkman BF. J Am Chem Soc 132 7242-7243 (2010)
  4. Sulfopeptide probes of the CXCR4/CXCL12 interface reveal oligomer-specific contacts and chemokine allostery. Ziarek JJ, Getschman AE, Butler SJ, Taleski D, Stephens B, Kufareva I, Handel TM, Payne RJ, Volkman BF. ACS Chem Biol 8 1955-1963 (2013)
  5. Solution structure of CCL21 and identification of a putative CCR7 binding site. Love M, Sandberg JL, Ziarek JJ, Gerarden KP, Rode RR, Jensen DR, McCaslin DR, Peterson FC, Veldkamp CT. Biochemistry 51 733-735 (2012)
  6. Molecular recognition of CXCR4 by a dual tropic HIV-1 gp120 V3 loop. Tamamis P, Floudas CA. Biophys J 105 1502-1514 (2013)
  7. Integrating structure to protein-protein interaction networks that drive metastasis to brain and lung in breast cancer. Engin HB, Guney E, Keskin O, Oliva B, Gursoy A. PLoS One 8 e81035 (2013)
  8. Structural analysis of a novel small molecule ligand bound to the CXCL12 chemokine. Smith EW, Liu Y, Getschman AE, Peterson FC, Ziarek JJ, Li R, Volkman BF, Chen Y. J Med Chem 57 9693-9699 (2014)
  9. Structure-Based Identification of Novel Ligands Targeting Multiple Sites within a Chemokine-G-Protein-Coupled-Receptor Interface. Smith EW, Nevins AM, Qiao Z, Liu Y, Getschman AE, Vankayala SL, Kemp MT, Peterson FC, Li R, Volkman BF, Chen Y. J Med Chem 59 4342-4351 (2016)
  10. Sulfotyrosine recognition as marker for druggable sites in the extracellular space. Ziarek JJ, Heroux MS, Veldkamp CT, Peterson FC, Volkman BF. Int J Mol Sci 12 3740-3756 (2011)
  11. Fragment-based optimization of small molecule CXCL12 inhibitors for antagonizing the CXCL12/CXCR4 interaction. Ziarek JJ, Liu Y, Smith E, Zhang G, Peterson FC, Chen J, Yu Y, Chen Y, Volkman BF, Li R. Curr Top Med Chem 12 2727-2740 (2012)
  12. The role of tyrosine sulfation in the dimerization of the CXCR4:SDF-1 complex. Rapp C, Snow S, Laufer T, McClendon CL. Protein Sci 22 1025-1036 (2013)
  13. Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes. Kufareva I, Gustavsson M, Holden LG, Qin L, Zheng Y, Handel TM. Methods Enzymol 570 389-420 (2016)
  14. Exploiting agonist biased signaling of chemokines to target cancer. Roy I, Getschman AE, Volkman BF, Dwinell MB. Mol Carcinog 56 804-813 (2017)
  15. Differences in Sulfotyrosine Binding amongst CXCR1 and CXCR2 Chemokine Ligands. Moussouras NA, Getschman AE, Lackner ER, Veldkamp CT, Dwinell MB, Volkman BF. Int J Mol Sci 18 E1894 (2017)
  16. Development and Validation of 2D Difference Intensity Analysis for Chemical Library Screening by Protein-Detected NMR Spectroscopy. Egner JM, Jensen DR, Olp MD, Kennedy NW, Volkman BF, Peterson FC, Smith BC, Hill RB. Chembiochem 19 448-458 (2018)
  17. High affinity CXCR4 inhibitors generated by linking low affinity peptides. Zhang C, Huang LS, Zhu R, Meng Q, Zhu S, Xu Y, Zhang H, Fang X, Zhang X, Zhou J, Schooley RT, Yang X, Huang Z, An J. Eur J Med Chem 172 174-185 (2019)
  18. Modeling the complete chemokine-receptor interaction. Wedemeyer MJ, Mueller BK, Bender BJ, Meiler J, Volkman BF. Methods Cell Biol 149 289-314 (2019)
  19. NMR in the Analysis of Functional Chemokine Interactions and Drug Discovery. Ziarek JJ, Volkman BF. Drug Discov Today Technol 9 e293-e299 (2012)
  20. Comparative modeling and docking of chemokine-receptor interactions with Rosetta. Wedemeyer MJ, Mueller BK, Bender BJ, Meiler J, Volkman BF. Biochem Biophys Res Commun 528 389-397 (2020)
  21. ExonVisualiser - application for visualization exon units in 2D and 3D protein structures. Piwowar M, Krzysztof P, Piotr P. Bioinformation 8 1280-1282 (2012)
  22. Nanoscape, a data-driven 3D real-time interactive virtual cell environment. Kadir SR, Lilja A, Gunn N, Strong C, Hughes RT, Bailey BJ, Rae J, Parton RG, McGhee J. Elife 10 e64047 (2021)


Reviews citing this publication (35)

  1. The unique structural and functional features of CXCL12. Janssens R, Struyf S, Proost P. Cell Mol Immunol 15 299-311 (2018)
  2. Mechanisms of Regulation of the Chemokine-Receptor Network. Stone MJ, Hayward JA, Huang C, E Huma Z, Sanchez J. Int J Mol Sci 18 E342 (2017)
  3. Pharmacological modulation of chemokine receptor function. Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R. Br J Pharmacol 165 1617-1643 (2012)
  4. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Front Immunol 6 429 (2015)
  5. Chemokines from a Structural Perspective. Miller MC, Mayo KH. Int J Mol Sci 18 E2088 (2017)
  6. The sweet spot: how GAGs help chemokines guide migrating cells. Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. J Leukoc Biol 99 935-953 (2016)
  7. Chemokine signaling in development and disease. Wang J, Knaut H. Development 141 4199-4205 (2014)
  8. The structural role of receptor tyrosine sulfation in chemokine recognition. Ludeman JP, Stone MJ. Br J Pharmacol 171 1167-1179 (2014)
  9. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. Biochem Pharmacol 114 53-68 (2016)
  10. Glycosaminoglycan Interactions with Chemokines Add Complexity to a Complex System. Proudfoot AEI, Johnson Z, Bonvin P, Handel TM. Pharmaceuticals (Basel) 10 E70 (2017)
  11. Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors. Szpakowska M, Fievez V, Arumugan K, van Nuland N, Schmit JC, Chevigné A. Biochem Pharmacol 84 1366-1380 (2012)
  12. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. Front Endocrinol (Lausanne) 10 585 (2019)
  13. Structural Analysis of Chemokine Receptor-Ligand Interactions. Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. J Med Chem 60 4735-4779 (2017)
  14. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism? Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TM. Annu Rev Biophys 46 175-198 (2017)
  15. Site-specific labeling of proteins with NMR-active unnatural amino acids. Jones DH, Cellitti SE, Hao X, Zhang Q, Jahnz M, Summerer D, Schultz PG, Uno T, Geierstanger BH. J Biomol NMR 46 89-100 (2010)
  16. Chemokines in COPD: From Implication to Therapeutic Use. Henrot P, Prevel R, Berger P, Dupin I. Int J Mol Sci 20 E2785 (2019)
  17. Chemokine receptor oligomerization and allostery. Stephens B, Handel TM. Prog Mol Biol Transl Sci 115 375-420 (2013)
  18. Chemokines and chemokine receptors: update on utility and challenges for the clinician. Roy I, Evans DB, Dwinell MB. Surgery 155 961-973 (2014)
  19. Decoding the chemokine network that links leukocytes with decidual cells and the trophoblast during early implantation. Ramhorst R, Grasso E, Paparini D, Hauk V, Gallino L, Calo G, Vota D, Pérez Leirós C. Cell Adh Migr 10 197-207 (2016)
  20. Heterophilic chemokine receptor interactions in chemokine signaling and biology. Kramp BK, Sarabi A, Koenen RR, Weber C. Exp Cell Res 317 655-663 (2011)
  21. Chemokine oligomerization in cell signaling and migration. Wang X, Sharp JS, Handel TM, Prestegard JH. Prog Mol Biol Transl Sci 117 531-578 (2013)
  22. Chemokines and their receptors: insights from molecular modeling and crystallography. Kufareva I. Curr Opin Pharmacol 30 27-37 (2016)
  23. Neutralizing endogenous chemokines with small molecules. Principles and potential therapeutic applications. Galzi JL, Hachet-Haas M, Bonnet D, Daubeuf F, Lecat S, Hibert M, Haiech J, Frossard N. Pharmacol Ther 126 39-55 (2010)
  24. The role of the CXCR4 cell surface chemokine receptor in glioma biology. Ehtesham M, Min E, Issar NM, Kasl RA, Khan IS, Thompson RC. J Neurooncol 113 153-162 (2013)
  25. The relevance of the chemokine receptor ACKR3/CXCR7 on CXCL12-mediated effects in cancers with a focus on virus-related cancers. Freitas C, Desnoyer A, Meuris F, Bachelerie F, Balabanian K, Machelon V. Cytokine Growth Factor Rev 25 307-316 (2014)
  26. Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1a/CXCR4 axis. Asri A, Sabour J, Atashi A, Soleimani M. EXCLI J 15 134-143 (2016)
  27. Biased signaling of G protein-coupled receptors - From a chemokine receptor CCR7 perspective. Jørgensen AS, Rosenkilde MM, Hjortø GM. Gen Comp Endocrinol 258 4-14 (2018)
  28. CXCL12 chemokine and GABA neurotransmitter systems crosstalk and their putative roles. Guyon A. Front Cell Neurosci 5 115 (2014)
  29. Emerging concepts and approaches for chemokine-receptor drug discovery. O'Hayre M, Salanga CL, Handel TM, Hamel DJ. Expert Opin Drug Discov 5 1109-1122 (2010)
  30. Bivalent ligands targeting chemokine receptor dimerization: molecular design and functional studies. Arnatt CK, Zhang Y. Curr Top Med Chem 14 1606-1618 (2014)
  31. Latest update on chemokine receptors as therapeutic targets. Lai WY, Mueller A. Biochem Soc Trans 49 1385-1395 (2021)
  32. Treatment of Stress Urinary Incontinence with Muscle Stem Cells and Stem Cell Components: Chances, Challenges and Future Prospects. Schmid FA, Williams JK, Kessler TM, Stenzl A, Aicher WK, Andersson KE, Eberli D. Int J Mol Sci 22 3981 (2021)
  33. Chemokine Heteromers and Their Impact on Cellular Function-A Conceptual Framework. Blanchet X, Weber C, von Hundelshausen P. Int J Mol Sci 24 10925 (2023)
  34. Development of tolerance to chemokine receptor antagonists: current paradigms and the need for further investigation. Grudzien P, Neufeld H, Ebe Eyenga M, Gaponenko V. Front Immunol 14 1184014 (2023)
  35. Heterodimers Are an Integral Component of Chemokine Signaling Repertoire. Kaffashi K, Dréau D, Nesmelova IV. Int J Mol Sci 24 11639 (2023)

Articles citing this publication (123)

  1. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. Décaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P. J Biol Chem 286 32188-32197 (2011)
  2. Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V, Abagyan R, Stevens RC, Handel TM. Science 347 1117-1122 (2015)
  3. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL, Garcia KC. Science 347 1113-1117 (2015)
  4. Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways. Drury LJ, Ziarek JJ, Gravel S, Veldkamp CT, Takekoshi T, Hwang ST, Heveker N, Volkman BF, Dwinell MB. Proc Natl Acad Sci U S A 108 17655-17660 (2011)
  5. Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. Kofuku Y, Yoshiura C, Ueda T, Terasawa H, Hirai T, Tominaga S, Hirose M, Maeda Y, Takahashi H, Terashima Y, Matsushima K, Shimada I. J Biol Chem 284 35240-35250 (2009)
  6. Monomeric and dimeric CXCL8 are both essential for in vivo neutrophil recruitment. Das ST, Rajagopalan L, Guerrero-Plata A, Sai J, Richmond A, Garofalo RP, Rajarathnam K. PLoS One 5 e11754 (2010)
  7. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Won YW, Patel AN, Bull DA. Biomaterials 35 5627-5635 (2014)
  8. The CXC chemokine receptor 4 ligands ubiquitin and stromal cell-derived factor-1α function through distinct receptor interactions. Saini V, Staren DM, Ziarek JJ, Nashaat ZN, Campbell EM, Volkman BF, Marchese A, Majetschak M. J Biol Chem 286 33466-33477 (2011)
  9. The dependence of chemokine-glycosaminoglycan interactions on chemokine oligomerization. Dyer DP, Salanga CL, Volkman BF, Kawamura T, Handel TM. Glycobiology 26 312-326 (2016)
  10. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. von Hundelshausen P, Agten SM, Eckardt V, Blanchet X, Schmitt MM, Ippel H, Neideck C, Bidzhekov K, Leberzammer J, Wichapong K, Faussner A, Drechsler M, Grommes J, van Geffen JP, Li H, Ortega-Gomez A, Megens RT, Naumann R, Dijkgraaf I, Nicolaes GA, Döring Y, Soehnlein O, Lutgens E, Heemskerk JW, Koenen RR, Mayo KH, Hackeng TM, Weber C. Sci Transl Med 9 eaah6650 (2017)
  11. Heparin oligosaccharides inhibit chemokine (CXC motif) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif) receptor 4 (CXCR4) N terminus. Ziarek JJ, Veldkamp CT, Zhang F, Murray NJ, Kartz GA, Liang X, Su J, Baker JE, Linhardt RJ, Volkman BF. J Biol Chem 288 737-746 (2013)
  12. Monomeric structure of the cardioprotective chemokine SDF-1/CXCL12. Veldkamp CT, Ziarek JJ, Su J, Basnet H, Lennertz R, Weiner JJ, Peterson FC, Baker JE, Volkman BF. Protein Sci 18 1359-1369 (2009)
  13. Osteopontin enhances the expression and activity of MMP-2 via the SDF-1/CXCR4 axis in hepatocellular carcinoma cell lines. Zhang R, Pan X, Huang Z, Weber GF, Zhang G. PLoS One 6 e23831 (2011)
  14. Tyrosine sulfation of chemokine receptor CCR2 enhances interactions with both monomeric and dimeric forms of the chemokine monocyte chemoattractant protein-1 (MCP-1). Tan JHY, Ludeman JP, Wedderburn J, Canals M, Hall P, Butler SJ, Taleski D, Christopoulos A, Hickey MJ, Payne RJ, Stone MJ. J Biol Chem 288 10024-10034 (2013)
  15. Structural basis of ligand interaction with atypical chemokine receptor 3. Gustavsson M, Wang L, van Gils N, Stephens BS, Zhang P, Schall TJ, Yang S, Abagyan R, Chance MR, Kufareva I, Handel TM. Nat Commun 8 14135 (2017)
  16. Alginate-microencapsulation of human stem cell-derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Alagpulinsa DA, Cao JJL, Driscoll RK, Sîrbulescu RF, Penson MFE, Sremac M, Engquist EN, Brauns TA, Markmann JF, Melton DA, Poznansky MC. Am J Transplant 19 1930-1940 (2019)
  17. A locked, dimeric CXCL12 variant effectively inhibits pulmonary metastasis of CXCR4-expressing melanoma cells due to enhanced serum stability. Takekoshi T, Ziarek JJ, Volkman BF, Hwang ST. Mol Cancer Ther 11 2516-2525 (2012)
  18. Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I, Stephens B, Thelen S, Veldkamp CT, Coffman FD, Cohen MC, Dwinell MB, Thelen M, Peterson FC, Heveker N, Volkman BF. Sci Signal 10 eaah5756 (2017)
  19. Chemokines and galectins form heterodimers to modulate inflammation. Eckardt V, Miller MC, Blanchet X, Duan R, Leberzammer J, Duchene J, Soehnlein O, Megens RT, Ludwig AK, Dregni A, Faussner A, Wichapong K, Ippel H, Dijkgraaf I, Kaltner H, Döring Y, Bidzhekov K, Hackeng TM, Weber C, Gabius HJ, von Hundelshausen P, Mayo KH. EMBO Rep 21 e47852 (2020)
  20. Regulation of chemokine recognition by site-specific tyrosine sulfation of receptor peptides. Simpson LS, Zhu JZ, Widlanski TS, Stone MJ. Chem Biol 16 153-161 (2009)
  21. Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Ziarek JJ, Peterson FC, Lytle BL, Volkman BF. Methods Enzymol 493 241-275 (2011)
  22. Chemokine CXCL1 dimer is a potent agonist for the CXCR2 receptor. Ravindran A, Sawant KV, Sarmiento J, Navarro J, Rajarathnam K. J Biol Chem 288 12244-12252 (2013)
  23. Structural basis for differential binding of the interleukin-8 monomer and dimer to the CXCR1 N-domain: role of coupled interactions and dynamics. Ravindran A, Joseph PR, Rajarathnam K. Biochemistry 48 8795-8805 (2009)
  24. Platelet-Derived Chemokine CXCL7 Dimer Preferentially Exists in the Glycosaminoglycan-Bound Form: Implications for Neutrophil-Platelet Crosstalk. Brown AJ, Sepuru KM, Sawant KV, Rajarathnam K. Front Immunol 8 1248 (2017)
  25. Secreted CXCL12 (SDF-1) forms dimers under physiological conditions. Ray P, Lewin SA, Mihalko LA, Lesher-Perez SC, Takayama S, Luker KE, Luker GD. Biochem J 442 433-442 (2012)
  26. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4. Pluhackova K, Gahbauer S, Kranz F, Wassenaar TA, Böckmann RA. PLoS Comput Biol 12 e1005169 (2016)
  27. Pancreatic Cancer Cell Migration and Metastasis Is Regulated by Chemokine-Biased Agonism and Bioenergetic Signaling. Roy I, McAllister DM, Gorse E, Dixon K, Piper CT, Zimmerman NP, Getschman AE, Tsai S, Engle DD, Evans DB, Volkman BF, Kalyanaraman B, Dwinell MB. Cancer Res 75 3529-3542 (2015)
  28. NMR analysis of the structure, dynamics, and unique oligomerization properties of the chemokine CCL27. Jansma AL, Kirkpatrick JP, Hsu AR, Handel TM, Nietlispach D. J Biol Chem 285 14424-14437 (2010)
  29. MIF-chemokine receptor interactions in atherogenesis are dependent on an N-loop-based 2-site binding mechanism. Kraemer S, Lue H, Zernecke A, Kapurniotu A, Andreetto E, Frank R, Lennartz B, Weber C, Bernhagen J. FASEB J 25 894-906 (2011)
  30. Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels. Migliorini E, Thakar D, Sadir R, Pleiner T, Baleux F, Lortat-Jacob H, Coche-Guerente L, Richter RP. Biomaterials 35 8903-8915 (2014)
  31. Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction. Teramoto T, Fujikawa Y, Kawaguchi Y, Kurogi K, Soejima M, Adachi R, Nakanishi Y, Mishiro-Sato E, Liu MC, Sakakibara Y, Suiko M, Kimura M, Kakuta Y. Nat Commun 4 1572 (2013)
  32. Design and receptor interactions of obligate dimeric mutant of chemokine monocyte chemoattractant protein-1 (MCP-1). Tan JH, Canals M, Ludeman JP, Wedderburn J, Boston C, Butler SJ, Carrick AM, Parody TR, Taleski D, Christopoulos A, Payne RJ, Stone MJ. J Biol Chem 287 14692-14702 (2012)
  33. Heterologous quaternary structure of CXCL12 and its relationship to the CC chemokine family. Murphy JW, Yuan H, Kong Y, Xiong Y, Lolis EJ. Proteins 78 1331-1337 (2010)
  34. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Br J Pharmacol 175 1419-1438 (2018)
  35. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. J Immunol 200 3825-3839 (2018)
  36. Mutational Analysis of Atypical Chemokine Receptor 3 (ACKR3/CXCR7) Interaction with Its Chemokine Ligands CXCL11 and CXCL12. Benredjem B, Girard M, Rhainds D, St-Onge G, Heveker N. J Biol Chem 292 31-42 (2017)
  37. Elucidating a key component of cancer metastasis: CXCL12 (SDF-1α) binding to CXCR4. Tamamis P, Floudas CA. J Chem Inf Model 54 1174-1188 (2014)
  38. Solution Structure of CCL19 and Identification of Overlapping CCR7 and PSGL-1 Binding Sites. Veldkamp CT, Kiermaier E, Gabel-Eissens SJ, Gillitzer ML, Lippner DR, DiSilvio FA, Mueller CJ, Wantuch PL, Chaffee GR, Famiglietti MW, Zgoba DM, Bailey AA, Bah Y, Engebretson SJ, Graupner DR, Lackner ER, LaRosa VD, Medeiros T, Olson ML, Phillips AJ, Pyles H, Richard AM, Schoeller SJ, Touzeau B, Williams LG, Sixt M, Peterson FC. Biochemistry 54 4163-4166 (2015)
  39. Cross-talk between the dipeptidyl peptidase-4 and stromal cell-derived factor-1 in stem cell homing and myocardial repair: Potential impact of dipeptidyl peptidase-4 inhibitors. Anderluh M, Kocic G, Tomovic K, Kocic R, Deljanin-Ilic M, Smelcerovic A. Pharmacol Ther 167 100-107 (2016)
  40. Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded genetic code. Liu CC, Cellitti SE, Geierstanger BH, Schultz PG. Nat Protoc 4 1784-1789 (2009)
  41. Interactions of the Chemokine CCL5/RANTES with Medium-Sized Chondroitin Sulfate Ligands. Deshauer C, Morgan AM, Ryan EO, Handel TM, Prestegard JH, Wang X. Structure 23 1066-1077 (2015)
  42. Probing the role of CXC motif in chemokine CXCL8 for high affinity binding and activation of CXCR1 and CXCR2 receptors. Joseph PR, Sarmiento JM, Mishra AK, Das ST, Garofalo RP, Navarro J, Rajarathnam K. J Biol Chem 285 29262-29269 (2010)
  43. Structural determinants of ubiquitin-CXC chemokine receptor 4 interaction. Saini V, Marchese A, Tang WJ, Majetschak M. J Biol Chem 286 44145-44152 (2011)
  44. Impact of constitutional polymorphisms in VCAM1 and CD44 on CD34+ cell collection yield after administration of granulocyte colony-stimulating factor to healthy donors. Martín-Antonio B, Carmona M, Falantes J, Gil E, Baez A, Suarez M, Marín P, Espigado I, Urbano-Ispizua A. Haematologica 96 102-109 (2011)
  45. Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Getschman AE, Imai Y, Larsen O, Peterson FC, Wu X, Rosenkilde MM, Hwang ST, Volkman BF. Proc Natl Acad Sci U S A 114 12460-12465 (2017)
  46. Chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3 regulate vascular α₁-adrenergic receptor function. Bach HH, Wong YM, Tripathi A, Nevins AM, Gamelli RL, Volkman BF, Byron KL, Majetschak M. Mol Med 20 435-447 (2014)
  47. Bleb Expansion in Migrating Cells Depends on Supply of Membrane from Cell Surface Invaginations. Goudarzi M, Tarbashevich K, Mildner K, Begemann I, Garcia J, Paksa A, Reichman-Fried M, Mahabaleshwar H, Blaser H, Hartwig J, Zeuschner D, Galic M, Bagnat M, Betz T, Raz E. Dev Cell 43 577-587.e5 (2017)
  48. Identification and characterization of circulating variants of CXCL12 from human plasma: effects on chemotaxis and mobilization of hematopoietic stem and progenitor cells. Richter R, Jochheim-Richter A, Ciuculescu F, Kollar K, Seifried E, Forssmann U, Verzijl D, Smit MJ, Blanchet X, von Hundelshausen P, Weber C, Forssmann WG, Henschler R. Stem Cells Dev 23 1959-1974 (2014)
  49. Mutagenesis and evolution of sulfated antibodies using an expanded genetic code. Liu CC, Choe H, Farzan M, Smider VV, Schultz PG. Biochemistry 48 8891-8898 (2009)
  50. A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment. Amadi OC, Steinhauser ML, Nishi Y, Chung S, Kamm RD, McMahon AP, Lee RT. Biomed Microdevices 12 1027-1041 (2010)
  51. Microfluidic source-sink model reveals effects of biophysically distinct CXCL12 isoforms in breast cancer chemotaxis. Cavnar SP, Ray P, Moudgil P, Chang SL, Luker KE, Linderman JJ, Takayama S, Luker GD. Integr Biol (Camb) 6 564-576 (2014)
  52. A model of GAG/MIP-2/CXCR2 interfaces and its functional effects. Rajasekaran D, Keeler C, Syed MA, Jones MC, Harrison JK, Wu D, Bhandari V, Hodsdon ME, Lolis EJ. Biochemistry 51 5642-5654 (2012)
  53. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack. Wang Z, Moresco P, Yan R, Li J, Gao Y, Biasci D, Yao M, Pearson J, Hechtman JF, Janowitz T, Zaidi RM, Weiss MJ, Fearon DT. Proc Natl Acad Sci U S A 119 e2119463119 (2022)
  54. Key determinants of selective binding and activation by the monocyte chemoattractant proteins at the chemokine receptor CCR2. Huma ZE, Sanchez J, Lim HD, Bridgford JL, Huang C, Parker BJ, Pazhamalil JG, Porebski BT, Pfleger KDG, Lane JR, Canals M, Stone MJ. Sci Signal 10 eaai8529 (2017)
  55. Binding thermodynamics of the N-terminal peptide of the CCR5 coreceptor to HIV-1 envelope glycoprotein gp120. Brower ET, Schön A, Klein JC, Freire E. Biochemistry 48 779-785 (2009)
  56. Synthesis of Sulfotyrosine-Containing Peptides by Incorporating Fluorosulfated Tyrosine Using an Fmoc-Based Solid-Phase Strategy. Chen W, Dong J, Li S, Liu Y, Wang Y, Yoon L, Wu P, Sharpless KB, Kelly JW. Angew Chem Int Ed Engl 55 1835-1838 (2016)
  57. Chemokine cooperativity is caused by competitive glycosaminoglycan binding. Verkaar F, van Offenbeek J, van der Lee MMC, van Lith LHCJ, Watts AO, Rops ALWMM, Aguilar DC, Ziarek JJ, van der Vlag J, Handel TM, Volkman BF, Proudfoot AEI, Vischer HF, Zaman GJR, Smit MJ. J Immunol 192 3908-3914 (2014)
  58. Diflunisal targets the HMGB1/CXCL12 heterocomplex and blocks immune cell recruitment. De Leo F, Quilici G, Tirone M, De Marchis F, Mannella V, Zucchelli C, Preti A, Gori A, Casalgrandi M, Mezzapelle R, Bianchi ME, Musco G. EMBO Rep 20 e47788 (2019)
  59. Identification and functional characterization of arginine vasopressin receptor 1A : atypical chemokine receptor 3 heteromers in vascular smooth muscle. Albee LJ, LaPorte HM, Gao X, Eby JM, Cheng YH, Nevins AM, Volkman BF, Gaponenko V, Majetschak M. Open Biol 8 170207 (2018)
  60. Modulation of the CXC chemokine receptor 4 agonist activity of ubiquitin through C-terminal protein modification. Tripathi A, Saini V, Marchese A, Volkman BF, Tang WJ, Majetschak M. Biochemistry 52 4184-4192 (2013)
  61. Structural Basis of Native CXCL7 Monomer Binding to CXCR2 Receptor N-Domain and Glycosaminoglycan Heparin. Brown AJ, Sepuru KM, Rajarathnam K. Int J Mol Sci 18 E508 (2017)
  62. The heterodimerization of platelet-derived chemokines. Carlson J, Baxter SA, Dréau D, Nesmelova IV. Biochim Biophys Acta 1834 158-168 (2013)
  63. The solution structure of monomeric CCL5 in complex with a doubly sulfated N-terminal segment of CCR5. Abayev M, Rodrigues JPGLM, Srivastava G, Arshava B, Jaremko Ł, Jaremko M, Naider F, Levitt M, Anglister J. FEBS J 285 1988-2003 (2018)
  64. Biased antagonism of CXCR4 avoids antagonist tolerance. Hitchinson B, Eby JM, Gao X, Guite-Vinet F, Ziarek JJ, Abdelkarim H, Lee Y, Okamoto Y, Shikano S, Majetschak M, Heveker N, Volkman BF, Tarasova NI, Gaponenko V. Sci Signal 11 eaat2214 (2018)
  65. New tools for evaluating protein tyrosine sulfation: tyrosylprotein sulfotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors. Byrne DP, Li Y, Ngamlert P, Ramakrishnan K, Eyers CE, Wells C, Drewry DH, Zuercher WJ, Berry NG, Fernig DG, Eyers PA. Biochem J 475 2435-2455 (2018)
  66. Peptide density targets and impedes triple negative breast cancer metastasis. Liu D, Guo P, McCarthy C, Wang B, Tao Y, Auguste D. Nat Commun 9 2612 (2018)
  67. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Stephens BS, Ngo T, Kufareva I, Handel TM. Sci Signal 13 eaay5024 (2020)
  68. NMR mapping of RANTES surfaces interacting with CCR5 using linked extracellular domains. Schnur E, Kessler N, Zherdev Y, Noah E, Scherf T, Ding FX, Rabinovich S, Arshava B, Kurbatska V, Leonciks A, Tsimanis A, Rosen O, Naider F, Anglister J. FEBS J 280 2068-2084 (2013)
  69. Pattern and temporal sequence of sulfation of CCR5 N-terminal peptides by tyrosylprotein sulfotransferase-2: an assessment of the effects of N-terminal residues. Jen CH, Moore KL, Leary JA. Biochemistry 48 5332-5338 (2009)
  70. Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway. Zhang X, Zheng Z, Liu X, Shu B, Mao P, Bai B, Hu Q, Luo M, Ma X, Cui Z, Wang H. J Neuroinflammation 13 209 (2016)
  71. Exploring the binding mechanisms of MIF to CXCR2 using theoretical approaches. Xu L, Li Y, Li D, Xu P, Tian S, Sun H, Liu H, Hou T. Phys Chem Chem Phys 17 3370-3382 (2015)
  72. Hydrogen bond strengths in phosphorylated and sulfated amino acid residues. Rapp C, Klerman H, Levine E, McClendon CL. PLoS One 8 e57804 (2013)
  73. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. PLoS Biol 18 e3000656 (2020)
  74. Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function. Cheng YH, Eby JM, LaPorte HM, Volkman BF, Majetschak M. PLoS One 12 e0187949 (2017)
  75. Evaluation and extension of the two-site, two-step model for binding and activation of the chemokine receptor CCR1. Sanchez J, E Huma Z, Lane JR, Liu X, Bridgford JL, Payne RJ, Canals M, Stone MJ. J Biol Chem 294 3464-3475 (2019)
  76. Functional genetic encoding of sulfotyrosine in mammalian cells. He X, Chen Y, Beltran DG, Kelly M, Ma B, Lawrie J, Wang F, Dodds E, Zhang L, Guo J, Niu W. Nat Commun 11 4820 (2020)
  77. Production of Chemokine/Chemokine Receptor Complexes for Structural Biophysical Studies. Gustavsson M, Zheng Y, Handel TM. Methods Enzymol 570 233-260 (2016)
  78. Structural basis for the broad substrate specificity of the human tyrosylprotein sulfotransferase-1. Tanaka S, Nishiyori T, Kojo H, Otsubo R, Tsuruta M, Kurogi K, Liu MC, Suiko M, Sakakibara Y, Kakuta Y. Sci Rep 7 8776 (2017)
  79. The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Gutjahr JC, Crawford KS, Jensen DR, Naik P, Peterson FC, Samson GPB, Legler DF, Duchene J, Veldkamp CT, Rot A, Volkman BF. Sci Signal 14 eabc9012 (2021)
  80. Research resource: novel structural insights bridge gaps in glycoprotein hormone receptor analyses. Kreuchwig A, Kleinau G, Krause G. Mol Endocrinol 27 1357-1363 (2013)
  81. Searching for protein binding sites from Molecular Dynamics simulations and paramagnetic fragment-based NMR studies. Bernini A, Henrici De Angelis L, Morandi E, Spiga O, Santucci A, Assfalg M, Molinari H, Pillozzi S, Arcangeli A, Niccolai N. Biochim Biophys Acta 1844 561-566 (2014)
  82. The Solution Structure of CCL28 Reveals Structural Lability that Does Not Constrain Antifungal Activity. Thomas MA, He J, Peterson FC, Huppler AR, Volkman BF. J Mol Biol 430 3266-3282 (2018)
  83. An optimized derivative of an endogenous CXCR4 antagonist prevents atopic dermatitis and airway inflammation. Harms M, Habib MMW, Nemska S, Nicolò A, Gilg A, Preising N, Sokkar P, Carmignani S, Raasholm M, Weidinger G, Kizilsavas G, Wagner M, Ständker L, Abadi AH, Jumaa H, Kirchhoff F, Frossard N, Sanchez-Garcia E, Münch J. Acta Pharm Sin B 11 2694-2708 (2021)
  84. Computational modeling and experimental validation of the EPI-X4/CXCR4 complex allows rational design of small peptide antagonists. Sokkar P, Harms M, Stürzel C, Gilg A, Kizilsavas G, Raasholm M, Preising N, Wagner M, Kirchhoff F, Ständker L, Weidinger G, Mayer B, Münch J, Sanchez-Garcia E. Commun Biol 4 1113 (2021)
  85. Crystallographic Structure of Truncated CCL21 and the Putative Sulfotyrosine-Binding Site. Smith EW, Lewandowski EM, Moussouras NA, Kroeck KG, Volkman BF, Veldkamp CT, Chen Y. Biochemistry 55 5746-5753 (2016)
  86. Detecting and understanding genetic and structural features in HIV-1 B subtype V3 underlying HIV-1 co-receptor usage. Chen M, Svicher V, Artese A, Costa G, Alteri C, Ortuso F, Parrotta L, Liu Y, Liu C, Perno CF, Alcaro S, Zhang J. Bioinformatics 29 451-460 (2013)
  87. Interaction of chemokine receptor CXCR4 in monomeric and dimeric state with its endogenous ligand CXCL12: coarse-grained simulations identify differences. Cutolo P, Basdevant N, Bernadat G, Bachelerie F, Ha-Duong T. J Biomol Struct Dyn 35 399-412 (2017)
  88. Monomeric CXCL12 outperforms its dimeric and wild type variants in the promotion of human endothelial progenitor cells' function. Chang S, Li Y, Yuan F, Qu M, Song Y, Zhang Z, Yang GY, Wang Y. Biochem Biophys Res Commun 488 303-310 (2017)
  89. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Nat Commun 13 5434 (2022)
  90. A cellular screening assay using analysis of metal-modified fluorescence lifetime. Cade NI, Fruhwirth G, Archibald SJ, Ng T, Richards D. Biophys J 98 2752-2757 (2010)
  91. Phosphate modulates receptor sulfotyrosine recognition by the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Ludeman JP, Nazari-Robati M, Wilkinson BL, Huang C, Payne RJ, Stone MJ. Org Biomol Chem 13 2162-2169 (2015)
  92. Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. Jaracz-Ros A, Bernadat G, Cutolo P, Gallego C, Gustavsson M, Cecon E, Baleux F, Kufareva I, Handel TM, Bachelerie F, Levoye A. J Leukoc Biol 107 1123-1135 (2020)
  93. Molecular processes mediating hyperhomocysteinemia-induced metabolic reprogramming, redox regulation and growth inhibition in endothelial cells. Jan M, Cueto R, Jiang X, Lu L, Sardy J, Xiong X, Yu JE, Pham H, Khan M, Qin X, Ji Y, Yang XF, Wang H. Redox Biol 45 102018 (2021)
  94. A new obligate CXCL4-CXCL12 heterodimer for studying chemokine heterodimer activities and mechanisms. Nguyen KTP, Volkman B, Dréau D, Nesmelova IV. Sci Rep 12 17204 (2022)
  95. Glycosaminoglycan silencing by engineered CXCL12 variants. Gschwandtner M, Trinker MU, Hecher B, Adage T, Ali S, Kungl AJ. FEBS Lett 589 2819-2824 (2015)
  96. Preparation and Analysis of N-Terminal Chemokine Receptor Sulfopeptides Using Tyrosylprotein Sulfotransferase Enzymes. Seibert C, Sanfiz A, Sakmar TP, Veldkamp CT. Methods Enzymol 570 357-388 (2016)
  97. Explaining the Paucity of Intratumoral T Cells: A Construction Out of Known Entities. Fearon DT. Cold Spring Harb Symp Quant Biol 81 219-226 (2016)
  98. Detecting Cell Surface Expression of the G Protein-Coupled Receptor CXCR4. Nevins AM, Marchese A. Methods Mol Biol 1722 151-164 (2018)
  99. Enriching Traditional Protein-protein Interaction Networks with Alternative Conformations of Proteins. Halakou F, Kilic ES, Cukuroglu E, Keskin O, Gursoy A. Sci Rep 7 7180 (2017)
  100. Experiment-Guided Molecular Modeling of Protein-Protein Complexes Involving GPCRs. Kufareva I, Handel TM, Abagyan R. Methods Mol Biol 1335 295-311 (2015)
  101. Insights into the mechanism of enhanced mobilization of hematopoietic progenitor cells and release of CXCL12 by a combination of AMD3100 and aminoglycoside-polyarginine conjugates. Berchanski A, Kalinkovich A, Ludin A, Lapidot T, Lapidot A. FEBS J 278 4150-4165 (2011)
  102. Long-Range Coupled Motions Underlie Ligand Recognition by a Chemokine Receptor. Sepuru KM, Nair V, Prakash P, Gorfe AA, Rajarathnam K. iScience 23 101858 (2020)
  103. Structural Insights into Molecular Recognition by Human Chemokine CCL19. Lewandowski EM, Kroeck KG, Jacobs LMC, Fenske TG, Witt RN, Hintz AM, Ramsden ER, Zhang X, Peterson F, Volkman BF, Veldkamp CT, Chen Y. Biochemistry 61 311-318 (2022)
  104. Tyrosine sulfation and O-glycosylation of chemoattractant receptor GPR15 differentially regulate interaction with GPR15L. Okamoto Y, Shikano S. J Cell Sci 134 jcs247833 (2021)
  105. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma. Thangavadivel S, Zelle-Rieser C, Olivier A, Postert B, Untergasser G, Kern J, Brunner A, Gunsilius E, Biedermann R, Hajek R, Pour L, Willenbacher W, Greil R, Jöhrer K. Oncotarget 7 78605-78618 (2016)
  106. Discovery of 5,5'-Methylenedi-2,3-Cresotic Acid as a Potent Inhibitor of the Chemotactic Activity of the HMGB1·CXCL12 Heterocomplex Using Virtual Screening and NMR Validation. De Leo F, Quilici G, De Marchis F, Mantonico MV, Bianchi ME, Musco G. Front Chem 8 598710 (2020)
  107. Identifying critical genes associated with aneurysmal subarachnoid hemorrhage by weighted gene co-expression network analysis. Yan Z, Wu Q, Cai W, Xiang H, Wen L, Zhang A, Peng Y, Zhang X, Wang H. Aging (Albany NY) 13 22345-22360 (2021)
  108. Pamoic acid is an inhibitor of HMGB1·CXCL12 elicited chemotaxis and reduces inflammation in murine models of Pseudomonas aeruginosa pneumonia. De Leo F, Rossi A, De Marchis F, Cigana C, Melessike M, Quilici G, De Fino I, Mantonico MV, Fabris C, Bragonzi A, Bianchi ME, Musco G. Mol Med 28 108 (2022)
  109. Pharmacology: Inside-out receptor inhibition. Sakmar TP, Huber T. Nature 540 344-345 (2016)
  110. Stoichiometric analysis of oligomeric states of three class-A GPCRs, chemokine-CXCR4, dopamine-D2, and prostaglandin-EP1 receptors, on living cells. Kawano K, Yagi T, Fukada N, Yano Y, Matsuzaki K. J Pept Sci 23 650-658 (2017)
  111. T Cells Chemotaxis Migration Studies with a Multi-Channel Microfluidic Device. Liu Y, Ren X, Wu J, Wilkins JA, Lin F. Micromachines (Basel) 13 1567 (2022)
  112. Anti-HIV-1 peptide derivatives based on the HIV-1 Co-receptor CXCR4. Hashimoto C, Nomura W, Narumi T, Fujino M, Tsutsumi H, Haseyama M, Yamamoto N, Murakami T, Tamamura H. ChemMedChem 8 1668-1672 (2013)
  113. Chemokine Therapy in Cats With Experimental Renal Fibrosis and in a Kidney Disease Pilot Study. Bennington J, Lankford S, Magalhaes RS, Shankle D, Fanning J, Kartini C, Suparto I, Kusumawardhani W, Putra MA, Mariya S, Badlani G, Williams JK. Front Vet Sci 8 646087 (2021)
  114. Development of a New Class of CXCR4-Targeting Radioligands Based on the Endogenous Antagonist EPI-X4 for Oncological Applications. Gaonkar RH, Schmidt YT, Mansi R, Almeida-Hernandez Y, Sanchez-Garcia E, Harms M, Münch J, Fani M. J Med Chem 66 8484-8497 (2023)
  115. Internal water channel formation in CXCR4 is crucial for Gi-protein coupling upon activation by CXCL12. Chang CC, Liou JW, Dass KTP, Li YT, Jiang SJ, Pan SF, Yeh YC, Hsu HJ. Commun Chem 3 133 (2020)
  116. New G-protein-coupled receptor structures provide insights into the recognition of CXCL12 and HIV-1 gp120 by CXCR4. Zhong C, Ding J. Acta Biochim Biophys Sin (Shanghai) 43 337-338 (2011)
  117. The Extended N-Terminal Domain Confers Atypical Chemokine Receptor Properties to CXCR3-B. D'Uonnolo G, Reynders N, Meyrath M, Abboud D, Uchański T, Laeremans T, Volkman BF, Janji B, Hanson J, Szpakowska M, Chevigné A. Front Immunol 13 868579 (2022)
  118. Systematic Review A potential antibody repertoire diversification mechanism through tyrosine sulfation for biotherapeutics engineering and production. Zhong X, D'Antona AM. Front Immunol 13 1072702 (2022)
  119. Fragment-based drug discovery of small molecule ligands for the human chemokine CCL28. Zhou AL, Jensen DR, Peterson FC, Thomas MA, Schlimgen RR, Dwinell MB, Smith BC, Volkman BF. SLAS Discov 28 163-169 (2023)
  120. NMR indicates the N-termini of PSGL1 and CCR7 bind competitively to the chemokine CCL21. Witt RN, Nickel KS, Binns JR, Gray AM, Hintz AM, Kofron NF, Steigleder SF, Peterson FC, Veldkamp CT. Biochem Biophys Rep 35 101524 (2023)
  121. Phenotype and differentiation of bone marrow-derived smooth muscle progenitor cells. Liu Y, Liu M, Niu W, Luo Y, Zhang B, Li Z. Clin Exp Pharmacol Physiol 38 586-591 (2011)
  122. Spermine and spermidine bind CXCR4 and inhibit CXCR4- but not CCR5-tropic HIV-1 infection. Harms M, Smith N, Han M, Groß R, von Maltitz P, Stürzel C, Ruiz-Blanco YB, Almeida-Hernández Y, Rodriguez-Alfonso A, Cathelin D, Caspar B, Tahar B, Sayettat S, Bekaddour N, Vanshylla K, Kleipass F, Wiese S, Ständker L, Klein F, Lagane B, Boonen A, Schols D, Benichou S, Sanchez-Garcia E, Herbeuval JP, Münch J. Sci Adv 9 eadf8251 (2023)
  123. Studying Protein Tyrosine O-Sulfation in Mammalian Cells with Genetically Encoded Sulfotyrosine. He X, Guo J, Niu W. Curr Protoc 1 e301 (2021)