2lea Citations

A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well.

EMBO J 31 162-74 (2012)
Related entries: 2leb, 2lec

Cited: 94 times
EuropePMC logo PMID: 22002536

Abstract

SRSF2 (SC35) is a key player in the regulation of alternative splicing events and binds degenerated RNA sequences with similar affinity in nanomolar range. We have determined the solution structure of the SRSF2 RRM bound to the 5'-UCCAGU-3' and 5'-UGGAGU-3' RNA, both identified as SRSF2 binding sites in the HIV-1 tat exon 2. RNA recognition is achieved through a novel sandwich-like structure with both termini forming a positively charged cavity to accommodate the four central nucleotides. To bind both RNA sequences equally well, SRSF2 forms a nearly identical network of intermolecular interactions by simply flipping the bases of the two consecutive C or G nucleotides into either anti or syn conformation. We validate this unusual mode of RNA recognition functionally by in-vitro and in-vivo splicing assays and propose a 5'-SSNG-3' (S=C/G) high-affinity binding consensus sequence for SRSF2. In conclusion, in addition to describe for the first time the RNA recognition mode of SRSF2, we provide the precise consensus sequence to identify new putative binding sites for this splicing factor.

Reviews - 2lea mentioned but not cited (1)

  1. Basement membranes: cell scaffoldings and signaling platforms. Yurchenco PD. Cold Spring Harb Perspect Biol 3 a004911 (2011)

Articles - 2lea mentioned but not cited (1)

  1. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (37)

  1. RNA splicing factors as oncoproteins and tumour suppressors. Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. Nat Rev Cancer 16 413-430 (2016)
  2. Regulation of splicing by SR proteins and SR protein-specific kinases. Zhou Z, Fu XD. Chromosoma 122 191-207 (2013)
  3. RRM-RNA recognition: NMR or crystallography…and new findings. Daubner GM, Cléry A, Allain FH. Curr Opin Struct Biol 23 100-108 (2013)
  4. The new (dis)order in RNA regulation. Järvelin AI, Noerenberg M, Davis I, Castello A. Cell Commun Signal 14 9 (2016)
  5. Aberrant RNA Splicing in Cancer and Drug Resistance. Wang BD, Lee NH. Cancers (Basel) 10 E458 (2018)
  6. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Inoue D, Bradley RK, Abdel-Wahab O. Genes Dev 30 989-1001 (2016)
  7. Altered RNA Processing in Cancer Pathogenesis and Therapy. Obeng EA, Stewart C, Abdel-Wahab O. Cancer Discov 9 1493-1510 (2019)
  8. Emerging concepts of epigenetic dysregulation in hematological malignancies. Ntziachristos P, Abdel-Wahab O, Aifantis I. Nat Immunol 17 1016-1024 (2016)
  9. Splicing factor gene mutations in hematologic malignancies. Saez B, Walter MJ, Graubert TA. Blood 129 1260-1269 (2017)
  10. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. Muto Y, Yokoyama S. Wiley Interdiscip Rev RNA 3 229-246 (2012)
  11. Serine/arginine-rich splicing factors: the bridge linking alternative splicing and cancer. Zheng X, Peng Q, Wang L, Zhang X, Huang L, Wang J, Qin Z. Int J Biol Sci 16 2442-2453 (2020)
  12. Splicing Factor Mutations in Myelodysplasias: Insights from Spliceosome Structures. Jenkins JL, Kielkopf CL. Trends Genet 33 336-348 (2017)
  13. Dysregulation and therapeutic targeting of RNA splicing in cancer. Stanley RF, Abdel-Wahab O. Nat Cancer 3 536-546 (2022)
  14. Recent advances in understanding the molecular pathogenesis of myelodysplastic syndromes. Kulasekararaj AG, Mohamedali AM, Mufti GJ. Br J Haematol 162 587-605 (2013)
  15. Splicing factor mutations in hematologic malignancies. Chen S, Benbarche S, Abdel-Wahab O. Blood 138 599-612 (2021)
  16. Deciphering the protein-RNA recognition code: combining large-scale quantitative methods with structural biology. Hennig J, Sattler M. Bioessays 37 899-908 (2015)
  17. Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis. Arbab Jafari P, Ayatollahi H, Sadeghi R, Sheikhi M, Asghari A. Hematology 23 778-784 (2018)
  18. Recent advances in myelodysplastic syndromes: Molecular pathogenesis and its implications for targeted therapies. Harada H, Harada Y. Cancer Sci 106 329-336 (2015)
  19. The functional mechanisms of mutations in myelodysplastic syndrome. Nagata Y, Maciejewski JP. Leukemia 33 2779-2794 (2019)
  20. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Peng Q, Zhou Y, Oyang L, Wu N, Tang Y, Su M, Luo X, Wang Y, Sheng X, Ma J, Liao Q. Mol Ther 30 1018-1035 (2022)
  21. Regulation of RNA Splicing: Aberrant Splicing Regulation and Therapeutic Targets in Cancer. Kitamura K, Nimura K. Cells 10 923 (2021)
  22. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications. Pellagatti A, Boultwood J. Adv Biol Regul 63 59-70 (2017)
  23. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. El Marabti E, Abdel-Wahab O. Trends Mol Med 27 643-659 (2021)
  24. Insights from structures of cancer-relevant pre-mRNA splicing factors. Kielkopf CL. Curr Opin Genet Dev 48 57-66 (2018)
  25. Alternative Splicing: Expanding the Landscape of Cancer Biomarkers and Therapeutics. Bessa C, Matos P, Jordan P, Gonçalves V. Int J Mol Sci 21 E9032 (2020)
  26. Aberrant RNA splicing and therapeutic opportunities in cancers. Yamauchi H, Nishimura K, Yoshimi A. Cancer Sci 113 373-381 (2022)
  27. Splicing factor SRSF2-centric gene regulation. Li K, Wang Z. Int J Biol Sci 17 1708-1715 (2021)
  28. NMR solution structure determination of large RNA-protein complexes. Yadav DK, Lukavsky PJ. Prog Nucl Magn Reson Spectrosc 97 57-81 (2016)
  29. RNA-binding proteins of COSMIC importance in cancer. Choi PS, Thomas-Tikhonenko A. J Clin Invest 131 151627 (2021)
  30. SRSF2 mutations in myelodysplasia/myeloproliferative neoplasms. Aujla A, Linder K, Iragavarapu C, Karass M, Liu D. Biomark Res 6 29 (2018)
  31. Therapeutic targeting of RNA splicing in myelodysplasia. Kim YJ, Abdel-Wahab O. Semin Hematol 54 167-173 (2017)
  32. Contemporary insights into the pathogenesis and treatment of chronic myeloproliferative neoplasms. Mughal TI, Abdel-Wahab O, Rampal R, Mesa R, Koschmieder S, Levine R, Hehlmann R, Saglio G, Barbui T, Van Etten RA. Leuk Lymphoma 57 1517-1526 (2016)
  33. Spliceosomal factor mutations and mis-splicing in MDS. Hershberger CE, Daniels NJ, Padgett RA. Best Pract Res Clin Haematol 33 101199 (2020)
  34. Towards understandings of serine/arginine-rich splicing factors. Li D, Yu W, Lai M. Acta Pharm Sin B 13 3181-3207 (2023)
  35. Splicing regulation in hematopoiesis. Chen S, Abdel-Wahab O. Curr Opin Hematol 28 277-283 (2021)
  36. Targeting pre-mRNA splicing in cancers: roles, inhibitors, and therapeutic opportunities. Araki S, Ohori M, Yugami M. Front Oncol 13 1152087 (2023)
  37. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Barabino SML, Citterio E, Ronchi AE. Cancers (Basel) 13 3753 (2021)

Articles citing this publication (55)

  1. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Kim E, Ilagan JO, Liang Y, Daubner GM, Lee SC, Ramakrishnan A, Li Y, Chung YR, Micol JB, Murphy ME, Cho H, Kim MK, Zebari AS, Aumann S, Park CY, Buonamici S, Smith PG, Deeg HJ, Lobry C, Aifantis I, Modis Y, Allain FH, Halene S, Bradley RK, Abdel-Wahab O. Cancer Cell 27 617-630 (2015)
  2. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Ji X, Zhou Y, Pandit S, Huang J, Li H, Lin CY, Xiao R, Burge CB, Fu XD. Cell 153 855-868 (2013)
  3. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Pandit S, Zhou Y, Shiue L, Coutinho-Mansfield G, Li H, Qiu J, Huang J, Yeo GW, Ares M, Fu XD. Mol Cell 50 223-235 (2013)
  4. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, Kohlmann A, Alpermann T, Yoshida K, Ogawa S, Koeffler HP, Kern W, Haferlach C, Schnittger S. Blood 120 3080-3088 (2012)
  5. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Zhang J, Lieu YK, Ali AM, Penson A, Reggio KS, Rabadan R, Raza A, Mukherjee S, Manley JL. Proc Natl Acad Sci U S A 112 E4726-34 (2015)
  6. Comprehensive assessment of cancer missense mutation clustering in protein structures. Kamburov A, Lawrence MS, Polak P, Leshchiner I, Lage K, Golub TR, Lander ES, Getz G. Proc Natl Acad Sci U S A 112 E5486-95 (2015)
  7. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Yoshimi A, Lin KT, Wiseman DH, Rahman MA, Pastore A, Wang B, Lee SC, Micol JB, Zhang XJ, de Botton S, Penard-Lacronique V, Stein EM, Cho H, Miles RE, Inoue D, Albrecht TR, Somervaille TCP, Batta K, Amaral F, Simeoni F, Wilks DP, Cargo C, Intlekofer AM, Levine RL, Dvinge H, Bradley RK, Wagner EJ, Krainer AR, Abdel-Wahab O. Nature 574 273-277 (2019)
  8. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Shiozawa Y, Malcovati L, Gallì A, Sato-Otsubo A, Kataoka K, Sato Y, Watatani Y, Suzuki H, Yoshizato T, Yoshida K, Sanada M, Makishima H, Shiraishi Y, Chiba K, Hellström-Lindberg E, Miyano S, Ogawa S, Cazzola M. Nat Commun 9 3649 (2018)
  9. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Wu SJ, Kuo YY, Hou HA, Li LY, Tseng MH, Huang CF, Lee FY, Liu MC, Liu CW, Lin CT, Chen CY, Chou WC, Yao M, Huang SY, Ko BS, Tang JL, Tsay W, Tien HF. Blood 120 3106-3111 (2012)
  10. The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease. Liao Y, Castello A, Fischer B, Leicht S, Föehr S, Frese CK, Ragan C, Kurscheid S, Pagler E, Yang H, Krijgsveld J, Hentze MW, Preiss T. Cell Rep 16 1456-1469 (2016)
  11. SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing. Komeno Y, Huang YJ, Qiu J, Lin L, Xu Y, Zhou Y, Chen L, Monterroza DD, Li H, DeKelver RC, Yan M, Fu XD, Zhang DE. Mol Cell Biol 35 3071-3082 (2015)
  12. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Sajini AA, Choudhury NR, Wagner RE, Bornelöv S, Selmi T, Spanos C, Dietmann S, Rappsilber J, Michlewski G, Frye M. Nat Commun 10 2550 (2019)
  13. Physiological Srsf2 P95H expression causes impaired hematopoietic stem cell functions and aberrant RNA splicing in mice. Kon A, Yamazaki S, Nannya Y, Kataoka K, Ota Y, Nakagawa MM, Yoshida K, Shiozawa Y, Morita M, Yoshizato T, Sanada M, Nakayama M, Koseki H, Nakauchi H, Ogawa S. Blood 131 621-635 (2018)
  14. Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition. Duss O, Michel E, Diarra dit Konté N, Schubert M, Allain FH. Nucleic Acids Res 42 5332-5346 (2014)
  15. De novo prediction of PTBP1 binding and splicing targets reveals unexpected features of its RNA recognition and function. Han A, Stoilov P, Linares AJ, Zhou Y, Fu XD, Black DL. PLoS Comput Biol 10 e1003442 (2014)
  16. Aberrant RNA Splicing in Cancer. Escobar-Hoyos L, Knorr K, Abdel-Wahab O. Annu Rev Cancer Biol 3 167-185 (2019)
  17. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Liang Y, Tebaldi T, Rejeski K, Joshi P, Stefani G, Taylor A, Song Y, Vasic R, Maziarz J, Balasubramanian K, Ardasheva A, Ding A, Quattrone A, Halene S. Leukemia 32 2659-2671 (2018)
  18. An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells. Huang X, Zheng M, Wang P, Mok BW, Liu S, Lau SY, Chen P, Liu YC, Liu H, Chen Y, Song W, Yuen KY, Chen H. Nat Commun 8 14751 (2017)
  19. The cisplatin-induced lncRNA PANDAR dictates the chemoresistance of ovarian cancer via regulating SFRS2-mediated p53 phosphorylation. Wang H, Fang L, Jiang J, Kuang Y, Wang B, Shang X, Han P, Li Y, Liu M, Zhang Z, Li P. Cell Death Dis 9 1103 (2018)
  20. Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Taylor J, Mi X, North K, Binder M, Penson A, Lasho T, Knorr K, Haddadin M, Liu B, Pangallo J, Benbarche S, Wiseman D, Tefferi A, Halene S, Liang Y, Patnaik MM, Bradley RK, Abdel-Wahab O. Blood 136 1477-1486 (2020)
  21. Recurrent SRSF2 mutations in MDS affect both splicing and NMD. Rahman MA, Lin KT, Bradley RK, Abdel-Wahab O, Krainer AR. Genes Dev 34 413-427 (2020)
  22. Complex landscape of alternative splicing in myeloid neoplasms. Hershberger CE, Moyer DC, Adema V, Kerr CM, Walter W, Hutter S, Meggendorfer M, Baer C, Kern W, Nadarajah N, Twardziok S, Sekeres MA, Haferlach C, Haferlach T, Maciejewski JP, Padgett RA. Leukemia 35 1108-1120 (2021)
  23. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function. Tajnik M, Rogalska ME, Bussani E, Barbon E, Balestra D, Pinotti M, Pagani F. PLoS Genet 12 e1006082 (2016)
  24. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Wysoczański P, Schneider C, Xiang S, Munari F, Trowitzsch S, Wahl MC, Lührmann R, Becker S, Zweckstetter M. Nat Struct Mol Biol 21 911-918 (2014)
  25. Nonspecific recognition is achieved in Pot1pC through the use of multiple binding modes. Dickey TH, McKercher MA, Wuttke DS. Structure 21 121-132 (2013)
  26. Structural modeling of protein-RNA complexes using crosslinking of segmentally isotope-labeled RNA and MS/MS. Dorn G, Leitner A, Boudet J, Campagne S, von Schroetter C, Moursy A, Aebersold R, Allain FH. Nat Methods 14 487-490 (2017)
  27. The role of RNA conformation in RNA-protein recognition. Kligun E, Mandel-Gutfreund Y. RNA Biol 12 720-727 (2015)
  28. Purifying Selection on Exonic Splice Enhancers in Intronless Genes. Savisaar R, Hurst LD. Mol Biol Evol 33 1396-1418 (2016)
  29. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins. Lambert NJ, Robertson AD, Burge CB. Methods Enzymol 558 465-493 (2015)
  30. Prevalence and architecture of posttranscriptionally impaired synonymous mutations in 8,320 genomes across 22 cancer types. Teng H, Wei W, Li Q, Xue M, Shi X, Li X, Mao F, Sun Z. Nucleic Acids Res 48 1192-1205 (2020)
  31. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene. Moon H, Cho S, Loh TJ, Oh HK, Jang HN, Zhou J, Kwon YS, Liao DJ, Jun Y, Eom S, Ghigna C, Biamonti G, Green MR, Zheng X, Shen H. Biochim Biophys Acta 1839 1132-1140 (2014)
  32. Thermodynamic and phylogenetic insights into hnRNP A1 recognition of the HIV-1 exon splicing silencer 3 element. Rollins C, Levengood JD, Rife BD, Salemi M, Tolbert BS. Biochemistry 53 2172-2184 (2014)
  33. Structure-guided U2AF65 variant improves recognition and splicing of a defective pre-mRNA. Agrawal AA, McLaughlin KJ, Jenkins JL, Kielkopf CL. Proc Natl Acad Sci U S A 111 17420-17425 (2014)
  34. Exploring the multifunctionality of SR proteins. Slišković I, Eich H, Müller-McNicoll M. Biochem Soc Trans 50 187-198 (2022)
  35. Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. Zhang X, Xu Y, Chen B, Kang L. PLoS Genet 16 e1008771 (2020)
  36. Rare and private spliceosomal gene mutations drive partial, complete, and dual phenocopies of hotspot alterations. Pangallo J, Kiladjian JJ, Cassinat B, Renneville A, Taylor J, Polaski JT, North K, Abdel-Wahab O, Bradley RK. Blood 135 1032-1043 (2020)
  37. SRSF2 directly inhibits intron splicing to suppresses cassette exon inclusion. Moon H, Cho S, Loh TJ, Jang HN, Liu Y, Choi N, Oh J, Ha J, Zhou J, Cho S, Kim DE, Ye MB, Zheng X, Shen H. BMB Rep 50 423-428 (2017)
  38. Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function. Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H. Nucleic Acids Res 42 8705-8718 (2014)
  39. Charting the "Splice" Routes to MDS. Obeng EA, Ebert BL. Cancer Cell 27 607-609 (2015)
  40. Conformational readout of RNA by small ligands. Kligun E, Mandel-Gutfreund Y. RNA Biol 10 982-989 (2013)
  41. Activation of Cryptic 3' Splice-Sites by SRSF2 Contributes to Cassette Exon Skipping. Moon H, Jang HN, Liu Y, Choi N, Oh J, Ha J, Zheng X, Shen H. Cells 8 E696 (2019)
  42. Pre-mRNA splicing factor U2AF2 recognizes distinct conformations of nucleotide variants at the center of the pre-mRNA splice site signal. Glasser E, Maji D, Biancon G, Puthenpeedikakkal AMK, Cavender CE, Tebaldi T, Jenkins JL, Mathews DH, Halene S, Kielkopf CL. Nucleic Acids Res 50 5299-5312 (2022)
  43. Functional Analysis of Mutations in Exon 9 of NF1 Reveals the Presence of Several Elements Regulating Splicing. Hernández-Imaz E, Martín Y, de Conti L, Melean G, Valero A, Baralle M, Hernández-Chico C. PLoS One 10 e0141735 (2015)
  44. MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes. Krepl M, Dendooven T, Luisi BF, Sponer J. J Biol Chem 296 100656 (2021)
  45. CircPLCE1 facilitates the malignant progression of colorectal cancer by repressing the SRSF2-dependent PLCE1 pre-RNA splicing. Chen Z, Chen H, Yang L, Li X, Wang Z. J Cell Mol Med 25 7244-7256 (2021)
  46. A Gypsy element contributes to the nuclear retention and transcriptional regulation of the resident lncRNA in locusts. Zhang X, Zhu YN, Chen B, Kang L. RNA Biol 19 206-220 (2022)
  47. Relative strength of 5' splice-site strength defines functions of SRSF2 and SRSF6 in alternative splicing of Bcl-x pre-mRNA. Choi N, Liu Y, Oh J, Ha J, Ghigna C, Zheng X, Shen H. BMB Rep 54 176-181 (2021)
  48. SRSF2-P95H decreases JAK/STAT signaling in hematopoietic cells and delays myelofibrosis development in mice. Willekens C, Laplane L, Dagher T, Benlabiod C, Papadopoulos N, Lacout C, Rameau P, Catelain C, Alfaro A, Edmond V, Signolle N, Marchand V, Droin N, Hoogenboezem R, Schneider RK, Penson A, Abdel-Wahab O, Giraudier S, Pasquier F, Marty C, Plo I, Villeval JL, Constantinescu SN, Porteu F, Vainchenker W, Solary E. Leukemia 37 1287-1297 (2023)
  49. Single-stranded nucleic acid recognition: is there a code after all? Cléry A, Boudet J, Allain FH. Structure 21 4-6 (2013)
  50. The rice blast fungus SR protein 1 regulates alternative splicing with unique mechanisms. Shi W, Yang J, Chen D, Yin C, Zhang H, Xu X, Pan X, Wang R, Fei L, Li M, Qi L, Bhadauria V, Liu J, Peng YL. PLoS Pathog 18 e1011036 (2022)
  51. Serine-arginine splicing factor 2 promotes oesophageal cancer progression by regulating alternative splicing of interferon regulatory factor 3. Wei Z, Wang Y, Ma W, Xing W, Lu P, Shang Z, Li F, Li H, Wang Y. RNA Biol 20 359-367 (2023)
  52. The 100-protein NMR spectra dataset: A resource for biomolecular NMR data analysis. Klukowski P, Damberger FF, Allain FH, Iwai H, Kadavath H, Ramelot TA, Montelione GT, Riek R, Güntert P. Sci Data 11 30 (2024)
  53. The SC-35 Splicing Factor Interacts with RNA Pol II and A-Type Lamin Depletion Weakens This Interaction. Legartová S, Fagherazzi P, Stixová L, Kovařík A, Raška I, Bártová E. Cells 10 297 (2021)
  54. The dynamics of t1 adenosine binding on human Argonaute 2: Understanding recognition with conformational selection. Rinaldi S, Colombo G, Paladino A. Protein Sci 31 e4377 (2022)
  55. RNA recognition by Npl3p reveals U2 snRNA-binding compatible with a chaperone role during splicing. Moursy A, Cléry A, Gerhardy S, Betz KM, Rao S, Mazur J, Campagne S, Beusch I, Duszczyk MM, Robinson MD, Panse VG, Panse VG, Allain FH. Nat Commun 14 7166 (2023)