2l6x Citations

Solution NMR structure of proteorhodopsin.

Reviews - 2l6x mentioned but not cited (1)

  1. Advances in NMR structures of integral membrane proteins. Maslennikov I, Choe S. Curr Opin Struct Biol 23 555-562 (2013)

Articles - 2l6x mentioned but not cited (11)

  1. Solution NMR structure of proteorhodopsin. Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V. Angew. Chem. Int. Ed. Engl. 50 11942-11946 (2011)
  2. Structural insight into proteorhodopsin oligomers. Stone KM, Voska J, Kinnebrew M, Pavlova A, Junk MJ, Han S. Biophys. J. 104 472-481 (2013)
  3. Proton-Based Structural Analysis of a Heptahelical Transmembrane Protein in Lipid Bilayers. Lalli D, Idso MN, Andreas LB, Hussain S, Baxter N, Han S, Chmelka BF, Pintacuda G. J. Am. Chem. Soc. 139 13006-13012 (2017)
  4. Atomistic insights into human Cys-loop receptors by solution NMR. Mowrey DD, Kinde MN, Xu Y, Tang P. Biochim. Biophys. Acta 1848 307-314 (2015)
  5. Deciphering the Spectral Tuning Mechanism in Proteorhodopsin: The Dominant Role of Electrostatics Instead of Chromophore Geometry. Church JR, Amoyal GS, Borin VA, Adam S, Olsen JMH, Schapiro I. Chemistry 28 e202200139 (2022)
  6. Allosteric Effects of the Proton Donor on the Microbial Proton Pump Proteorhodopsin. Faramarzi S, Feng J, Mertz B. Biophys. J. 115 1240-1250 (2018)
  7. Comparison of NMR and crystal structures of membrane proteins and computational refinement to improve model quality. Koehler Leman J, D'Avino AR, Bhatnagar Y, Gray JJ. Proteins 86 57-74 (2018)
  8. Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin. Hirschi S, Kalbermatter D, Ucurum Z, Lemmin T, Fotiadis D. Nat Commun 12 4107 (2021)
  9. Design and assembly of a chemically switchable and fluorescently traceable light-driven proton pump system for bionanotechnological applications. Hirschi S, Fischer N, Kalbermatter D, Laskowski PR, Ucurum Z, Müller DJ, Fotiadis D. Sci Rep 9 1046 (2019)
  10. Engineering and functional characterization of a proton-driven β-lactam antibiotic translocation module for bionanotechnological applications. Stauffer M, Ucurum Z, Harder D, Fotiadis D. Sci Rep 11 17205 (2021)
  11. In vitro gene expression and detergent-free reconstitution of active proteorhodopsin in lipid vesicles. Fracasso G, Körner Y, Gonzales DTT, Dora Tang TY. Exp Biol Med (Maywood) 244 314-322 (2019)


Reviews citing this publication (21)

  1. Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J. Curr. Opin. Struct. Biol. 32 113-122 (2015)
  2. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S. FEBS Lett. 589 1703-1712 (2015)
  3. Proteorhodopsin. Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Biochim. Biophys. Acta 1837 614-625 (2014)
  4. Computational modeling of membrane proteins. Koehler Leman J, Ulmschneider MB, Gray JJ. Proteins 83 1-24 (2015)
  5. Eubacterial rhodopsins - unique photosensors and diverse ion pumps. Brown LS. Biochim. Biophys. Acta 1837 553-561 (2014)
  6. Cell-free expression--making a mark. Bernhard F, Tozawa Y. Curr. Opin. Struct. Biol. 23 374-380 (2013)
  7. Membrane protein production in Escherichia coli cell-free lysates. Henrich E, Hein C, Dötsch V, Bernhard F. FEBS Lett. 589 1713-1722 (2015)
  8. Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy. Brown LS, Ladizhansky V. Protein Sci. 24 1333-1346 (2015)
  9. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Milić D, Veprintsev DB. Front Pharmacol 6 66 (2015)
  10. Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Goldbourt A. Curr. Opin. Biotechnol. 24 705-715 (2013)
  11. Solution NMR studies of peptide-lipid interactions in model membranes. Mäler L. Mol. Membr. Biol. 29 155-176 (2012)
  12. Current strategies for protein production and purification enabling membrane protein structural biology. Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Biochem. Cell Biol. 94 507-527 (2016)
  13. Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Schonenbach NS, Hussain S, O'Malley MA. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7 408-427 (2015)
  14. Structure determination of α-helical membrane proteins by solution-state NMR: emphasis on retinal proteins. Gautier A. Biochim. Biophys. Acta 1837 578-588 (2014)
  15. Invited review: GPCR structural characterization: Using fragments as building blocks to determine a complete structure. Cohen LS, Fracchiolla KE, Becker J, Naider F. Biopolymers 102 223-243 (2014)
  16. Application of Solution NMR to Structural Studies on α-Helical Integral Membrane Proteins. Sim DW, Lu Z, Won HS, Lee SN, Seo MD, Lee BJ, Kim JH. Molecules 22 (2017)
  17. Solution NMR of SNAREs, complexin and α-synuclein in association with membrane-mimetics. Liang B, Tamm LK. Prog Nucl Magn Reson Spectrosc 105 41-53 (2018)
  18. Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Tokunaga Y, Viennet T, Arthanari H, Takeuchi K. Int J Mol Sci 21 (2020)
  19. High-sensitivity protein solid-state NMR spectroscopy. Mandala VS, Hong M. Curr. Opin. Struct. Biol. 58 183-190 (2019)
  20. A concise guide to choosing suitable gene expression systems for recombinant protein production. Schütz A, Bernhard F, Berrow N, Buyel JF, Ferreira-da-Silva F, Haustraete J, van den Heuvel J, Hoffmann JE, de Marco A, Peleg Y, Suppmann S, Unger T, Vanhoucke M, Witt S, Remans K. STAR Protoc 4 102572 (2023)
  21. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. Inoue K. Adv Exp Med Biol 1293 89-126 (2021)

Articles citing this publication (56)

  1. Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, Ladizhansky V. Nat. Methods 10 1007-1012 (2013)
  2. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W, Spudich JL, Luecke H. Acta Crystallogr. D Biol. Crystallogr. 69 1965-1980 (2013)
  3. The Protein Structure Initiative: achievements and visions for the future. Montelione GT. F1000 Biol Rep 4 7 (2012)
  4. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Gushchin I, Chervakov P, Kuzmichev P, Popov AN, Round E, Borshchevskiy V, Ishchenko A, Petrovskaya L, Chupin V, Dolgikh DA, Arseniev AS, Kirpichnikov M, Gordeliy V. Proc. Natl. Acad. Sci. U.S.A. 110 12631-12636 (2013)
  5. Visualization of a polytopic membrane protein during SecY-mediated membrane insertion. Bischoff L, Wickles S, Berninghausen O, van der Sluis EO, Beckmann R. Nat Commun 5 4103 (2014)
  6. Hsp70 biases the folding pathways of client proteins. Sekhar A, Rosenzweig R, Bouvignies G, Kay LE. Proc. Natl. Acad. Sci. U.S.A. 113 E2794-801 (2016)
  7. In situ structural studies of Anabaena sensory rhodopsin in the E. coli membrane. Ward ME, Wang S, Munro R, Ritz E, Hung I, Gor'kov PL, Jiang Y, Liang H, Brown LS, Ladizhansky V. Biophys. J. 108 1683-1696 (2015)
  8. Transmembrane protein activation refined by site-specific hydration dynamics. Hussain S, Franck JM, Han S. Angew. Chem. Int. Ed. Engl. 52 1953-1958 (2013)
  9. NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Liang B, Tamm LK. Nat. Struct. Mol. Biol. 23 468-474 (2016)
  10. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR. Gottstein D, Reckel S, Dötsch V, Güntert P. Structure 20 1019-1027 (2012)
  11. Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment. Löhr F, Reckel S, Karbyshev M, Connolly PJ, Abdul-Manan N, Bernhard F, Moore JM, Dötsch V. J. Biomol. NMR 52 197-210 (2012)
  12. Functional consequences of the oligomeric assembly of proteorhodopsin. Hussain S, Kinnebrew M, Schonenbach NS, Aye E, Han S. J. Mol. Biol. 427 1278-1290 (2015)
  13. Non-Uniform-Sampling Ultrahigh Resolution TOCSY NMR: Analysis of Complex Mixtures at Microgram Levels. Kakita VM, Hosur RV. Chemphyschem 17 2304-2308 (2016)
  14. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS. J. Biomol. NMR 55 147-155 (2013)
  15. From Nanodiscs to Isotropic Bicelles: A Procedure for Solution Nuclear Magnetic Resonance Studies of Detergent-Sensitive Integral Membrane Proteins. Laguerre A, Löhr F, Henrich E, Hoffmann B, Abdul-Manan N, Connolly PJ, Perozo E, Moore JM, Bernhard F, Dötsch V. Structure 24 1830-1841 (2016)
  16. Modulation of spectral properties and pump activity of proteorhodopsins by retinal analogues. Ganapathy S, Bécheau O, Venselaar H, Frölich S, van der Steen JB, Chen Q, Radwan S, Lugtenburg J, Hellingwerf KJ, de Groot HJ, de Grip WJ. Biochem. J. 467 333-343 (2015)
  17. The EF loop in green proteorhodopsin affects conformation and photocycle dynamics. Mehler M, Scholz F, Ullrich SJ, Mao J, Braun M, Brown LJ, Brown RC, Fiedler SA, Becker-Baldus J, Wachtveitl J, Glaubitz C. Biophys. J. 105 385-397 (2013)
  18. Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. Henrich E, Peetz O, Hein C, Laguerre A, Hoffmann B, Hoffmann J, Dötsch V, Bernhard F, Morgner N. Elife 6 (2017)
  19. Integral membrane protein structure determination using pseudocontact shifts. Crick DJ, Wang JX, Graham B, Swarbrick JD, Mott HR, Nietlispach D. J. Biomol. NMR 61 197-207 (2015)
  20. Characterization of the ground state dynamics of proteorhodopsin by NMR and optical spectroscopies. Stehle J, Scholz F, Löhr F, Reckel S, Roos C, Blum M, Braun M, Glaubitz C, Dötsch V, Wachtveitl J, Schwalbe H. J. Biomol. NMR 54 401-413 (2012)
  21. Mapping conformational heterogeneity of mitochondrial nucleotide transporter in uninhibited states. Sounier R, Bellot G, Chou JJ. Angew. Chem. Int. Ed. Engl. 54 2436-2441 (2015)
  22. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Kalverda AP, Gowdy J, Thompson GS, Homans SW, Henderson PJ, Patching SG. Mol. Membr. Biol. 31 131-140 (2014)
  23. Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. Furuita K, Kataoka S, Sugiki T, Hattori Y, Kobayashi N, Ikegami T, Shiozaki K, Fujiwara T, Kojima C. J Biomol NMR 61 55-64 (2015)
  24. The PRE-Derived NMR Model of the 38.8-kDa Tri-Domain IsdH Protein from Staphylococcus aureus Suggests That It Adaptively Recognizes Human Hemoglobin. Sjodt M, Macdonald R, Spirig T, Chan AH, Dickson CF, Fabian M, Olson JS, Gell DA, Clubb RT. J. Mol. Biol. 428 1107-1129 (2016)
  25. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor. Wiktor M, Morin S, Sass HJ, Kebbel F, Grzesiek S. J. Biomol. NMR 55 79-95 (2013)
  26. Simultaneous single-structure and bundle representation of protein NMR structures in torsion angle space. Gottstein D, Kirchner DK, Güntert P. J. Biomol. NMR 52 351-364 (2012)
  27. Large multiple transmembrane domain fragments of a G protein-coupled receptor: biosynthesis, purification, and biophysical studies. Potetinova Z, Tantry S, Cohen LS, Caroccia KE, Arshava B, Becker JM, Naider F. Biopolymers 98 485-500 (2012)
  28. Assembling a Correctly Folded and Functional Heptahelical Membrane Protein by Protein Trans-splicing. Mehler M, Eckert CE, Busche A, Kulhei J, Michaelis J, Becker-Baldus J, Wachtveitl J, Dötsch V, Glaubitz C. J. Biol. Chem. 290 27712-27722 (2015)
  29. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification. Harder D, Hirschi S, Ucurum Z, Goers R, Meier W, Müller DJ, Fotiadis D. Angew. Chem. Int. Ed. Engl. 55 8846-8849 (2016)
  30. From Gene to Function: Cell-Free Electrophysiological and Optical Analysis of Ion Pumps in Nanodiscs. Henrich E, Sörmann J, Eberhardt P, Peetz O, Mezhyrova J, Morgner N, Fendler K, Dötsch V, Wachtveitl J, Bernhard F, Bamann C. Biophys. J. 113 1331-1341 (2017)
  31. Introducing SEC-SANS for studies of complex self-organized biological systems. Johansen NT, Pedersen MC, Porcar L, Martel A, Arleth L. Acta Crystallogr D Struct Biol 74 1178-1191 (2018)
  32. Nitroxide Labeling of Proteins and the Determination of Paramagnetic Relaxation Derived Distance Restraints for NMR Studies. Sjodt M, Clubb RT. Bio Protoc 7 (2017)
  33. Biosynthesis and spectroscopic characterization of 2-TM fragments encompassing the sequence of a human GPCR, the Y4 receptor. Kocherla H, Marino J, Shao X, Graf J, Zou C, Zerbe O. Chembiochem 13 818-828 (2012)
  34. Comparison of fragments comprising the first two helices of the human Y4 and the yeast Ste2p G-protein-coupled receptors. Shao X, Zou C, Naider F, Zerbe O. Biophys. J. 103 817-826 (2012)
  35. First solution structures of seven-transmembrane helical proteins. Zerbe O. Angew. Chem. Int. Ed. Engl. 51 860-861 (2012)
  36. Structural Studies of Self-Assembled Subviral Particles: Combining Cell-Free Expression with 110 kHz MAS NMR Spectroscopy. David G, Fogeron ML, Schledorn M, Montserret R, Haselmann U, Penzel S, Badillo A, Lecoq L, André P, Nassal M, Bartenschlager R, Meier BH, Böckmann A. Angew. Chem. Int. Ed. Engl. 57 4787-4791 (2018)
  37. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. Hsu MF, Fu HY, Cai CJ, Yi HP, Yang CS, Wang AH. J. Biol. Chem. 290 29567-29577 (2015)
  38. Time-shared experiments for efficient assignment of triple-selectively labeled proteins. Löhr F, Laguerre A, Bock C, Reckel S, Connolly PJ, Abdul-Manan N, Tumulka F, Abele R, Moore JM, Dötsch V. J. Magn. Reson. 248 81-95 (2014)
  39. Biosynthetic production of fully carbon-13 labeled retinal in E. coli for structural and functional studies of rhodopsins. Munro RA, de Vlugt J, Ward ME, Kim SY, Lee KA, Jung KH, Ladizhansky V, Brown LS. J Biomol NMR 73 49-58 (2019)
  40. A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin. Borin VA, Wiebeler C, Schapiro I. Faraday Discuss. 207 137-152 (2018)
  41. CombLabel: rational design of optimized sequence-specific combinatorial labeling schemes. Application to backbone assignment of membrane proteins with low stability. Myshkin MY, Dubinnyi MA, Kulbatskii DS, Lyukmanova EN, Kirpichnikov MP, Shenkarev ZO. J. Biomol. NMR 73 531-544 (2019)
  42. Genome Streamlining, Proteorhodopsin, and Organic Nitrogen Metabolism in Freshwater Nitrifiers. Podowski JC, Paver SF, Newton RJ, Coleman ML. mBio 13 e0237921 (2022)
  43. Photoreceptors for a light biotransducer: a comparative study of the electrical responses of two (type-1) opsins. Alfinito E, Pousset J, Reggiani L, Lee K. Nanotechnology 24 395501 (2013)
  44. Structural characterization of triple transmembrane domain containing fragments of a yeast G protein-coupled receptor in an organic : aqueous environment by solution-state NMR spectroscopy. Fracchiolla KE, Cohen LS, Arshava B, Poms M, Zerbe O, Becker JM, Naider F. J. Pept. Sci. 21 212-222 (2015)
  45. Understanding GPCR Recognition and Folding from NMR Studies of Fragments. Marino J, Walser R, Poms M, Zerbe O. RSC Adv 8 9858-9870 (2018)
  46. Backbone and methyl assignment of bacteriorhodopsin incorporated into nanodiscs. Kooijman L, Ansorge P, Schuster M, Baumann C, Löhr F, Jurt S, Güntert P, Zerbe O. J Biomol NMR 74 45-60 (2020)
  47. Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel. Myshkin MY, Männikkö R, Krumkacheva OA, Kulbatskii DS, Chugunov AO, Berkut AA, Paramonov AS, Shulepko MA, Fedin MV, Hanna MG, Kullmann DM, Bagryanskaya EG, Arseniev AS, Kirpichnikov MP, Lyukmanova EN, Vassilevski AA, Shenkarev ZO. Front Pharmacol 10 953 (2019)
  48. E. coli "Stablelabel" S30 lysate for optimized cell-free NMR sample preparation. Levin R, Löhr F, Karakoc B, Lichtenecker R, Dötsch V, Bernhard F. J Biomol NMR 77 131-147 (2023)
  49. Efficient determination of the accessible conformation space of multi-domain complexes based on EPR PELDOR data. Kazemi S, Lopata A, Kniss A, Pluska L, Güntert P, Sommer T, Prisner TF, Collauto A, Dötsch V. J Biomol NMR 77 261-269 (2023)
  50. Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor. Han CT, Song J, Chan T, Pruett C, Han S. Biophys J 118 1838-1849 (2020)
  51. Intra-residue methyl-methyl correlations for valine and leucine residues in large proteins from a 3D-HMBC-HMQC experiment. Siemons L, Mackenzie HW, Shukla VK, Hansen DF. J. Biomol. NMR 73 749-757 (2019)
  52. Low-temperature Raman spectroscopy reveals small chromophore distortion in primary photointermediate of proteorhodopsin. Fujisawa T, Abe M, Tamogami J, Kikukawa T, Kamo N, Unno M. FEBS Lett. 592 3054-3061 (2018)
  53. Modeling Current-Voltage Charateristics of Proteorhodopsin and Bacteriorhodopsin: Towards an Optoelectronics Based on Proteins. Alfinito E, Reggiani L. IEEE Trans Nanobioscience 15 775-780 (2016)
  54. NMR Study of Rcf2 Reveals an Unusual Dimeric Topology in Detergent Micelles. Zhou S, Pettersson P, Brzezinski P, Ädelroth P, Mäler L. Chembiochem 19 444-447 (2018)
  55. Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR. Maciejko J, Kaur J, Becker-Baldus J, Glaubitz C. Proc. Natl. Acad. Sci. U.S.A. 116 8342-8349 (2019)
  56. X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin. Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, Ernst OP. Sci Rep 9 11283 (2019)