2k6q Citations

Structural basis of target recognition by ATG8/LC3 during selective autophagy

To be published
Cited: 254 times

Reviews - 2k6q mentioned but not cited (1)

  1. Structure biology of selective autophagy receptors. Kim BW, Kwon DH, Song HK. BMB Rep 49 73-80 (2016)

Articles - 2k6q mentioned but not cited (6)

  1. Receptor proteins in selective autophagy. Behrends C, Fulda S. Int J Cell Biol 2012 673290 (2012)
  2. Calcium-induced conformational changes in C-terminal tail of polycystin-2 are necessary for channel gating. Ćelić AS, Petri ET, Benbow J, Hodsdon ME, Ehrlich BE, Boggon TJ. J. Biol. Chem. 287 17232-17240 (2012)
  3. Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation. Habisov S, Huber J, Ichimura Y, Akutsu M, Rogova N, Loehr F, McEwan DG, Johansen T, Dikic I, Doetsch V, Komatsu M, Rogov VV, Kirkin V. J. Biol. Chem. 291 9025-9041 (2016)
  4. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen Q, Xia B. Autophagy 12 2363-2373 (2016)
  5. Cross-talk between mutant p53 and p62/SQSTM1 augments cancer cell migration by promoting the degradation of cell adhesion proteins. Mukherjee S, Maddalena M, Lü Y, Martinez S, Nataraj NB, Noronha A, Sinha S, Teng K, Cohen-Kaplan V, Ziv T, Arandkar S, Hassin O, Chatterjee R, Pirona AC, Shreberk-Shaked M, Gershoni A, Aylon Y, Elazar Z, Yarden Y, Schramek D, Oren M. Proc Natl Acad Sci U S A 119 e2119644119 (2022)
  6. A cancer associated somatic mutation in LC3B attenuates its binding to E1-like ATG7 protein and subsequent lipidation. Nuta GC, Gilad Y, Gershoni M, Sznajderman A, Schlesinger T, Bialik S, Eisenstein M, Pietrokovski S, Kimchi A. Autophagy 15 438-452 (2019)


Reviews citing this publication (80)

  1. Regulation mechanisms and signaling pathways of autophagy. He C, Klionsky DJ. Annu. Rev. Genet. 43 67-93 (2009)
  2. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Nat. Rev. Mol. Cell Biol. 10 458-467 (2009)
  3. Selective autophagy mediated by autophagic adapter proteins. Johansen T, Lamark T. Autophagy 7 279-296 (2011)
  4. A role for ubiquitin in selective autophagy. Kirkin V, McEwan DG, Novak I, Dikic I. Mol. Cell 34 259-269 (2009)
  5. Autophagy modulation as a potential therapeutic target for diverse diseases. Rubinsztein DC, Codogno P, Levine B. Nat Rev Drug Discov 11 709-730 (2012)
  6. Principles and current strategies for targeting autophagy for cancer treatment. Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT, White E. Clin. Cancer Res. 17 654-666 (2011)
  7. The regulation of autophagy - unanswered questions. Chen Y, Klionsky DJ. J. Cell. Sci. 124 161-170 (2011)
  8. Biogenesis and cargo selectivity of autophagosomes. Weidberg H, Shvets E, Elazar Z. Annu. Rev. Biochem. 80 125-156 (2011)
  9. Physiological significance of selective degradation of p62 by autophagy. Komatsu M, Ichimura Y. FEBS Lett. 584 1374-1378 (2010)
  10. Atg8-family interacting motif crucial for selective autophagy. Noda NN, Ohsumi Y, Inagaki F. FEBS Lett. 584 1379-1385 (2010)
  11. Atg8: an autophagy-related ubiquitin-like protein family. Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. Genome Biol. 12 226 (2011)
  12. Autophagy: pathways for self-eating in plant cells. Liu Y, Bassham DC. Annu Rev Plant Biol 63 215-237 (2012)
  13. Autophagic processes in yeast: mechanism, machinery and regulation. Reggiori F, Klionsky DJ. Genetics 194 341-361 (2013)
  14. Ubiquitin-like proteins. van der Veen AG, Ploegh HL. Annu. Rev. Biochem. 81 323-357 (2012)
  15. The Cvt pathway as a model for selective autophagy. Lynch-Day MA, Klionsky DJ. FEBS Lett. 584 1359-1366 (2010)
  16. Mammalian Autophagy: How Does It Work? Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC. Annu. Rev. Biochem. 85 685-713 (2016)
  17. Integration of clearance mechanisms: the proteasome and autophagy. Wong E, Cuervo AM. Cold Spring Harb Perspect Biol 2 a006734 (2010)
  18. Selective degradation of p62 by autophagy. Ichimura Y, Komatsu M. Semin Immunopathol 32 431-436 (2010)
  19. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Klionsky DJ, Schulman BA. Nat. Struct. Mol. Biol. 21 336-345 (2014)
  20. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Amm I, Sommer T, Wolf DH. Biochim. Biophys. Acta 1843 182-196 (2014)
  21. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Hamacher-Brady A, Brady NR. Cell. Mol. Life Sci. 73 775-795 (2016)
  22. Atomistic autophagy: the structures of cellular self-digestion. Hurley JH, Schulman BA. Cell 157 300-311 (2014)
  23. Cleaning House: Selective Autophagy of Organelles. Anding AL, Baehrecke EH. Dev. Cell 41 10-22 (2017)
  24. Mechanisms of Autophagy. Noda NN, Inagaki F. Annu Rev Biophys 44 101-122 (2015)
  25. Selective autophagy regulates various cellular functions. Komatsu M, Ichimura Y. Genes Cells 15 923-933 (2010)
  26. Molecular mechanism and physiological role of pexophagy. Manjithaya R, Nazarko TY, Farré JC, Subramani S. FEBS Lett. 584 1367-1373 (2010)
  27. Receptor-mediated mitophagy in yeast and mammalian systems. Liu L, Sakakibara K, Chen Q, Okamoto K. Cell Res. 24 787-795 (2014)
  28. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Schreiber A, Peter M. Biochim. Biophys. Acta 1843 163-181 (2014)
  29. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Yamamoto A, Simonsen A. Neurobiol. Dis. 43 17-28 (2011)
  30. Cargo recognition and degradation by selective autophagy. Gatica D, Lahiri V, Klionsky DJ. Nat. Cell Biol. 20 233-242 (2018)
  31. Regulation of macroautophagy in Saccharomyces cerevisiae. Inoue Y, Klionsky DJ. Semin. Cell Dev. Biol. 21 664-670 (2010)
  32. Mechanistic insights into selective autophagy pathways: lessons from yeast. Farré JC, Subramani S. Nat. Rev. Mol. Cell Biol. 17 537-552 (2016)
  33. Role of melatonin in the regulation of autophagy and mitophagy: a review. Coto-Montes A, Boga JA, Rosales-Corral S, Fuentes-Broto L, Tan DX, Reiter RJ. Mol. Cell. Endocrinol. 361 12-23 (2012)
  34. The expanding universe of ubiquitin and ubiquitin-like modifiers. Vierstra RD. Plant Physiol. 160 2-14 (2012)
  35. Interaction domains of p62: a bridge between p62 and selective autophagy. Lin X, Li S, Zhao Y, Ma X, Zhang K, He X, Wang Z. DNA Cell Biol. 32 220-227 (2013)
  36. The role of ALFY in selective autophagy. Isakson P, Holland P, Simonsen A. Cell Death Differ. 20 12-20 (2013)
  37. Variations on a theme: plant autophagy in comparison to yeast and mammals. Avin-Wittenberg T, Honig A, Galili G. Protoplasma 249 285-299 (2012)
  38. Mitochondria autophagy in yeast. Kanki T, Klionsky DJ, Okamoto K. Antioxid. Redox Signal. 14 1989-2001 (2011)
  39. Selective autophagy. Svenning S, Johansen T. Essays Biochem. 55 79-92 (2013)
  40. The Interplay between Alpha-Synuclein Clearance and Spreading. Lopes da Fonseca T, Villar-Piqué A, Outeiro TF. Biomolecules 5 435-471 (2015)
  41. Pathophysiological role of autophagy: lesson from autophagy-deficient mouse models. Ichimura Y, Komatsu M. Exp. Anim. 60 329-345 (2011)
  42. Autophagy and lipids: tightening the knot. Rodriguez-Navarro JA, Cuervo AM. Semin Immunopathol 32 343-353 (2010)
  43. A systems biology viewpoint on autophagy in health and disease. Huett A, Goel G, Xavier RJ. Curr. Opin. Gastroenterol. 26 302-309 (2010)
  44. Structure and potential function of gamma-aminobutyrate type A receptor-associated protein. Mohrlüder J, Schwarten M, Willbold D. FEBS J. 276 4989-5005 (2009)
  45. How ubiquitination and autophagy participate in the regulation of the cell response to bacterial infection. Dupont N, Temime-Smaali N, Lafont F. Biol. Cell 102 621-634 (2010)
  46. The receptor proteins: pivotal roles in selective autophagy. Xu Z, Yang L, Xu S, Zhang Z, Cao Y. Acta Biochim. Biophys. Sin. (Shanghai) 47 571-580 (2015)
  47. The different roles of selective autophagic protein degradation in mammalian cells. Wang DW, Peng ZJ, Ren GF, Wang GX. Oncotarget 6 37098-37116 (2015)
  48. To deliver or to degrade - an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants. Zientara-Rytter K, Sirko A. FEBS J. 283 3534-3555 (2016)
  49. Autophagy Modulators in Cancer Therapy. Buzun K, Gornowicz A, Lesyk R, Bielawski K, Bielawska A. Int J Mol Sci 22 5804 (2021)
  50. History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today? Kirkin V. J Mol Biol 432 3-27 (2020)
  51. Structure, Dynamics and Function of the 26S Proteasome. Mao Y. Subcell Biochem 96 1-151 (2021)
  52. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. Maruyama T, Noda NN. J. Antibiot. (2017)
  53. Autophagy: mechanisms, regulation, and its role in tumorigenesis. Parkhitko AA, Favorova OO, Henske EP. Biochemistry Mosc. 78 355-367 (2013)
  54. Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/adaptor proteins. Veljanovski V, Batoko H. Front Plant Sci 5 308 (2014)
  55. ATG8-Interacting Motif: Evolution and Function in Selective Autophagy of Targeting Biological Processes. Liu W, Liu Z, Mo Z, Guo S, Liu Y, Xie Q. Front Plant Sci 12 783881 (2021)
  56. Amyotrophic Lateral Sclerosis and Autophagy: Dysfunction and Therapeutic Targeting. Amin A, Perera ND, Beart PM, Turner BJ, Shabanpoor F. Cells 9 E2413 (2020)
  57. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Corridoni D, Chapman T, Ambrose T, Simmons A. Front Med (Lausanne) 5 32 (2018)
  58. Autophagy in Traumatic Brain Injury: A New Target for Therapeutic Intervention. Zhang L, Wang H. Front Mol Neurosci 11 190 (2018)
  59. Autophagy in cancers including brain tumors: role of MicroRNAs. Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, Mirzaei HR, Razavi ZS, Sahebkar A, Hosseini N, Mirzaei H, Hamblin MR. Cell Commun Signal 18 88 (2020)
  60. ER-phagy and human diseases. Hübner CA, Dikic I. Cell Death Differ 27 833-842 (2020)
  61. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Kim SM, Wang Y, Nabavi N, Liu Y, Correia MA. Drug Metab. Rev. 48 405-433 (2016)
  62. Mitophagy-driven metabolic switch reprograms stem cell fate. Naik PP, Birbrair A, Bhutia SK. Cell. Mol. Life Sci. 76 27-43 (2019)
  63. The role of autophagy in cardiovascular pathology. Gatica D, Chiong M, Lavandero S, Klionsky DJ. Cardiovasc Res 118 934-950 (2022)
  64. Activation and targeting of ATG8 protein lipidation. Martens S, Fracchiolla D. Cell Discov 6 23 (2020)
  65. Selective Autophagy by Close Encounters of the Ubiquitin Kind. Vainshtein A, Grumati P. Cells 9 E2349 (2020)
  66. Preserving Lysosomal Function in the Aging Brain: Insights from Neurodegeneration. Peng W, Minakaki G, Nguyen M, Krainc D. Neurotherapeutics 16 611-634 (2019)
  67. Structural Biology of the Cvt Pathway. Yamasaki A, Noda NN. J. Mol. Biol. 429 531-542 (2017)
  68. Ubiquitin-like modifiers. Taherbhoy AM, Schulman BA, Kaiser SE. Essays Biochem. 52 51-63 (2012)
  69. Atg8-Family Proteins-Structural Features and Molecular Interactions in Autophagy and Beyond. Wesch N, Kirkin V, Rogov VV. Cells 9 (2020)
  70. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Marshall RS, Vierstra RD. Front Mol Biosci 6 40 (2019)
  71. Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. Barz S, Kriegenburg F, Sánchez-Martín P, Kraft C. Biochim Biophys Acta Mol Cell Res 1868 119064 (2021)
  72. Targeting autophagy in liver cancer. Di Fazio P, Matrood S. Transl Gastroenterol Hepatol 3 39 (2018)
  73. A brief overview of BNIP3L/NIX receptor-mediated mitophagy. Marinković M, Novak I. FEBS Open Bio 11 3230-3236 (2021)
  74. Is Disrupted Mitophagy a Central Player to Parkinson's Disease Pathology? Ko TK, Tan DJY. Cureus 15 e35458 (2023)
  75. Mechanisms and Pathophysiological Roles of the ATG8 Conjugation Machinery. Lystad AH, Simonsen A. Cells 8 (2019)
  76. Structure and Dynamics in the ATG8 Family From Experimental to Computational Techniques. Sora V, Kumar M, Maiani E, Lambrughi M, Tiberti M, Papaleo E. Front Cell Dev Biol 8 420 (2020)
  77. Canonical and non-canonical autophagy pathways in microglia. Jülg J, Strohm L, Behrends C. Mol Cell Biol MCB.00389-20 (2020)
  78. Drug discovery by targeting the protein-protein interactions involved in autophagy. Xiang H, Zhou M, Li Y, Zhou L, Wang R. Acta Pharm Sin B 13 4373-4390 (2023)
  79. Mechanisms Regulating the UPS-ALS Crosstalk: The Role of Proteaphagy. Quinet G, Gonzalez-Santamarta M, Louche C, Rodriguez MS. Molecules 25 (2020)
  80. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Qin Z, Wang T, Zhao Y, Ma C, Shao Q. Int J Mol Sci 24 16039 (2023)

Articles citing this publication (167)

  1. Network organization of the human autophagy system. Behrends C, Sowa ME, Gygi SP, Harper JW. Nature 466 68-76 (2010)
  2. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T. Mol. Cell 33 505-516 (2009)
  3. Nix is a selective autophagy receptor for mitochondrial clearance. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Löhr F, Popovic D, Occhipinti A, Reichert AS, Terzic J, Dötsch V, Ney PA, Dikic I. EMBO Rep. 11 45-51 (2010)
  4. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Okamoto K, Kondo-Okamoto N, Ohsumi Y. Dev. Cell 17 87-97 (2009)
  5. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, Kimura M, Sato S, Hattori N, Komatsu M, Tanaka K, Matsuda N. Genes Cells 15 887-900 (2010)
  6. p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. Itakura E, Mizushima N. J. Cell Biol. 192 17-27 (2011)
  7. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X, Chen YG. Nat. Cell Biol. 12 781-790 (2010)
  8. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. EMBO J. 28 1341-1350 (2009)
  9. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, Nakatogawa H. Nature 522 359-362 (2015)
  10. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, Zhao Z, Virgin HW, Kyei GB, Johansen T, Vergne I, Deretic V. Immunity 32 329-341 (2010)
  11. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Lamark T, Johansen T. Int J Cell Biol 2012 736905 (2012)
  12. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. von Muhlinen N, Akutsu M, Ravenhill BJ, Foeglein Á, Bloor S, Rutherford TJ, Freund SM, Komander D, Randow F. Mol. Cell 48 329-342 (2012)
  13. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. Motley AM, Nuttall JM, Hettema EH. EMBO J. 31 2852-2868 (2012)
  14. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. Alemu EA, Lamark T, Torgersen KM, Birgisdottir AB, Larsen KB, Jain A, Olsvik H, Øvervatn A, Kirkin V, Johansen T. J. Biol. Chem. 287 39275-39290 (2012)
  15. Dictionary A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA. Autophagy 7 1273-1294 (2011)
  16. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Svenning S, Lamark T, Krause K, Johansen T. Autophagy 7 993-1010 (2011)
  17. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Suttangkakul A, Li F, Chung T, Vierstra RD. Plant Cell 23 3761-3779 (2011)
  18. Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Kuma A, Mizushima N. Semin. Cell Dev. Biol. 21 683-690 (2010)
  19. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Wei Y, Chiang WC, Sumpter R, Mishra P, Levine B. Cell 168 224-238.e10 (2017)
  20. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, Smartt HJ, Batson J, Malik K, Paraskeva C, Greenhough A. EMBO J. 32 1903-1916 (2013)
  21. All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Jaeger PA, Wyss-Coray T. Mol Neurodegener 4 16 (2009)
  22. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. Yamano K, Fogel AI, Wang C, van der Bliek AM, Youle RJ. Elife 3 e01612 (2014)
  23. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q. Autophagy 6 614-621 (2010)
  24. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. Plant Cell 23 785-805 (2011)
  25. Dictionary A comprehensive glossary of autophagy-related molecules and processes. Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J, Gewirtz DA, Kroemer G, Levine B, Mizushima N, Rubinsztein DC, Thumm M, Tooze SA. Autophagy 6 438-448 (2010)
  26. Autophagy: links with the proteasome. Lamark T, Johansen T. Curr. Opin. Cell Biol. 22 192-198 (2010)
  27. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Ochaba J, Lukacsovich T, Csikos G, Zheng S, Margulis J, Salazar L, Mao K, Lau AL, Yeung SY, Humbert S, Saudou F, Klionsky DJ, Finkbeiner S, Zeitlin SO, Marsh JL, Housman DE, Thompson LM, Steffan JS. Proc. Natl. Acad. Sci. U.S.A. 111 16889-16894 (2014)
  28. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Fu MM, Nirschl JJ, Holzbaur ELF. Dev. Cell 29 577-590 (2014)
  29. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A, Nourse A, Hammel M, Kurinov I, Rock CO, Green DR, Schulman BA. Mol. Cell 44 451-461 (2011)
  30. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F. Mol. Cell 44 462-475 (2011)
  31. Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, Eskelinen EL, Thumm M. J. Cell Biol. 190 965-973 (2010)
  32. Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. Knævelsrud H, Søreng K, Raiborg C, Håberg K, Rasmuson F, Brech A, Liestøl K, Rusten TE, Stenmark H, Neufeld TP, Carlsson SR, Simonsen A. J. Cell Biol. 202 331-349 (2013)
  33. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Honig A, Avin-Wittenberg T, Ufaz S, Galili G. Plant Cell 24 288-303 (2012)
  34. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. Farré JC, Burkenroad A, Burnett SF, Subramani S. EMBO Rep. 14 441-449 (2013)
  35. Pexophagy: the selective degradation of peroxisomes. Till A, Lakhani R, Burnett SF, Subramani S. Int J Cell Biol 2012 512721 (2012)
  36. Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. Wurzer B, Zaffagnini G, Fracchiolla D, Turco E, Abert C, Romanov J, Martens S. Elife 4 e08941 (2015)
  37. iLIR: A web resource for prediction of Atg8-family interacting proteins. Kalvari I, Tsompanis S, Mulakkal NC, Osgood R, Johansen T, Nezis IP, Promponas VJ. Autophagy 10 913-925 (2014)
  38. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Jiang S, Wells CD, Roach PJ. Biochem. Biophys. Res. Commun. 413 420-425 (2011)
  39. Autophagy: more than a nonselective pathway. Reggiori F, Komatsu M, Finley K, Simonsen A. Int J Cell Biol 2012 219625 (2012)
  40. Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Moresi V, Carrer M, Grueter CE, Rifki OF, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN. Proc. Natl. Acad. Sci. U.S.A. 109 1649-1654 (2012)
  41. Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Zientara-Rytter K, Lukomska J, Moniuszko G, Gwozdecki R, Surowiecki P, Lewandowska M, Liszewska F, Wawrzyńska A, Sirko A. Autophagy 7 1145-1158 (2011)
  42. MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Colecchia D, Strambi A, Sanzone S, Iavarone C, Rossi M, Dall'Armi C, Piccioni F, Verrotti di Pianella A, Chiariello M. Autophagy 8 1724-1740 (2012)
  43. Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. Suzuki K, Kondo C, Morimoto M, Ohsumi Y. J. Biol. Chem. 285 30019-30025 (2010)
  44. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. Kondo-Okamoto N, Noda NN, Suzuki SW, Nakatogawa H, Takahashi I, Matsunami M, Hashimoto A, Inagaki F, Ohsumi Y, Okamoto K. J. Biol. Chem. 287 10631-10638 (2012)
  45. Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. Waters S, Marchbank K, Solomon E, Whitehouse C, Gautel M. FEBS Lett. 583 1846-1852 (2009)
  46. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F. J. Biol. Chem. 285 29599-29607 (2010)
  47. Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. Tanaka C, Tan LJ, Mochida K, Kirisako H, Koizumi M, Asai E, Sakoh-Nakatogawa M, Ohsumi Y, Nakatogawa H. J. Cell Biol. 207 91-105 (2014)
  48. Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy. Sawa-Makarska J, Abert C, Romanov J, Zens B, Ibiricu I, Martens S. Nat. Cell Biol. 16 425-433 (2014)
  49. Crystal structure of the ubiquitin-associated (UBA) domain of p62 and its interaction with ubiquitin. Isogai S, Morimoto D, Arita K, Unzai S, Tenno T, Hasegawa J, Sou YS, Komatsu M, Tanaka K, Shirakawa M, Tochio H. J. Biol. Chem. 286 31864-31874 (2011)
  50. Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Rogov VV, Suzuki H, Fiskin E, Wild P, Kniss A, Rozenknop A, Kato R, Kawasaki M, McEwan DG, Löhr F, Güntert P, Dikic I, Wakatsuki S, Dötsch V. Biochem. J. 454 459-466 (2013)
  51. Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism. Suzuki H, Tabata K, Morita E, Kawasaki M, Kato R, Dobson RC, Yoshimori T, Wakatsuki S. Structure 22 47-58 (2014)
  52. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. Yuga M, Gomi K, Klionsky DJ, Shintani T. J. Biol. Chem. 286 13704-13713 (2011)
  53. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H, Kobashigawa Y, Akada R, Ohsumi Y, Inagaki F. Structure 20 1244-1254 (2012)
  54. PCS-based structure determination of protein-protein complexes. Saio T, Yokochi M, Kumeta H, Inagaki F. J. Biomol. NMR 46 271-280 (2010)
  55. Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Goode A, Butler K, Long J, Cavey J, Scott D, Shaw B, Sollenberger J, Gell C, Johansen T, Oldham NJ, Searle MS, Layfield R. Autophagy 12 1094-1104 (2016)
  56. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. Nakatogawa H, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW, Kirisako H, Kondo-Kakuta C, Noda NN, Yamamoto H, Ohsumi Y. J. Biol. Chem. 287 28503-28507 (2012)
  57. Does Huntingtin play a role in selective macroautophagy? Steffan JS. Cell Cycle 9 3401-3413 (2010)
  58. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. Zirin J, Nieuwenhuis J, Perrimon N. PLoS Biol. 11 e1001708 (2013)
  59. FYCO1 Contains a C-terminally Extended, LC3A/B-preferring LC3-interacting Region (LIR) Motif Required for Efficient Maturation of Autophagosomes during Basal Autophagy. Olsvik HL, Lamark T, Takagi K, Larsen KB, Evjen G, Øvervatn A, Mizushima T, Johansen T. J. Biol. Chem. 290 29361-29374 (2015)
  60. Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Metlagel Z, Otomo C, Takaesu G, Otomo T. Proc. Natl. Acad. Sci. U.S.A. 110 18844-18849 (2013)
  61. Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. Watanabe Y, Noda NN, Kumeta H, Suzuki K, Ohsumi Y, Inagaki F. J. Biol. Chem. 285 30026-30033 (2010)
  62. The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin. Tung YT, Hsu WM, Lee H, Huang WP, Liao YF. Cell. Mol. Neurobiol. 30 795-806 (2010)
  63. Induction of Covalently Crosslinked p62 Oligomers with Reduced Binding to Polyubiquitinated Proteins by the Autophagy Inhibitor Verteporfin. Donohue E, Balgi AD, Komatsu M, Roberge M. PLoS ONE 9 e114964 (2014)
  64. Selective autophagy of intracellular organelles: recent research advances. Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, Ma C, Jiang L, Jiang L, Hu Y, Gong Q, Zhu D, Xu Y, Liu R, Liu L, Yi C, Zhu Y, Ma N, Okamoto K, Xie Z, Liu J, He RR, Feng D. Theranostics 11 222-256 (2021)
  65. Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. Hain AU, Weltzer RR, Hammond H, Jayabalasingham B, Dinglasan RR, Dinglasan RR, Graham DR, Colquhoun DR, Coppens I, Bosch J. J. Struct. Biol. 180 551-562 (2012)
  66. The NMR structure of the autophagy-related protein Atg8. Kumeta H, Watanabe M, Nakatogawa H, Yamaguchi M, Ogura K, Adachi W, Fujioka Y, Noda NN, Ohsumi Y, Inagaki F. J. Biomol. NMR 47 237-241 (2010)
  67. The adaptor protein p62/SQSTM1 in osteoclast signaling pathways. McManus S, Roux S. J Mol Signal 7 1 (2012)
  68. TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes. Tomioka Y, Kotani T, Kirisako H, Oikawa Y, Kimura Y, Hirano H, Ohsumi Y, Nakatogawa H. J Cell Biol 219 e201910063 (2020)
  69. p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB. Jain A, Rusten TE, Katheder N, Elvenes J, Bruun JA, Sjøttem E, Lamark T, Johansen T. J. Biol. Chem. 290 14945-14962 (2015)
  70. Mechanism of cargo-directed Atg8 conjugation during selective autophagy. Fracchiolla D, Sawa-Makarska J, Zens B, Ruiter A, Zaffagnini G, Brezovich A, Romanov J, Runggatscher K, Kraft C, Zagrovic B, Martens S. Elife 5 (2016)
  71. hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. Xie Q, Tzfadia O, Levy M, Weithorn E, Peled-Zehavi H, Van Parys T, Van de Peer Y, Galili G. Autophagy 12 876-887 (2016)
  72. ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8. Skytte Rasmussen M, Mouilleron S, Kumar Shrestha B, Wirth M, Lee R, Bowitz Larsen K, Abudu Princely Y, O'Reilly N, Sjøttem E, Tooze SA, Lamark T, Johansen T. Autophagy 13 834-853 (2017)
  73. Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding by the Irish Potato Famine Pathogen Effector Protein PexRD54. Maqbool A, Hughes RK, Dagdas YF, Tregidgo N, Zess E, Belhaj K, Round A, Bozkurt TO, Kamoun S, Banfield MJ. J. Biol. Chem. 291 20270-20282 (2016)
  74. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Lv M, Wang C, Li F, Peng J, Wen B, Gong Q, Shi Y, Tang Y. Protein Cell 8 25-38 (2017)
  75. Autophagy and cancer. Lu SZ, Harrison-Findik DD. World J Biol Chem 4 64-70 (2013)
  76. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Zhang L, Wang H, Fan Y, Gao Y, Li X, Hu Z, Ding K, Wang Y, Wang X. Sci Rep 7 46763 (2017)
  77. PI3P binding by Atg21 organises Atg8 lipidation. Juris L, Montino M, Rube P, Schlotterhose P, Thumm M, Krick R. EMBO J. 34 955-973 (2015)
  78. Synthetic quantitative array technology identifies the Ubp3-Bre5 deubiquitinase complex as a negative regulator of mitophagy. Müller M, Kötter P, Behrendt C, Walter E, Scheckhuber CQ, Entian KD, Reichert AS. Cell Rep 10 1215-1225 (2015)
  79. ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors. Marshall RS, Hua Z, Mali S, McLoughlin F, Vierstra RD. Cell 177 766-781.e24 (2019)
  80. Elucidation of the anti-autophagy mechanism of the Legionella effector RavZ using semisynthetic LC3 proteins. Yang A, Pantoom S, Wu YW. Elife 6 (2017)
  81. Autophagy and mechanisms of effective immunity. Mintern JD, Villadangos JA. Front Immunol 3 60 (2012)
  82. Depletion of tissue factor suppresses hepatic metastasis and tumor growth in colorectal cancer via the downregulation of MMPs and the induction of autophagy and apoptosis. Tian M, Wan Y, Tang J, Li H, Yu G, Zhu J, Ji S, Guo H, Zhang N, Li W, Gai J, Wang L, Dai L, Liu D, Lei L, Zhu S. Cancer Biol. Ther. 12 896-907 (2011)
  83. LC3C Contributes to Vpu-Mediated Antagonism of BST2/Tetherin Restriction on HIV-1 Release through a Non-canonical Autophagy Pathway. Madjo U, Leymarie O, Frémont S, Kuster A, Nehlich M, Gallois-Montbrun S, Janvier K, Berlioz-Torrent C. Cell Rep 17 2221-2233 (2016)
  84. Signal transducer and activator of transcription-1 localizes to the mitochondria and modulates mitophagy. Bourke LT, Knight RA, Latchman DS, Stephanou A, McCormick J. JAKSTAT 2 e25666 (2013)
  85. Autophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain. Ahn JS, Ann EJ, Kim MY, Yoon JH, Lee HJ, Jo EH, Lee K, Lee JS, Park HS. Oncotarget 7 79047-79063 (2016)
  86. Autophagy Plays Prominent Roles in Amino Acid, Nucleotide, and Carbohydrate Metabolism during Fixed-Carbon Starvation in Maize. McLoughlin F, Marshall RS, Ding X, Chatt EC, Kirkpatrick LD, Augustine RC, Li F, Otegui MS, Vierstra RD. Plant Cell 32 2699-2724 (2020)
  87. Mutant protein kinase C gamma that causes spinocerebellar ataxia type 14 (SCA14) is selectively degraded by autophagy. Yamamoto K, Seki T, Adachi N, Takahashi T, Tanaka S, Hide I, Saito N, Sakai N. Genes Cells 15 425-438 (2010)
  88. Propeptide of aminopeptidase 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway. Morales Quinones M, Winston JT, Stromhaug PE. J. Biol. Chem. 287 10121-10133 (2012)
  89. The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells. Ammon T, Mishra SK, Kowalska K, Popowicz GM, Holak TA, Jentsch S. J Mol Cell Biol 6 312-323 (2014)
  90. Arginine68 is an essential residue for the C-terminal cleavage of human Atg8 family proteins. Liu C, Ma H, Wu J, Huang Q, Liu JO, Yu L. BMC Cell Biol. 14 27 (2013)
  91. Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II. Jiang L, Hara-Kuge S, Yamashita S, Fujiki Y. Genes Cells 20 36-49 (2015)
  92. Size, stoichiometry, and organization of soluble LC3-associated complexes. Kraft LJ, Nguyen TA, Vogel SS, Kenworthy AK. Autophagy 10 861-877 (2014)
  93. Cathepsin L plays a role in quinolinic acid-induced NF-Κb activation and excitotoxicity in rat striatal neurons. Wang YR, Qin S, Han R, Wu JC, Liang ZQ, Qin ZH, Wang Y. PLoS ONE 8 e75702 (2013)
  94. Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure. Gao J, Langemeyer L, Kümmel D, Reggiori F, Ungermann C. Elife 7 (2018)
  95. The interaction between IKKα and LC3 promotes type I interferon production through the TLR9-containing LAPosome. Hayashi K, Taura M, Iwasaki A. Sci Signal 11 (2018)
  96. Atg38-Atg8 interaction in fission yeast establishes a positive feedback loop to promote autophagy. Yu ZQ, Sun LL, Jiang ZD, Liu XM, Zhao D, Wang HT, He WZ, Dong MQ, Du LL. Autophagy 16 2036-2051 (2020)
  97. The NMR structure of the p62 PB1 domain, a key protein in autophagy and NF-kappaB signaling pathway. Saio T, Yokochi M, Inagaki F. J. Biomol. NMR 45 335-341 (2009)
  98. Autophagy decreases alveolar macrophage apoptosis by attenuating endoplasmic reticulum stress and oxidative stress. Fan T, Chen L, Huang Z, Mao Z, Wang W, Zhang B, Xu Y, Pan S, Hu H, Geng Q. Oncotarget 7 87206-87218 (2016)
  99. In vitro systems for Atg8 lipidation. Zens B, Sawa-Makarska J, Martens S. Methods 75 37-43 (2015)
  100. Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus. Kraft LJ, Manral P, Dowler J, Kenworthy AK. Traffic 17 369-399 (2016)
  101. Prdx1 (peroxiredoxin 1) deficiency reduces cholesterol efflux via impaired macrophage lipophagic flux. Jeong SJ, Kim S, Park JG, Jung IH, Lee MN, Jeon S, Kweon HY, Yu DY, Lee SH, Jang Y, Kang SW, Han KH, Miller YI, Park YM, Cheong C, Choi JH, Oh GT. Autophagy 14 120-133 (2018)
  102. Receptor for Activated C Kinase 1 (RACK1) Promotes Dishevelled Protein Degradation via Autophagy and Antagonizes Wnt Signaling. Cheng M, Xue H, Cao W, Li W, Chen H, Liu B, Ma B, Yan X, Chen YG. J. Biol. Chem. 291 12871-12879 (2016)
  103. Accessory Interaction Motifs in the Atg19 Cargo Receptor Enable Strong Binding to the Clustered Ubiquitin-related Atg8 Protein. Abert C, Kontaxis G, Martens S. J. Biol. Chem. 291 18799-18808 (2016)
  104. An atypical LIR motif within UBA5 (ubiquitin like modifier activating enzyme 5) interacts with GABARAP proteins and mediates membrane localization of UBA5. Huber J, Obata M, Gruber J, Akutsu M, Löhr F, Rogova N, Güntert P, Dikic I, Kirkin V, Komatsu M, Dötsch V, Rogov VV. Autophagy 16 256-270 (2020)
  105. Directed evolution of cyclic peptides for inhibition of autophagy. Gray JP, Uddin MN, Chaudhari R, Sutton MN, Yang H, Rask P, Locke H, Engel BJ, Batistatou N, Wang J, Grindel BJ, Bhattacharya P, Gammon ST, Zhang S, Piwnica-Worms D, Kritzer JA, Lu Z, Bast RC, Millward SW. Chem Sci 12 3526-3543 (2021)
  106. Human LC3 and GABARAP subfamily members achieve functional specificity via specific structural modulations. Jatana N, Ascher DB, Pires DEV, Gokhale RS, Thukral L. Autophagy 16 239-255 (2020)
  107. Autophagy: close contact keeps out the uninvited. Nakatogawa H, Ohsumi Y. Curr. Biol. 24 R560-R562 (2014)
  108. Expression, purification and crystallization of the SKICH domain of human TAX1BP1. Yang Y, Wang G, Huang X, Du Z. Acta Crystallogr F Struct Biol Commun 70 619-623 (2014)
  109. Insights into links between autophagy and the ubiquitin system from the structure of LC3B bound to the LIR motif from the E3 ligase NEDD4. Qiu Y, Zheng Y, Wu KP, Schulman BA. Protein Sci. 26 1674-1680 (2017)
  110. NIMA-related kinase 9-mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1. Shrestha BK, Skytte Rasmussen M, Abudu YP, Bruun JA, Larsen KB, Alemu EA, Sjøttem E, Lamark T, Johansen T. J Biol Chem 295 1240-1260 (2020)
  111. Structural Basis for Receptor-Mediated Selective Autophagy of Aminopeptidase I Aggregates. Yamasaki A, Watanabe Y, Adachi W, Suzuki K, Matoba K, Kirisako H, Kumeta H, Nakatogawa H, Ohsumi Y, Inagaki F, Noda NN. Cell Rep 16 19-27 (2016)
  112. The fusion of autophagosome with lysosome is impaired in L-arginine-induced acute pancreatitis. Zhu H, Yu X, Zhu S, Li X, Lu B, Li Z, Yu C. Int J Clin Exp Pathol 8 11164-11170 (2015)
  113. Transcriptomic analysis of the autophagy machinery in crustaceans. Suwansa-Ard S, Kankuan W, Thongbuakaew T, Saetan J, Kornthong N, Kruangkum T, Khornchatri K, Cummins SF, Isidoro C, Sobhon P. BMC Genomics 17 587 (2016)
  114. iLIR@viral: A web resource for LIR motif-containing proteins in viruses. Jacomin AC, Samavedam S, Charles H, Nezis IP. Autophagy 13 1782-1789 (2017)
  115. FKBP8 protects the heart from hemodynamic stress by preventing the accumulation of misfolded proteins and endoplasmic reticulum-associated apoptosis in mice. Misaka T, Murakawa T, Nishida K, Omori Y, Taneike M, Omiya S, Molenaar C, Uno Y, Yamaguchi O, Takeda J, Shah AM, Otsu K. J. Mol. Cell. Cardiol. 114 93-104 (2018)
  116. PP-22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma cell line CNE-2 by inducing endoplasmic reticulum stress, downregulating STAT3 signaling, and modulating the MAPK pathway. Tan GX, Wang XN, Tang YY, Cen WJ, Li ZH, Wang GC, Jiang JW, Wang XC. J. Cell. Physiol. 234 2618-2630 (2019)
  117. Time-resolved FRET and NMR analyses reveal selective binding of peptides containing the LC3-interacting region to ATG8 family proteins. Atkinson JM, Ye Y, Gebru MT, Liu Q, Zhou S, Young MM, Takahashi Y, Lin Q, Tian F, Wang HG. J Biol Chem 294 14033-14042 (2019)
  118. An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. Pandey P, Leary AY, Tumtas Y, Savage Z, Dagvadorj B, Duggan C, Yuen EL, Sanguankiattichai N, Tan E, Khandare V, Connerton AJ, Yunusov T, Madalinski M, Mirkin FG, Schornack S, Dagdas Y, Kamoun S, Bozkurt TO. Elife 10 e65285 (2021)
  119. Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein. Liu XM, Yamasaki A, Du XM, Coffman VC, Ohsumi Y, Nakatogawa H, Wu JQ, Noda NN, Du LL. Elife 7 (2018)
  120. Maternal Glucose Supplementation in a Murine Model of Chorioamnionitis Alleviates Dysregulation of Autophagy in Fetal Brain. Lei J, Zhong W, Almalki A, Zhao H, Arif H, Rozzah R, Al Yousif G, Alhejaily N, Wu D, McLane M, Burd I. Reprod Sci 25 1175-1185 (2018)
  121. Nix interacts with WIPI2 to induce mitophagy. Bunker EN, Le Guerroué F, Wang C, Strub MP, Werner A, Tjandra N, Youle RJ. EMBO J 42 e113491 (2023)
  122. Rapamycin and bafilomycin A1 alter autophagy and megakaryopoiesis. Wang Q, You T, Fan H, Wang Y, Chu T, Poncz M, Zhu L. Platelets 28 82-89 (2017)
  123. SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. Abudu YP, Shrestha BK, Zhang W, Palara A, Brenne HB, Larsen KB, Wolfson DL, Dumitriu G, Øie CI, Ahluwalia BS, Levy G, Behrends C, Tooze SA, Mouilleron S, Lamark T, Johansen T. J Cell Biol 220 e202009092 (2021)
  124. Size, organization, and dynamics of soluble SQSTM1 and LC3-SQSTM1 complexes in living cells. Kraft LJ, Dowler J, Manral P, Kenworthy AK. Autophagy 12 1660-1674 (2016)
  125. Structural biology of the macroautophagy machinery. Chew LH, Yip CK. Front Biol (Beijing) 9 18-34 (2014)
  126. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Mochida K, Yamasaki A, Matoba K, Kirisako H, Noda NN, Nakatogawa H. Nat Commun 11 3306 (2020)
  127. The Xenopus laevis Atg4B Protease: Insights into Substrate Recognition and Application for Tag Removal from Proteins Expressed in Pro- and Eukaryotic Hosts. Frey S, Görlich D. PLoS ONE 10 e0125099 (2015)
  128. Two-colored fluorescence correlation spectroscopy screening for LC3-P62 interaction inhibitors. Tsuganezawa K, Shinohara Y, Ogawa N, Tsuboi S, Okada N, Mori M, Yokoyama S, Noda NN, Inagaki F, Ohsumi Y, Tanaka A. J Biomol Screen 18 1103-1109 (2013)
  129. Aedes albopictus Autophagy-Related Gene 8 (AaAtg8) Is Required to Confer Anti-Bacterial Gut Immunity. Kim CE, Park KB, Ko HJ, Keshavarz M, Bae YM, Kim B, Patnaik BB, Jang HA, Lee YS, Han YS, Jo YH. Int J Mol Sci 21 (2020)
  130. A potential estrogen mimetic effect of a bis(ethyl)polyamine analogue on estrogen receptor positive MCF-7 breast cancer cells. Nayvelt I, John S, Hsu HC, Yang P, Liu W, Das G, Hyvönen MT, Alhonen L, Keinänen TA, Shirahata A, Patel R, Thomas T, Thomas TJ. Amino Acids 42 899-911 (2012)
  131. A20 binding and inhibitor of nuclear factor kappa B (NF-κB)-1 (ABIN-1): a novel modulator of mitochondrial autophagy. Merline R, Rödig H, Zeng-Brouwers J, Poluzzi C, Tascher G, Michaelis J, Lopez-Mosqueda J, Rhiner A, Huber LS, Diehl V, Dikic I, Kögel D, Münch C, Wygrecka M, Schaefer L. Am J Physiol Cell Physiol 324 C339-C352 (2023)
  132. AIM/LIR-based fluorescent sensors-new tools to monitor mAtg8 functions. Zientara-Rytter K, Subramani S. Autophagy 14 1074-1078 (2018)
  133. Arabidopsis cargo receptor NBR1 mediates selective autophagy of defective proteins. Jung H, Lee HN, Marshall RS, Lomax AW, Yoon MJ, Kim J, Kim JH, Vierstra RD, Chung T. J. Exp. Bot. 71 73-89 (2020)
  134. Assessment of GABARAP self-association by its diffusion properties. Pacheco V, Ma P, Thielmann Y, Hartmann R, Weiergräber OH, Mohrlüder J, Willbold D. J. Biomol. NMR 48 49-58 (2010)
  135. Crystallographic and modelling studies suggest that the SKICH domains from different protein families share a common Ig-like fold but harbour substantial structural variations. Yang Y, Wang G, Huang X, Du Z. J. Biomol. Struct. Dyn. 33 1385-1398 (2015)
  136. Effects of the Rho GTPase-activating toxin CNF1 on fibroblasts derived from Rett syndrome patients: A pilot study. Cittadini C, Germinario EAP, Maroccia Z, Cosentino L, Maselli V, Gambardella L, Giambenedetti M, Guidotti M, Travaglione S, Fallerini C, Renieri A, Marcillo DIE, Ricceri L, Fortini P, De Filippis B, Fiorentini C, Fabbri A. J Cell Mol Med 27 1315-1326 (2023)
  137. Gyp1 has a dual function as Ypt1 GAP and interaction partner of Atg8 in selective autophagy. Mitter AL, Schlotterhose P, Krick R. Autophagy 15 1031-1050 (2019)
  138. Interaction of ToLCNDV TrAP with SlATG8f marks it susceptible to degradation by autophagy. Prasad A, Prasad M. Cell Mol Life Sci 79 241 (2022)
  139. Mechanistic insights into an atypical interaction between ATG8 and SH3P2 in Arabidopsis thaliana. Sun S, Feng L, Chung KP, Lee KM, Cheung HH, Luo M, Ren K, Law KC, Jiang L, Wong KB, Zhuang X. Autophagy 18 1350-1366 (2022)
  140. Members of the autophagy class III phosphatidylinositol 3-kinase complex I interact with GABARAP and GABARAPL1 via LIR motifs. Birgisdottir ÅB, Mouilleron S, Bhujabal Z, Wirth M, Sjøttem E, Evjen G, Zhang W, Lee R, O'Reilly N, Tooze SA, Lamark T, Johansen T. Autophagy 15 1333-1355 (2019)
  141. N-terminal β-strand underpins biochemical specialization of an ATG8 isoform. Zess EK, Jensen C, Cruz-Mireles N, De la Concepcion JC, Sklenar J, Stephani M, Imre R, Roitinger E, Hughes R, Belhaj K, Mechtler K, Menke FLH, Bozkurt T, Banfield MJ, Kamoun S, Maqbool A, Dagdas YF. PLoS Biol. 17 e3000373 (2019)
  142. SIRT1 is downregulated by autophagy in senescence and ageing. Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J, Lu C, Nicastri M, Bretz C, Winkler JD, Amaravadi R, Garcia BA, Adams PD, Ott M, Tong W, Johansen T, Dou Z, Berger SL. Nat Cell Biol 22 1170-1179 (2020)
  143. Semisynthetic LC3 Probes for Autophagy Pathways Reveal a Noncanonical LC3 Interacting Region Motif Crucial for the Enzymatic Activity of Human ATG3. Farnung J, Muhar M, Liang JR, Tolmachova KA, Benoit RM, Corn JE, Bode JW. ACS Cent Sci 9 1025-1034 (2023)
  144. Survivin inhibits excessive autophagy in cancer cells but does so independently of its interaction with LC3. Humphry NJ, Wheatley SP. Biol Open 7 (2018)
  145. Editorial The LC3-conjugation machinery specifies cargo loading and secretion of extracellular vesicles. Delorme-Axford E, Klionsky DJ. Autophagy 16 1169-1171 (2020)
  146. The autophagy receptor NBR1 directs the clearance of photodamaged chloroplasts. Lee HN, Chacko JV, Gonzalez Solís A, Chen KE, Barros JAS, Signorelli S, Millar AH, Vierstra RD, Eliceiri KW, Otegui MS. Elife 12 e86030 (2023)
  147. Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure. Harada K, Kotani T, Kirisako H, Sakoh-Nakatogawa M, Oikawa Y, Kimura Y, Hirano H, Yamamoto H, Ohsumi Y, Nakatogawa H. Elife 8 (2019)
  148. UIM-UDS: a new interface between ATG8 and its interactors. Lei Y, Klionsky DJ. Cell Res. 29 507-508 (2019)
  149. An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins. Brennan A, Layfield R, Long J, Williams HEL, Oldham NJ, Scott D, Searle MS. J Biol Chem 298 101514 (2022)
  150. Atg8 family proteins, LIR/AIM motifs and other interaction modes. Rogov VV, Nezis IP, Tsapras P, Zhang H, Dagdas Y, Noda NN, Nakatogawa H, Wirth M, Mouilleron S, McEwan DG, Behrends C, Deretic V, Elazar Z, Tooze SA, Dikic I, Lamark T, Johansen T. Autophagy Rep 2 27694127.2023.2188523 (2023)
  151. Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana. Huang YP, Huang YW, Hsiao YJ, Li SC, Hsu YH, Tsai CH. J. Exp. Bot. 70 4657-4670 (2019)
  152. Characterization of the molecular mechanism of the autophagy-related Atg8-Atg3 protein interaction in Toxoplasma gondii. Liu S, Zhang F, Wang Y, Wang H, Chen X, Hu Y, Chen M, Lan S, Wang C, Cao J, Hu X, Tan F. J. Biol. Chem. 293 14545-14556 (2018)
  153. Complete set of the Atg8-E1-E2-E3 conjugation machinery forms an interaction web that mediates membrane shaping. Alam JM, Maruyama T, Noshiro D, Kakuta C, Kotani T, Nakatogawa H, Noda NN. Nat Struct Mol Biol 31 170-178 (2024)
  154. Decreased Autophagy Impairs Decidualization of Human Endometrial Stromal Cells: A Role for ATG Proteins in Endometrial Physiology. Mestre Citrinovitz AC, Strowitzki T, Germeyer A. Int J Mol Sci 20 (2019)
  155. Direct Interaction of ATP7B and LC3B Proteins Suggests a Cooperative Role of Copper Transportation and Autophagy. Pantoom S, Pomorski A, Huth K, Hund C, Petters J, Krężel A, Hermann A, Lukas J. Cells 10 3118 (2021)
  156. LIRcentral: a manually curated online database of experimentally validated functional LIR motifs. Chatzichristofi A, Sagris V, Pallaris A, Eftychiou M, Kalvari I, Price N, Theodosiou T, Iliopoulos I, Nezis IP, Promponas VJ. Autophagy 19 3189-3200 (2023)
  157. NBR1 is involved in selective pexophagy in filamentous ascomycetes and can be functionally replaced by a tagged version of its human homolog. Werner A, Herzog B, Voigt O, Valerius O, Braus GH, Pöggeler S. Autophagy 15 78-97 (2019)
  158. P62/SQSTM1 binds with claudin-2 to target for selective autophagy in stressed intestinal epithelium. Ahmad R, Kumar B, Tamang RL, Talmon GA, Dhawan P, Singh AB. Commun Biol 6 740 (2023)
  159. Phase-separated protein droplets of amyotrophic lateral sclerosis-associated p62/SQSTM1 mutants show reduced inner fluidity. Faruk MO, Ichimura Y, Kageyama S, Komatsu-Hirota S, El-Gowily AH, Sou YS, Koike M, Noda NN, Komatsu M. J Biol Chem 297 101405 (2021)
  160. Probucol enhances the therapeutic efficiency of mesenchymal stem cells in the treatment of erectile dysfunction in diabetic rats by prolonging their survival time via Nrf2 pathway. Wang H, Zhang K, Ruan Z, Sun D, Zhang H, Lin G, Hu L, Zhao S, Fu Q. Stem Cell Res Ther 11 302 (2020)
  161. Quantitative analysis of autophagy reveals the role of ATG9 and ATG2 in autophagosome formation. Broadbent DG, Barnaba C, Perez GI, Schmidt JC. J Cell Biol 222 e202210078 (2023)
  162. Recent developments in autophagy-targeted therapies in cancer. Jogalekar MP, Veerabathini A, Gangadaran P. Exp Biol Med (Maywood) 246 207-212 (2021)
  163. Solution structure of the autophagy-related protein LC3C reveals a polyproline II motif on a mobile tether with phosphorylation site. Krichel C, Möckel C, Schillinger O, Huesgen PF, Sticht H, Strodel B, Weiergräber OH, Willbold D, Neudecker P. Sci Rep 9 14167 (2019)
  164. Comment TEX264 is a major receptor for mammalian reticulophagy. Delorme-Axford E, Popelka H, Klionsky DJ. Autophagy 15 1677-1681 (2019)
  165. The conformational and mutational landscape of the ubiquitin-like marker for autophagosome formation in cancer. Fas BA, Maiani E, Sora V, Kumar M, Mashkoor M, Lambrughi M, Tiberti M, Papaleo E. Autophagy 17 2818-2841 (2021)
  166. Use of the LC3B-fusion technique for biochemical and structural studies of proteins involved in the N-degron pathway. Kim L, Kwon DH, Heo J, Park MR, Song HK. J Biol Chem 295 2590-2600 (2020)
  167. p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Kageyama S, Gudmundsson SR, Sou YS, Ichimura Y, Tamura N, Kazuno S, Ueno T, Miura Y, Noshiro D, Abe M, Mizushima T, Miura N, Okuda S, Motohashi H, Lee JA, Sakimura K, Ohe T, Noda NN, Waguri S, Eskelinen EL, Komatsu M. Nat Commun 12 16 (2021)