2koi Citations

Structural basis for the photoconversion of a phytochrome to the activated Pfr form.

OpenAccess logo Nature 463 250-4 (2010)
Related entries: 2k2n, 2kli, 2lb5, 2lb9

Cited: 66 times
EuropePMC logo PMID: 20075921

Abstract

Phytochromes are a collection of bilin-containing photoreceptors that regulate numerous photoresponses in plants and microorganisms through their ability to photointerconvert between a red-light-absorbing, ground state (Pr) and a far-red-light-absorbing, photoactivated state (Pfr). Although the structures of several phytochromes as Pr have been determined, little is known about the structure of Pfr and how it initiates signalling. Here we describe the three-dimensional solution structure of the bilin-binding domain as Pfr, using the cyanobacterial phytochrome from Synechococcus OSB'. Contrary to predictions, light-induced rotation of the A pyrrole ring but not the D ring is the primary motion of the chromophore during photoconversion. Subsequent rearrangements within the protein then affect intradomain and interdomain contact sites within the phytochrome dimer. On the basis of our models, we propose that phytochromes act by propagating reversible light-driven conformational changes in the bilin to altered contacts between the adjacent output domains, which in most phytochromes direct differential phosphotransfer.

Articles - 2koi mentioned but not cited (2)

  1. Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Ulijasz AT, Cornilescu G, Cornilescu CC, Zhang J, Rivera M, Markley JL, Vierstra RD. Nature 463 250-254 (2010)
  2. The D-ring, not the A-ring, rotates in Synechococcus OS-B' phytochrome. Song C, Psakis G, Kopycki J, Lang C, Matysik J, Hughes J. J. Biol. Chem. 289 2552-2562 (2014)


Reviews citing this publication (16)

  1. Phytochrome signaling mechanisms and the control of plant development. Chen M, Chory J. Trends Cell Biol. 21 664-671 (2011)
  2. Bacterial phytochromes: more than meets the light. Auldridge ME, Forest KT. Crit. Rev. Biochem. Mol. Biol. 46 67-88 (2011)
  3. Engineered photoreceptors as novel optogenetic tools. Möglich A, Moffat K. Photochem. Photobiol. Sci. 9 1286-1300 (2010)
  4. Exploring the molecular basis of responses to light in marine diatoms. Depauw FA, Rogato A, Ribera d'Alcalá M, Falciatore A. J. Exp. Bot. 63 1575-1591 (2012)
  5. Phytochromes: an atomic perspective on photoactivation and signaling. Burgie ES, Vierstra RD. Plant Cell 26 4568-4583 (2014)
  6. Evolutionary studies illuminate the structural-functional model of plant phytochromes. Mathews S. Plant Cell 22 4-16 (2010)
  7. Protein conformational switches: from nature to design. Ha JH, Loh SN. Chemistry 18 7984-7999 (2012)
  8. Far-red light acclimation in diverse oxygenic photosynthetic organisms. Wolf BM, Blankenship RE. Photosynth Res 142 349-359 (2019)
  9. Solid-state NMR spectroscopy to probe photoactivation in canonical phytochromes. Song C, Rohmer T, Tiersch M, Zaanen J, Hughes J, Matysik J. Photochem. Photobiol. 89 259-273 (2013)
  10. Perception of the plant hormone ethylene: known-knowns and known-unknowns. Light KM, Wisniewski JA, Vinyard WA, Kieber-Emmons MT. J. Biol. Inorg. Chem. 21 715-728 (2016)
  11. Reversible photoswitching of protein function. Erdmann F, Zhang Y. Mol Biosyst 6 2103-2109 (2010)
  12. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Tang K, Beyer HM, Zurbriggen MD, Gärtner W. Chem Rev 121 14906-14956 (2021)
  13. Optophysiology: Illuminating cell physiology with optogenetics. Tan P, He L, Huang Y, Zhou Y. Physiol Rev 102 1263-1325 (2022)
  14. Amino Acid Signaling for TOR in Eukaryotes: Sensors, Transducers, and a Sustainable Agricultural fuTORe. Lutt N, Brunkard JO. Biomolecules 12 387 (2022)
  15. Induction of Signal Transduction by Using Non-Channelrhodopsin-Type Optogenetic Tools. Ueda Y, Sato M. Chembiochem 19 1217-1231 (2018)
  16. Plant Phytochromes and their Phosphorylation. Hoang QTN, Han YJ, Kim JI. Int J Mol Sci 20 (2019)

Articles citing this publication (48)

  1. Structural basis of ultraviolet-B perception by UVR8. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X, Shi Y. Nature 484 214-219 (2012)
  2. Signal amplification and transduction in phytochrome photosensors. Takala H, Björling A, Berntsson O, Lehtivuori H, Niebling S, Hoernke M, Kosheleva I, Henning R, Menzel A, Ihalainen JA, Westenhoff S. Nature 509 245-248 (2014)
  3. Phytochrome signaling mechanisms. Li J, Li G, Wang H, Wang Deng X. Arabidopsis Book 9 e0148 (2011)
  4. Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Song C, Psakis G, Lang C, Mailliet J, Gärtner W, Hughes J, Matysik J. Proc. Natl. Acad. Sci. U.S.A. 108 3842-3847 (2011)
  5. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD. Proc. Natl. Acad. Sci. U.S.A. 111 10179-10184 (2014)
  6. Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome. Yang X, Ren Z, Kuk J, Moffat K. Nature 479 428-432 (2011)
  7. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Narikawa R, Ishizuka T, Muraki N, Shiba T, Kurisu G, Ikeuchi M. Proc. Natl. Acad. Sci. U.S.A. 110 918-923 (2013)
  8. Structure of a bacteriophytochrome and light-stimulated protomer swapping with a gene repressor. Bellini D, Papiz MZ. Structure 20 1436-1446 (2012)
  9. Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Li H, Zhang J, Vierstra RD, Li H. Proc. Natl. Acad. Sci. U.S.A. 107 10872-10877 (2010)
  10. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling. Anders K, Daminelli-Widany G, Mroginski MA, von Stetten D, Essen LO. J. Biol. Chem. 288 35714-35725 (2013)
  11. Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs. Toh KC, Stojković EA, van Stokkum IH, Moffat K, Kennis JT. Phys Chem Chem Phys 13 11985-11997 (2011)
  12. A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Burgie ES, Walker JM, Phillips GN, Vierstra RD. Structure 21 88-97 (2013)
  13. Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion. Burgie ES, Wang T, Bussell AN, Walker JM, Li H, Vierstra RD. J. Biol. Chem. 289 24573-24587 (2014)
  14. Phytochromes. Quail PH. Curr. Biol. 20 R504-7 (2010)
  15. Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics. Chen Y, Zhang J, Luo J, Tu JM, Zeng XL, Xie J, Zhou M, Zhao JQ, Scheer H, Zhao KH. FEBS J. 279 40-54 (2012)
  16. Spectroscopic and photochemical characterization of the red-light sensitive photosensory module of Cph2 from Synechocystis PCC 6803. Anders K, von Stetten D, Mailliet J, Kiontke S, Sineshchekov VA, Hildebrandt P, Hughes J, Essen LO. Photochem. Photobiol. 87 160-173 (2011)
  17. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles. Senge MO, MacGowan SA, O'Brien JM. Chem. Commun. (Camb.) 51 17031-17063 (2015)
  18. Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states. Cornilescu CC, Cornilescu G, Burgie ES, Markley JL, Ulijasz AT, Vierstra RD. J. Biol. Chem. 289 3055-3065 (2014)
  19. Structure-guided engineering of plant phytochrome B with altered photochemistry and light signaling. Zhang J, Stankey RJ, Vierstra RD. Plant Physiol. 161 1445-1457 (2013)
  20. Shedding light on ethylene metabolism in higher plants. Rodrigues MA, Bianchetti RE, Freschi L. Front Plant Sci 5 665 (2014)
  21. Molecular insights into the terminal energy acceptor in cyanobacterial phycobilisome. Gao X, Wei TD, Zhang N, Xie BB, Su HN, Zhang XY, Chen XL, Zhou BC, Wang ZX, Wu JW, Zhang YZ. Mol. Microbiol. 85 907-915 (2012)
  22. Quenching Dynamics of Ultraviolet-Light Perception by UVR8 Photoreceptor. Liu Z, Li X, Zhong FW, Li J, Wang L, Shi Y, Zhong D. J Phys Chem Lett 5 69-72 (2014)
  23. Structural model of the cytosolic domain of the plant ethylene receptor 1 (ETR1). Mayerhofer H, Panneerselvam S, Kaljunen H, Tuukkanen A, Mertens HD, Mueller-Dieckmann J. J. Biol. Chem. 290 2644-2658 (2015)
  24. Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion. Shang L, Rockwell NC, Martin SS, Lagarias JC. Biochemistry 49 6070-6082 (2010)
  25. Electronic transitions and heterogeneity of the bacteriophytochrome Pr absorption band: An angle balanced polarization resolved femtosecond VIS pump-IR probe study. Linke M, Yang Y, Zienicke B, Hammam MA, von Haimberger T, Zacarias A, Inomata K, Lamparter T, Heyne K. Biophys. J. 105 1756-1766 (2013)
  26. Solid-state NMR spectroscopic study of chromophore-protein interactions in the Pr ground state of plant phytochrome A. Song C, Essen LO, Gärtner W, Hughes J, Matysik J. Mol Plant 5 698-715 (2012)
  27. X-ray radiation induces deprotonation of the bilin chromophore in crystalline D. radiodurans phytochrome. Li F, Burgie ES, Yu T, Héroux A, Schatz GC, Vierstra RD, Orville AM. J. Am. Chem. Soc. 137 2792-2795 (2015)
  28. Identification of a new electron-transfer relaxation pathway in photoexcited pyrrole dimers. Neville SP, Kirkby OM, Kaltsoyannis N, Worth GA, Fielding HH. Nat Commun 7 11357 (2016)
  29. Mapping light-driven conformational changes within the photosensory module of plant phytochrome B. von Horsten S, Straß S, Hellwig N, Gruth V, Klasen R, Mielcarek A, Linne U, Morgner N, Essen LO. Sci Rep 6 34366 (2016)
  30. Arabidopsis atypical kinase ABC1K1 is involved in red light-mediated development. Yang M, Huang H, Zhang C, Wang Z, Su Y, Zhu P, Guo Y, Deng XW. Plant Cell Rep. 35 1213-1220 (2016)
  31. Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study. Strambi A, Durbeej B. Photochem. Photobiol. Sci. 10 569-579 (2011)
  32. Modeling of phytochrome absorption spectra. Falklöf O, Durbeej B. J Comput Chem 34 1363-1374 (2013)
  33. Steric Effects Govern the Photoactivation of Phytochromes. Falklöf O, Durbeej B. Chemphyschem 17 954-957 (2016)
  34. 3D Structures of Plant Phytochrome A as Pr and Pfr From Solid-State NMR: Implications for Molecular Function. Song C, Mroginski MA, Lang C, Kopycki J, Gärtner W, Matysik J, Hughes J. Front Plant Sci 9 498 (2018)
  35. Exploring Chromophore-Binding Pocket: High-Resolution Solid-State H-C Interfacial Correlation NMR Spectra with Windowed PMLG Scheme. Song C, Lang C, Mailliet J, Hughes J, Gärtner W, Matysik J. Appl Magn Reson 42 79-88 (2012)
  36. Phytochrome F plays critical roles in potato photoperiodic tuberization. Zhou T, Song B, Liu T, Shen Y, Dong L, Jing S, Xie C, Liu J. Plant J 98 42-54 (2019)
  37. Purification and characterization of a recombinant bacteriophytochrome of Xanthomonas oryzae pathovar oryzae. Cho MH, Yoo Y, Bhoo SH, Lee SW. Protein J. 30 124-131 (2011)
  38. pH-dependent structural conformations of B-phycoerythrin from Porphyridium cruentum. Camara-Artigas A, Bacarizo J, Andujar-Sanchez M, Ortiz-Salmeron E, Mesa-Valle C, Cuadri C, Martin-Garcia JM, Martinez-Rodriguez S, Mazzuca-Sobczuk T, Ibañez MJ, Allen JP. FEBS J. 279 3680-3691 (2012)
  39. Amniotic membrane welded to contact lens by 1470-nm diode laser: a novel method for sutureless amniotic membrane transplantation. Rasier R, Gulsoy M. Int J Ophthalmol 7 996-1000 (2014)
  40. Effects of missense mutation on structure and function of photoreceptor. Leitgeb B, Sokolova V, Schäfer E, Viczián A. Plant Signal Behav 7 589-591 (2012)
  41. Femtosecond dynamics in the lactim tautomer of phycocyanobilin: a long-wavelength absorbing model compound for the phytochrome chromophore. Singer P, Fey S, Göller AH, Hermann G, Diller R. Chemphyschem 15 3824-3831 (2014)
  42. Kurt Schaffner: from organic photochemistry to photobiology. Gärtner W. Photochem. Photobiol. Sci. 11 872-880 (2012)
  43. Photochemical Mechanism of an Atypical Algal Phytochrome. Choudry U, Heyes DJ, Hardman SJO, Sakuma M, Sazanovich IV, Woodhouse J, De La Mora E, Pedersen MN, Wulff M, Weik M, Schirò G, Scrutton NS. Chembiochem 19 1036-1043 (2018)
  44. Assembly of synthetic locked phycocyanobilin derivatives with phytochrome in vitro and in vivo in Ceratodon purpureus and Arabidopsis. Yang R, Nishiyama K, Kamiya A, Ukaji Y, Inomata K, Lamparter T. Plant Cell 24 1936-1951 (2012)
  45. Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes. Gourinchas G, Vide U, Winkler A. J. Biol. Chem. 294 4498-4510 (2019)
  46. Light- and pH-dependent structural changes in cyanobacteriochrome AnPixJg2. Altmayer S, Köhler L, Bielytskyi P, Gärtner W, Matysik J, Wiebeler C, Song C. Photochem Photobiol Sci 21 447-469 (2022)
  47. Light-induced complex formation of bacteriophytochrome RpBphP1 and gene repressor RpPpsR2 probed by SAXS. Papiz MZ, Bellini D, Evans K, Grossmann JG, Fordham-Skelton T. FEBS J. 286 4261-4277 (2019)
  48. Modulation of biliverdin dynamics and spectral properties by Sandercyanin. Ghosh S, Mondal S, Yadav K, Aggarwal S, Schaefer WF, Narayana C, Subramanian R. RSC Adv 12 20296-20304 (2022)


Related citations provided by authors (1)

  1. Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state.. Cornilescu G, Ulijasz AT, Cornilescu CC, Markley JL, Vierstra RD J Mol Biol 383 403-13 (2008)