2ku1 Citations

Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR.

Science 328 98-102 (2010)
Cited: 137 times
EuropePMC logo PMID: 20360109

Abstract

The proteasome catalyzes the majority of protein degradation in the cell and plays an integral role in cellular homeostasis. Control over proteolysis by the 20S core-particle (CP) proteasome is achieved by gated access of substrate; thus, an understanding of the molecular mechanism by which these gates regulate substrate entry is critical. We used methyl-transverse relaxation optimized nuclear magnetic resonance spectroscopy to show that the amino-terminal residues that compose the gates of the alpha subunits of the Thermoplasma acidophilum proteasome are highly dynamic over a broad spectrum of time scales and that gating termini are in conformations that extend either well inside (closed gate) or outside (open gate) of the antechamber. Interconversion between these conformers on a time scale of seconds leads to a dynamic regulation of 20S CP proteolysis activity.

Reviews - 2ku1 mentioned but not cited (3)

  1. Keep on moving: discovering and perturbing the conformational dynamics of enzymes. Bhabha G, Biel JT, Fraser JS. Acc Chem Res 48 423-430 (2015)
  2. The future of the Protein Data Bank. Berman HM, Kleywegt GJ, Nakamura H, Markley JL. Biopolymers 99 218-222 (2013)
  3. Protein Data Bank: A Comprehensive Review of 3D Structure Holdings and Worldwide Utilization by Researchers, Educators, and Students. Burley SK, Berman HM, Duarte JM, Feng Z, Flatt JW, Hudson BP, Lowe R, Peisach E, Piehl DW, Rose Y, Sali A, Sekharan M, Shao C, Vallat B, Voigt M, Westbrook JD, Young JY, Zardecki C. Biomolecules 12 1425 (2022)

Articles - 2ku1 mentioned but not cited (5)

  1. Understanding the mechanism of proteasome 20S core particle gating. Latham MP, Sekhar A, Kay LE. Proc Natl Acad Sci U S A 111 5532-5537 (2014)
  2. Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy. Huang R, Pérez F, Kay LE. Proc Natl Acad Sci U S A 114 E9846-E9854 (2017)
  3. Exploring long-range cooperativity in the 20S proteasome core particle from Thermoplasma acidophilum using methyl-TROSY-based NMR. Rennella E, Huang R, Yu Z, Kay LE. Proc Natl Acad Sci U S A 117 5298-5309 (2020)
  4. Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme. Maupin-Furlow JA. Emerg Top Life Sci 2 561-580 (2018)
  5. Probing allosteric interactions in homo-oligomeric molecular machines using solution NMR spectroscopy. Toyama Y, Kay LE. Proc Natl Acad Sci U S A 118 e2116325118 (2021)


Reviews citing this publication (40)

  1. An introduction to NMR-based approaches for measuring protein dynamics. Kleckner IR, Foster MP. Biochim Biophys Acta 1814 942-968 (2011)
  2. Structure, dynamics, assembly, and evolution of protein complexes. Marsh JA, Teichmann SA. Annu Rev Biochem 84 551-575 (2015)
  3. Proteasome activators. Stadtmueller BM, Hill CP. Mol Cell 41 8-19 (2011)
  4. A Practical Review of Proteasome Pharmacology. Thibaudeau TA, Smith DM. Pharmacol Rev 71 170-197 (2019)
  5. Protein dynamics and allostery: an NMR view. Tzeng SR, Kalodimos CG. Curr Opin Struct Biol 21 62-67 (2011)
  6. Structural biology of the proteasome. Kish-Trier E, Hill CP. Annu Rev Biophys 42 29-49 (2013)
  7. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Rosenzweig R, Kay LE. Annu Rev Biochem 83 291-315 (2014)
  8. Allostery and population shift in drug discovery. Kar G, Keskin O, Gursoy A, Nussinov R. Curr Opin Pharmacol 10 715-722 (2010)
  9. Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J. Curr Opin Struct Biol 32 113-122 (2015)
  10. Disordered proteinaceous machines. Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek A, Lim RY, Xue B, Kurgan L, Uversky VN. Chem Rev 114 6806-6843 (2014)
  11. New Views of Functionally Dynamic Proteins by Solution NMR Spectroscopy. Kay LE. J Mol Biol 428 323-331 (2016)
  12. Proteasomes and protein conjugation across domains of life. Maupin-Furlow J. Nat Rev Microbiol 10 100-111 (2011)
  13. Context-dependent resistance to proteolysis of intrinsically disordered proteins. Suskiewicz MJ, Sussman JL, Silman I, Shaul Y. Protein Sci 20 1285-1297 (2011)
  14. Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases. Liu K, Ologbenla A, Houry WA. Crit Rev Biochem Mol Biol 49 400-412 (2014)
  15. Structure, Dynamics and Function of the 26S Proteasome. Mao Y. Subcell Biochem 96 1-151 (2021)
  16. Multiple Conformations of F-actin. Oda T, Maéda Y. Structure 18 761-767 (2010)
  17. NMR of glycans: shedding new light on old problems. Battistel MD, Azurmendi HF, Yu B, Freedberg DI. Prog Nucl Magn Reson Spectrosc 79 48-68 (2014)
  18. NMR reveals novel mechanisms of protein activity regulation. Kalodimos CG. Protein Sci 20 773-782 (2011)
  19. NMR Methods to Study Dynamic Allostery. Grutsch S, Brüschweiler S, Tollinger M. PLoS Comput Biol 12 e1004620 (2016)
  20. NMR Studies of Large Proteins. Jiang Y, Kalodimos CG. J Mol Biol 429 2667-2676 (2017)
  21. Major players on the microbial stage: why archaea are important. Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JPJ. Microbiology (Reading) 157 919-936 (2011)
  22. Present and future of NMR for RNA-protein complexes: a perspective of integrated structural biology. Carlomagno T. J Magn Reson 241 126-136 (2014)
  23. The dynamic duo: combining NMR and small angle scattering in structural biology. Hennig J, Sattler M. Protein Sci 23 669-682 (2014)
  24. Functional dynamics of proteins revealed by solution NMR. Osawa M, Takeuchi K, Ueda T, Nishida N, Shimada I. Curr Opin Struct Biol 22 660-669 (2012)
  25. Protein folding by NMR. Zhuravleva A, Korzhnev DM. Prog Nucl Magn Reson Spectrosc 100 52-77 (2017)
  26. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. Burmann BM, Hiller S. Prog Nucl Magn Reson Spectrosc 86-87 41-64 (2015)
  27. On the use of Pichia pastoris for isotopic labeling of human GPCRs for NMR studies. Clark L, Dikiy I, Rosenbaum DM, Gardner KH. J Biomol NMR 71 203-211 (2018)
  28. The Exact Nuclear Overhauser Enhancement: Recent Advances. Nichols PJ, Born A, Henen MA, Strotz D, Orts J, Olsson S, Güntert P, Chi CN, Vögeli B. Molecules 22 E1176 (2017)
  29. Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy. Ban D, Smith CA, de Groot BL, Griesinger C, Lee D. Arch Biochem Biophys 628 81-91 (2017)
  30. A dynamic look backward and forward. Palmer AG. J Magn Reson 266 73-80 (2016)
  31. Harnessing proteasome dynamics and allostery in drug design. Gaczynska M, Osmulski PA. Antioxid Redox Signal 21 2286-2301 (2014)
  32. Methyl-Based NMR Spectroscopy Methods for Uncovering Structural Dynamics in Large Proteins and Protein Complexes. Boswell ZK, Latham MP. Biochemistry 58 144-155 (2019)
  33. Prokaryotic proteasomes: nanocompartments of degradation. Humbard MA, Maupin-Furlow JA. J Mol Microbiol Biotechnol 23 321-334 (2013)
  34. Archaeal proteasomes and sampylation. Maupin-Furlow JA. Subcell Biochem 66 297-327 (2013)
  35. Emerging small molecule approaches to enhance the antimyeloma benefit of proteasome inhibitors. Driscoll JJ, Brailey M. Cancer Metastasis Rev 36 585-598 (2017)
  36. Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA. Nichols PJ, Born A, Henen MA, Strotz D, Celestine CN, Güntert P, Vögeli B. Chembiochem (2018)
  37. Isotope labeling for studying RNA by solid-state NMR spectroscopy. Marchanka A, Kreutz C, Carlomagno T. J Biomol NMR 71 151-164 (2018)
  38. Targeting structural dynamics of the RNA-dependent RNA polymerase for anti-viral strategies. Boehr DD, Liu X, Yang X. Curr Opin Virol 9 194-200 (2014)
  39. Emerging mechanistic insights into AAA complexes regulating proteasomal degradation. Förster F, Schuller JM, Unverdorben P, Aufderheide A. Biomolecules 4 774-794 (2014)
  40. Opportunities and Challenges of Backbone, Sidechain, and RDC Experiments to Study Membrane Protein Dynamics in a Detergent-Free Lipid Environment Using Solution State NMR. Bibow S. Front Mol Biosci 6 103 (2019)

Articles citing this publication (89)

  1. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, Bah A, Vernon RM, Dahlquist FW, Baker D, Kay LE. Nature 477 111-114 (2011)
  2. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE. Science 339 1080-1083 (2013)
  3. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Saio T, Guan X, Rossi P, Economou A, Kalodimos CG. Science 344 1250494 (2014)
  4. The Structural Role of Antibody N-Glycosylation in Receptor Interactions. Subedi GP, Barb AW. Structure 23 1573-1583 (2015)
  5. Proteasome allostery as a population shift between interchanging conformers. Ruschak AM, Kay LE. Proc Natl Acad Sci U S A 109 E3454-62 (2012)
  6. Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine. Barthelme D, Sauer RT. Science 337 843-846 (2012)
  7. Solution structure of the 128 kDa enzyme I dimer from Escherichia coli and its 146 kDa complex with HPr using residual dipolar couplings and small- and wide-angle X-ray scattering. Schwieters CD, Suh JY, Grishaev A, Ghirlando R, Takayama Y, Clore GM. J Am Chem Soc 132 13026-13045 (2010)
  8. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Karagöz GE, Duarte AM, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJ, Boelens R, Rüdiger SG. Proc Natl Acad Sci U S A 108 580-585 (2011)
  9. Signaling through dynamic linkers as revealed by PKA. Akimoto M, Selvaratnam R, McNicholl ET, Verma G, Taylor SS, Melacini G. Proc Natl Acad Sci U S A 110 14231-14236 (2013)
  10. Redox control of 20S proteasome gating. Silva GM, Netto LE, Simões V, Santos LF, Gozzo FC, Demasi MA, Oliveira CL, Bicev RN, Klitzke CF, Sogayar MC, Demasi M. Antioxid Redox Signal 16 1183-1194 (2012)
  11. Tracing an allosteric pathway regulating the activity of the HslV protease. Shi L, Kay LE. Proc Natl Acad Sci U S A 111 2140-2145 (2014)
  12. An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. Velyvis A, Ruschak AM, Kay LE. PLoS One 7 e43725 (2012)
  13. Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle. Majumder P, Rudack T, Beck F, Danev R, Pfeifer G, Nagy I, Baumeister W. Proc Natl Acad Sci U S A 116 534-539 (2019)
  14. Ligand modulation of sidechain dynamics in a wild-type human GPCR. Clark LD, Dikiy I, Chapman K, Rödström KE, Aramini J, LeVine MV, Khelashvili G, Rasmussen SG, Gardner KH, Rosenbaum DM. Elife 6 e28505 (2017)
  15. Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. Kay LE. J Magn Reson 210 159-170 (2011)
  16. A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. Amero C, Asunción Durá M, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin MJ, Vernet T, Franzetti B, Boisbouvier J. J Biomol NMR 50 229-236 (2011)
  17. Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. Sekhar A, Velyvis A, Zoltsman G, Rosenzweig R, Bouvignies G, Kay LE. Elife 7 e32764 (2018)
  18. Aromatic 19F-13C TROSY: a background-free approach to probe biomolecular structure, function, and dynamics. Boeszoermenyi A, Chhabra S, Dubey A, Radeva DL, Burdzhiev NT, Chanev CD, Petrov OI, Gelev VM, Zhang M, Anklin C, Kovacs H, Wagner G, Kuprov I, Takeuchi K, Arthanari H. Nat Methods 16 333-340 (2019)
  19. CheA-receptor interaction sites in bacterial chemotaxis. Wang X, Vu A, Lee K, Dahlquist FW. J Mol Biol 422 282-290 (2012)
  20. Structural insights into proteasome activation by the 19S regulatory particle. Ehlinger A, Walters KJ. Biochemistry 52 3618-3628 (2013)
  21. The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. Kitevski-LeBlanc J, Fradet-Turcotte A, Kukic P, Wilson MD, Portella G, Yuwen T, Panier S, Duan S, Canny MD, van Ingen H, Arrowsmith CH, Rubinstein JL, Vendruscolo M, Durocher D, Kay LE. Elife 6 e23872 (2017)
  22. A simple strategy for ¹³C, ¹H labeling at the Ile-γ2 methyl position in highly deuterated proteins. Ruschak AM, Velyvis A, Kay LE. J Biomol NMR 48 129-135 (2010)
  23. Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis. Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK. J Biomol NMR 51 21-34 (2011)
  24. Solution NMR investigation of the CD95/FADD homotypic death domain complex suggests lack of engagement of the CD95 C terminus. Esposito D, Sankar A, Morgner N, Robinson CV, Rittinger K, Driscoll PC. Structure 18 1378-1390 (2010)
  25. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear Overhauser enhancement spectroscopy. Venditti V, Fawzi NL, Clore GM. J Biomol NMR 51 319-328 (2011)
  26. Elucidation of inositol hexaphosphate and heparin interaction sites and conformational changes in arrestin-1 by solution nuclear magnetic resonance. Zhuang T, Vishnivetskiy SA, Gurevich VV, Sanders CR. Biochemistry 49 10473-10485 (2010)
  27. Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Gauto DF, Estrozi LF, Schwieters CD, Effantin G, Macek P, Sounier R, Sivertsen AC, Schmidt E, Kerfah R, Mas G, Colletier JP, Güntert P, Favier A, Schoehn G, Schanda P, Boisbouvier J. Nat Commun 10 2697 (2019)
  28. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r). Otten R, Villali J, Kern D, Mulder FA. J Am Chem Soc 132 17004-17014 (2010)
  29. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe. Saio T, Ogura K, Shimizu K, Yokochi M, Burke TR, Inagaki F. J Biomol NMR 51 395-408 (2011)
  30. Changes in conformational equilibria regulate the activity of the Dcp2 decapping enzyme. Wurm JP, Holdermann I, Overbeck JH, Mayer PHO, Sprangers R. Proc Natl Acad Sci U S A 114 6034-6039 (2017)
  31. The archaeal proteasome is regulated by a network of AAA ATPases. Forouzan D, Ammelburg M, Hobel CF, Ströh LJ, Sessler N, Martin J, Lupas AN. J Biol Chem 287 39254-39262 (2012)
  32. Domain-domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy. Bista M, Bista M, Freund SM, Fersht AR. Proc Natl Acad Sci U S A 109 15752-15756 (2012)
  33. Probing RNA dynamics via longitudinal exchange and CPMG relaxation dispersion NMR spectroscopy using a sensitive 13C-methyl label. Kloiber K, Spitzer R, Tollinger M, Konrat R, Kreutz C. Nucleic Acids Res 39 4340-4351 (2011)
  34. Reversible inhibition of the ClpP protease via an N-terminal conformational switch. Vahidi S, Ripstein ZA, Bonomi M, Yuwen T, Mabanglo MF, Juravsky JB, Rizzolo K, Velyvis A, Houry WA, Vendruscolo M, Rubinstein JL, Kay LE. Proc Natl Acad Sci U S A 115 E6447-E6456 (2018)
  35. Structure-independent analysis of the breadth of the positional distribution of disordered groups in macromolecules from order parameters for long, variable-length vectors using NMR paramagnetic relaxation enhancement. Iwahara J, Clore GM. J Am Chem Soc 132 13346-13356 (2010)
  36. A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Abramov G, Velyvis A, Rennella E, Wong LE, Kay LE. Proc Natl Acad Sci U S A 117 12836-12846 (2020)
  37. An allosteric switch regulates Mycobacterium tuberculosis ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR. Vahidi S, Ripstein ZA, Juravsky JB, Rennella E, Goldberg AL, Mittermaier AK, Rubinstein JL, Kay LE. Proc Natl Acad Sci U S A 117 5895-5906 (2020)
  38. FLAMEnGO 2.0: an enhanced fuzzy logic algorithm for structure-based assignment of methyl group resonances. Chao FA, Kim J, Xia Y, Milligan M, Rowe N, Veglia G. J Magn Reson 245 17-23 (2014)
  39. Fast methionine-based solution structure determination of calcium-calmodulin complexes. Gifford JL, Ishida H, Vogel HJ. J Biomol NMR 50 71-81 (2011)
  40. Protein function and allostery: a dynamic relationship. Kalodimos CG. Ann N Y Acad Sci 1260 81-86 (2012)
  41. An optimized isotopic labelling strategy of isoleucine-γ2 methyl groups for solution NMR studies of high molecular weight proteins. Ayala I, Hamelin O, Amero C, Pessey O, Plevin MJ, Gans P, Boisbouvier J. Chem Commun (Camb) 48 1434-1436 (2012)
  42. Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. Butterfoss GL, DeRose EF, Gabel SA, Perera L, Krahn JM, Mueller GA, Zheng X, London RE. J Biomol NMR 48 31-47 (2010)
  43. Methionine scanning as an NMR tool for detecting and analyzing biomolecular interaction surfaces. Stoffregen MC, Schwer MM, Renschler FA, Wiesner S. Structure 20 573-581 (2012)
  44. Scrambling free combinatorial labeling of alanine-β, isoleucine-δ1, leucine-proS and valine-proS methyl groups for the detection of long range NOEs. Kerfah R, Plevin MJ, Pessey O, Hamelin O, Gans P, Boisbouvier J. J Biomol NMR 61 73-82 (2015)
  45. Aromatic Ring Dynamics, Thermal Activation, and Transient Conformations of a 468 kDa Enzyme by Specific 1H-13C Labeling and Fast Magic-Angle Spinning NMR. Gauto DF, Macek P, Barducci A, Fraga H, Hessel A, Terauchi T, Gajan D, Miyanoiri Y, Boisbouvier J, Lichtenecker R, Kainosho M, Schanda P. J Am Chem Soc 141 11183-11195 (2019)
  46. Automatic structure-based NMR methyl resonance assignment in large proteins. Pritišanac I, Würz JM, Alderson TR, Güntert P. Nat Commun 10 4922 (2019)
  47. Enhancing the Sensitivity of CPMG Relaxation Dispersion to Conformational Exchange Processes by Multiple-Quantum Spectroscopy. Yuwen T, Vallurupalli P, Kay LE. Angew Chem Int Ed Engl 55 11490-11494 (2016)
  48. Optimal methyl labeling for studies of supra-molecular systems. Religa TL, Kay LE. J Biomol NMR 47 163-169 (2010)
  49. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase. Csizmok V, Orlicky S, Cheng J, Song J, Bah A, Delgoshaie N, Lin H, Mittag T, Sicheri F, Chan HS, Tyers M, Forman-Kay JD. Nat Commun 8 13943 (2017)
  50. Exploiting E. coli auxotrophs for leucine, valine, and threonine specific methyl labeling of large proteins for NMR applications. Monneau YR, Ishida Y, Rossi P, Saio T, Tzeng SR, Inouye M, Kalodimos CG. J Biomol NMR 65 99-108 (2016)
  51. SSNMR of biosilica-entrapped enzymes permits an easy assessment of preservation of native conformation in atomic detail. Fragai M, Luchinat C, Martelli T, Ravera E, Sagi I, Solomonov I, Udi Y. Chem Commun (Camb) 50 421-423 (2014)
  52. Amino acid-selective segmental isotope labeling of multidomain proteins for structural biology. Michel E, Skrisovska L, Wüthrich K, Allain FH. Chembiochem 14 457-466 (2013)
  53. FLAMEnGO: a fuzzy logic approach for methyl group assignment using NOESY and paramagnetic relaxation enhancement data. Chao FA, Shi L, Masterson LR, Veglia G. J Magn Reson 214 103-110 (2012)
  54. Identifying and studying ubiquitin receptors by NMR. Chen X, Walters KJ. Methods Mol Biol 832 279-303 (2012)
  55. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins. Tugarinov V, Venditti V, Marius Clore G. J Biomol NMR 58 1-8 (2014)
  56. A suite of 19F based relaxation dispersion experiments to assess biomolecular motions. Overbeck JH, Kremer W, Sprangers R. J Biomol NMR 74 753-766 (2020)
  57. Facilitating unambiguous NMR assignments and enabling higher probe density through selective labeling of all methyl containing amino acids. Proudfoot A, Frank AO, Ruggiu F, Mamo M, Lingel A. J Biomol NMR 65 15-27 (2016)
  58. Selective editing of Val and Leu methyl groups in high molecular weight protein NMR. Hu W, Namanja AT, Wong S, Chen Y. J Biomol NMR 53 113-124 (2012)
  59. What Drives 15N Spin Relaxation in Disordered Proteins? Combined NMR/MD Study of the H4 Histone Tail. Kämpf K, Izmailov SA, Rabdano SO, Groves AT, Podkorytov IS, Skrynnikov NR. Biophys J 115 2348-2367 (2018)
  60. Improving yields of deuterated, methyl labeled protein by growing in H2O. O'Brien ES, Lin DW, Fuglestad B, Stetz MA, Gosse T, Tommos C, Wand AJ. J Biomol NMR 71 263-273 (2018)
  61. Essential function of the N-termini tails of the proteasome for the gating mechanism revealed by molecular dynamics simulations. Ishida H. Proteins 82 1985-1999 (2014)
  62. Biophysical Properties of HP1-Mediated Heterochromatin. Sanulli S, Gross JD, Narlikar GJ. Cold Spring Harb Symp Quant Biol 84 217-225 (2019)
  63. Exposing the Moving Parts of Proteins with NMR Spectroscopy. Peng JW. J Phys Chem Lett 3 1039-1051 (2012)
  64. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes. Mund M, Overbeck JH, Ullmann J, Sprangers R. Angew Chem Int Ed Engl 52 11401-11405 (2013)
  65. Molecular insights into the interaction of Hsp90 with allosteric inhibitors targeting the C-terminal domain. Kumar Mv V, Ebna Noor R, Davis RE, Zhang Z, Sipavicius E, Keramisanou D, Blagg BSJ, Gelis I. Medchemcomm 9 1323-1331 (2018)
  66. Active-Site-Directed Inhibitors of Prolyl Oligopeptidase Abolish Its Conformational Dynamics. López A, Herranz-Trillo F, Kotev M, Gairí M, Guallar V, Bernadó P, Millet O, Tarragó T, Giralt E. Chembiochem 17 913-917 (2016)
  67. Entropic Inhibition: How the Activity of a AAA+ Machine Is Modulated by Its Substrate-Binding Domain. Iljina M, Mazal H, Goloubinoff P, Riven I, Haran G. ACS Chem Biol 16 775-785 (2021)
  68. Flexible stoichiometry and asymmetry of the PIDDosome core complex by heteronuclear NMR spectroscopy and mass spectrometry. Nematollahi LA, Garza-Garcia A, Bechara C, Esposito D, Morgner N, Robinson CV, Driscoll PC. J Mol Biol 427 737-752 (2015)
  69. Probing Conformational Diversity of Fc Domains in Aggregation-Prone Monoclonal Antibodies. Majumder S, Jones MT, Kimmel M, Alphonse Ignatius A. Pharm Res 35 220 (2018)
  70. Artifacts can emerge in spectra recorded with even the simplest of pulse schemes: an HMQC case study. Kay LE. J Biomol NMR 73 423-427 (2019)
  71. NOE-Derived Methyl Distances from a 360 kDa Proteasome Complex. Chi CN, Strotz D, Riek R, Vögeli B. Chemistry 24 2270-2276 (2018)
  72. Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR. Gauto DF, Macek P, Malinverni D, Fraga H, Paloni M, Sučec I, Hessel A, Bustamante JP, Barducci A, Schanda P. Nat Commun 13 1927 (2022)
  73. Local Deuteration Enables NMR Observation of Methyl Groups in Proteins from Eukaryotic and Cell-Free Expression Systems. Dubey A, Stoyanov N, Viennet T, Chhabra S, Elter S, Borggräfe J, Viegas A, Nowak RP, Burdzhiev N, Petrov O, Fischer ES, Etzkorn M, Gelev V, Arthanari H. Angew Chem Int Ed Engl 60 13783-13787 (2021)
  74. Protein-mediated antagonism between HIV reverse transcriptase ligands nevirapine and MgATP. Zheng X, Mueller GA, DeRose EF, London RE. Biophys J 104 2695-2705 (2013)
  75. Stabilization of a Membrane-Associated Amyloid-β Oligomer for Its Validation in Alzheimer's Disease. Serra-Batiste M, Tolchard J, Giusti F, Zoonens M, Carulla N. Front Mol Biosci 5 38 (2018)
  76. Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease. Toyama Y, Harkness RW, Kay LE. Proc Natl Acad Sci U S A 119 e2203172119 (2022)
  77. The C-Terminus of the PSMA3 Proteasome Subunit Preferentially Traps Intrinsically Disordered Proteins for Degradation. Biran A, Myers N, Steinberger S, Adler J, Riutin M, Broennimann K, Reuven N, Shaul Y. Cells 11 3231 (2022)
  78. Ηigh-resolution structure of mammalian PI31-20S proteasome complex reveals mechanism of proteasome inhibition. Hsu HC, Wang J, Kjellgren A, Li H, DeMartino GN. J Biol Chem 299 104862 (2023)
  79. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy. Sun H, Godoy-Ruiz R, Tugarinov V. J Biomol NMR 52 233-243 (2012)
  80. Minimal mechanistic component of HbYX-dependent proteasome activation that reverses impairment by neurodegenerative-associated oligomers. Chuah JJY, Thibaudeau TA, Smith DM. Commun Biol 6 725 (2023)
  81. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments. Wei Q, Chen J, Mi J, Zhang J, Ruan K, Wu J. Chemistry 22 9556-9564 (2016)
  82. The role of structural dynamics in the thermal adaptation of hyperthermophilic enzymes. Fusco G, Bemporad F, Chiti F, Dobson CM, De Simone A. Front Mol Biosci 9 981312 (2022)
  83. A Semiautomated Assignment Protocol for Methyl Group Side Chains in Large Proteins. Kim J, Wang Y, Li G, Veglia G. Methods Enzymol 566 35-57 (2016)
  84. Structural Fluctuations of the Human Proteasome α7 Homo-Tetradecamer Double Ring Imply the Proteasomal α-Ring Assembly Mechanism. Song C, Satoh T, Sekiguchi T, Kato K, Murata K. Int J Mol Sci 22 4519 (2021)
  85. Activation of caspase-9 on the apoptosome as studied by methyl-TROSY NMR. Sever AIM, Alderson TR, Rennella E, Aramini JM, Liu ZH, Harkness RW, Kay LE. Proc Natl Acad Sci U S A 120 e2310944120 (2023)
  86. Dynamic fluctuations lubricate the circadian clock. Pai MT, Kalodimos C. Proc Natl Acad Sci U S A 108 14377-14378 (2011)
  87. Method of Monitoring 26S Proteasome in Cells Revealed the Crucial Role of PSMA3 C-Terminus in 26S Integrity. Steinberger S, Adler J, Shaul Y. Biomolecules 13 992 (2023)
  88. Monitoring Conformational Changes in an Enzyme Conversion Inhibitor Using Pure Shift Exchange NMR Spectroscopy. Aloui G, Bouabdallah S, Baltaze JP, Pucheta JEH, Touil S, Farjon J, Giraud N. Chemphyschem 20 1738-1746 (2019)
  89. News NMR disentangles a dynamic disaggregase machinery. Saio T, Kalodimos CG. Nat Struct Mol Biol 20 409-410 (2013)