2mfn Citations

Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure.

Abstract

We report the three-dimensional solution structure of the mouse fibronectin cell attachment domain consisting of the linked ninth and tenth type III modules, mFnFn3(9,10). Because the tenth module contains the RGD cell attachment sequence while the ninth contains the synergy region, mFnFn3(9,10) has the cell attachment activity of intact fibronectin. Essentially complete signal assignments and approximately 1800 distance and angle restraints were derived from multidimensional heteronuclear NMR spectra. These restraints were used with a hybrid distance geometry/simulated annealing protocol to generate an ensemble of 20 NMR structures having no distance or angle violations greater than 0.3 A or 3 degrees. Although the beta-sheet core domains of the individual modules are well-ordered structures, having backbone atom rmsd values from the mean structure of 0.51(+/-0.12) and 0.40(+/-0.07) A, respectively, the rmsd of the core atom coordinates increases to 3.63(+/-1.41) A when the core domains of both modules are used to align the coordinates. The latter result is a consequence of the fact that the relative orientation of the two modules is not highly constrained by the NMR restraints. Hence, while structures of the beta-sheet core domains of the NMR structures are very similar to the core domains of the crystal structure of hFnFn3(9,10), the ensemble of NMR structures suggests that the two modules form a less extended and more flexible structure than the fully extended rod-like crystal structure. The radius of gyration, Rg, of mFnFn3(9,10) derived from small-angle neutron scattering measurements, 20.5(+/-0.5) A, agrees with the average Rg calculated for the NMR structures, 20.4 A, and is ca 1 A less than the value of Rg calculated for the X-ray structure. The values of the rotational anisotropy, D ||/D perpendicular, derived from an analysis of 15N relaxation data, range from 1.7 to 2.1, and are significantly less than the anisotropy of 2.67 predicted by hydrodynamic modeling of the crystal coordinates. In contrast, hydrodynamic modeling of the NMR coordinates yields anisotropies in the range of 1.9 to 2.7 (average 2.4(+/-0.2)), with NMR structures bent by more than 20 degrees relative the crystal structure having calculated anisotropies in best agreement with experiment. In addition, the relaxation parameters indicate that several loops in mFnFn3(9,10), including the RGD loop, are flexible on the nanosecond to picosecond time-scale. Taken together, our results suggest that, in solution, the limited set of interactions between the mFnFn3(9,10) modules position the RGD and synergy regions to interact specifically with cell surface integrins, and at the same time permit sufficient flexibility that allows mFnFn3(9,10) to adjust for some variation in integrin structure or environment.

Reviews - 2mfn mentioned but not cited (2)

  1. Function and 3D structure of the N-glycans on glycoproteins. Nagae M, Yamaguchi Y. Int J Mol Sci 13 8398-8429 (2012)
  2. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Nielsen JT, Eghbalnia HR, Nielsen NC. Prog Nucl Magn Reson Spectrosc 60 1-28 (2012)

Articles - 2mfn mentioned but not cited (4)

  1. Crystal structure of α5β1 integrin ectodomain: atomic details of the fibronectin receptor. Nagae M, Re S, Mihara E, Nogi T, Sugita Y, Takagi J. J Cell Biol 197 131-140 (2012)
  2. Motogenic sites in human fibronectin are masked by long range interactions. Vakonakis I, Staunton D, Ellis IR, Sarkies P, Flanagan A, Schor AM, Schor SL, Campbell ID. J Biol Chem 284 15668-15675 (2009)
  3. Atomic basis for the species-specific inhibition of αV integrins by monoclonal antibody 17E6 is revealed by the crystal structure of αVβ3 ectodomain-17E6 Fab complex. Mahalingam B, Van Agthoven JF, Xiong JP, Alonso JL, Adair BD, Rui X, Anand S, Mehrbod M, Mofrad MR, Burger C, Goodman SL, Arnaout MA. J Biol Chem 289 13801-13809 (2014)
  4. Ligand-induced Epitope Masking: DISSOCIATION OF INTEGRIN α5β1-FIBRONECTIN COMPLEXES ONLY BY MONOCLONAL ANTIBODIES WITH AN ALLOSTERIC MODE OF ACTION. Mould AP, Askari JA, Byron A, Takada Y, Jowitt TA, Humphries MJ. J Biol Chem 291 20993-21007 (2016)


Reviews citing this publication (11)

  1. Nmr probes of molecular dynamics: overview and comparison with other techniques. Palmer AG. Annu Rev Biophys Biomol Struct 30 129-155 (2001)
  2. Therapeutic antagonists and conformational regulation of integrin function. Shimaoka M, Springer TA. Nat Rev Drug Discov 2 703-716 (2003)
  3. Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Nemerow GR, Stewart PL. Microbiol Mol Biol Rev 63 725-734 (1999)
  4. Coming to grips with integrin binding to ligands. Arnaout MA, Goodman SL, Xiong JP. Curr Opin Cell Biol 14 641-651 (2002)
  5. Validation of protein models derived from experiment. Laskowski RA, MacArthur MW, Thornton JM. Curr Opin Struct Biol 8 631-639 (1998)
  6. NMR approaches for structural analysis of multidomain proteins and complexes in solution. Göbl C, Madl T, Simon B, Sattler M. Prog Nucl Magn Reson Spectrosc 80 26-63 (2014)
  7. Structural basis for ligand recognition by integrins. Takagi J. Curr Opin Cell Biol 19 557-564 (2007)
  8. Dynamic structure of plasma fibronectin. Maurer LM, Ma W, Mosher DF. Crit Rev Biochem Mol Biol 51 213-227 (2015)
  9. Integrins, cations and ligands: making the connection. Xiong JP, Stehle T, Goodman SL, Arnaout MA. J Thromb Haemost 1 1642-1654 (2003)
  10. Structural dynamics of bio-macromolecules by NMR: the slowly relaxing local structure approach. Meirovitch E, Shapiro YE, Polimeno A, Freed JH. Prog Nucl Magn Reson Spectrosc 56 360-405 (2010)
  11. NMR of modular proteins. Campbell ID, Downing AK. Nat Struct Biol 5 Suppl 496-499 (1998)

Articles citing this publication (67)

  1. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D. Cell 96 625-634 (1999)
  2. Structure of integrin alpha5beta1 in complex with fibronectin. Takagi J, Strokovich K, Springer TA, Walz T. EMBO J 22 4607-4615 (2003)
  3. Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations. Paci E, Karplus M. J Mol Biol 288 441-459 (1999)
  4. Three-dimensional EM structure of the ectodomain of integrin {alpha}V{beta}3 in a complex with fibronectin. Adair BD, Xiong JP, Maddock C, Goodman SL, Arnaout MA, Yeager M. J Cell Biol 168 1109-1118 (2005)
  5. How the headpiece hinge angle is opened: New insights into the dynamics of integrin activation. Puklin-Faucher E, Gao M, Schulten K, Vogel V. J Cell Biol 175 349-360 (2006)
  6. Defining fibronectin's cell adhesion synergy site by site-directed mutagenesis. Redick SD, Settles DL, Briscoe G, Erickson HP. J Cell Biol 149 521-527 (2000)
  7. Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin. Chiu CY, Mathias P, Nemerow GR, Stewart PL. J Virol 73 6759-6768 (1999)
  8. Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G. Hall JB, Fushman D. J Biomol NMR 27 261-275 (2003)
  9. Identification of the peptide sequences within the EIIIA (EDA) segment of fibronectin that mediate integrin alpha9beta1-dependent cellular activities. Shinde AV, Bystroff C, Wang C, Vogelezang MG, Vincent PA, Hynes RO, Van De Water L. J Biol Chem 283 2858-2870 (2008)
  10. Structure of the C3b binding site of CR1 (CD35), the immune adherence receptor. Smith BO, Mallin RL, Krych-Goldberg M, Wang X, Hauhart RE, Bromek K, Uhrin D, Atkinson JP, Barlow PN. Cell 108 769-780 (2002)
  11. A small fibronectin-mimicking protein from bacteria induces cell spreading and focal adhesion formation. Tegtmeyer N, Hartig R, Delahay RM, Rohde M, Brandt S, Conradi J, Takahashi S, Smolka AJ, Sewald N, Backert S. J Biol Chem 285 23515-23526 (2010)
  12. Structure of an integrin-ligand complex deduced from solution x-ray scattering and site-directed mutagenesis. Mould AP, Symonds EJ, Buckley PA, Grossmann JG, McEwan PA, Barton SJ, Askari JA, Craig SE, Bella J, Humphries MJ. J Biol Chem 278 39993-39999 (2003)
  13. Molecular basis of ligand recognition by integrin alpha 5beta 1. I. Specificity of ligand binding is determined by amino acid sequences in the second and third NH2-terminal repeats of the alpha subunit. Mould AP, Askari JA, Humphries MJ. J Biol Chem 275 20324-20336 (2000)
  14. Interactions of soluble recombinant integrin alphav beta5 with human adenoviruses. Mathias P, Galleno M, Nemerow GR. J Virol 72 8669-8675 (1998)
  15. Solution structure of human and bovine beta(2)-glycoprotein I revealed by small-angle X-ray scattering. Hammel M, Kriechbaum M, Gries A, Kostner GM, Laggner P, Prassl R. J Mol Biol 321 85-97 (2002)
  16. The assembly of immunoglobulin-like modules in titin: implications for muscle elasticity. Improta S, Krueger JK, Gautel M, Atkinson RA, Lefèvre JF, Moulton S, Trewhella J, Pastore A. J Mol Biol 284 761-777 (1998)
  17. Integrin and neurocan binding to L1 involves distinct Ig domains. Oleszewski M, Beer S, Katich S, Geiger C, Zeller Y, Rauch U, Altevogt P. J Biol Chem 274 24602-24610 (1999)
  18. Structure of the cadherin-related neuronal receptor/protocadherin-alpha first extracellular cadherin domain reveals diversity across cadherin families. Morishita H, Umitsu M, Murata Y, Shibata N, Udaka K, Higuchi Y, Akutsu H, Yamaguchi T, Yagi T, Ikegami T. J Biol Chem 281 33650-33663 (2006)
  19. Measurement of 15N relaxation in the detergent-solubilized tetrameric KcsA potassium channel. Chill JH, Louis JM, Baber JL, Bax A. J Biomol NMR 36 123-136 (2006)
  20. The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding. Pickford AR, Smith SP, Staunton D, Boyd J, Campbell ID. EMBO J 20 1519-1529 (2001)
  21. Efficient and accurate determination of the overall rotational diffusion tensor of a molecule from (15)N relaxation data using computer program ROTDIF. Walker O, Varadan R, Fushman D. J Magn Reson 168 336-345 (2004)
  22. The eighth FIII domain of human fibronectin promotes integrin alpha5beta1 binding via stabilization of the ninth FIII domain. Altroff H, van der Walle CF, Asselin J, Fairless R, Campbell ID, Mardon HJ. J Biol Chem 276 38885-38892 (2001)
  23. Structural insights into integrin α5β1 opening by fibronectin ligand. Schumacher S, Dedden D, Nunez RV, Matoba K, Takagi J, Biertümpfel C, Mizuno N. Sci Adv 7 eabe9716 (2021)
  24. Interdomain tilt angle determines integrin-dependent function of the ninth and tenth FIII domains of human fibronectin. Altroff H, Schlinkert R, van der Walle CF, Bernini A, Campbell ID, Werner JM, Mardon HJ. J Biol Chem 279 55995-56003 (2004)
  25. Backbone dynamics of a cbEGF domain pair in the presence of calcium. Werner JM, Knott V, Handford PA, Campbell ID, Downing AK. J Mol Biol 296 1065-1078 (2000)
  26. Fine mapping of inhibitory anti-alpha5 monoclonal antibody epitopes that differentially affect integrin-ligand binding. Burrows L, Clark K, Mould AP, Humphries MJ. Biochem J 344 Pt 2 527-533 (1999)
  27. Solution structure and dynamics of the central CCP module pair of a poxvirus complement control protein. Henderson CE, Bromek K, Mullin NP, Smith BO, Uhrín D, Barlow PN. J Mol Biol 307 323-339 (2001)
  28. Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins. Ghose R, Fushman D, Cowburn D. J Magn Reson 149 204-217 (2001)
  29. Mechanism of cis-inhibition of polyQ fibrillation by polyP: PPII oligomers and the hydrophobic effect. Darnell GD, Derryberry J, Kurutz JW, Meredith SC. Biophys J 97 2295-2305 (2009)
  30. NMR studies on domain diffusion and alignment in modular GB1 repeats. Walsh JD, Meier K, Ishima R, Gronenborn AM. Biophys J 99 2636-2646 (2010)
  31. The solution structure of the regulatory domain of tyrosine hydroxylase. Zhang S, Huang T, Ilangovan U, Hinck AP, Fitzpatrick PF. J Mol Biol 426 1483-1497 (2014)
  32. Solution structure of a functionally active fragment of decay-accelerating factor. Uhrinova S, Lin F, Ball G, Bromek K, Uhrin D, Medof ME, Barlow PN. Proc Natl Acad Sci U S A 100 4718-4723 (2003)
  33. The solution structure of the invasive tip complex from Afa/Dr fibrils. Cota E, Jones C, Simpson P, Altroff H, Anderson KL, du Merle L, Guignot J, Servin A, Le Bouguénec C, Mardon H, Matthews S. Mol Microbiol 62 356-366 (2006)
  34. Osteoblast-like cell adhesion to bone sialoprotein peptides. Rapuano BE, Wu C, MacDonald DE. J Orthop Res 22 353-361 (2004)
  35. Structure and dynamics of the homodimeric dynein light chain km23. Ilangovan U, Ding W, Zhong Y, Wilson CL, Groppe JC, Trbovich JT, Zúñiga J, Demeler B, Tang Q, Gao G, Mulder KM, Hinck AP. J Mol Biol 352 338-354 (2005)
  36. Design, expression, and stability of a diverse protein library based on the human fibronectin type III domain. Olson CA, Roberts RW. Protein Sci 16 476-484 (2007)
  37. Rotational diffusion tensor of nucleic acids from 13C NMR relaxation. Boisbouvier J, Wu Z, Ono A, Kainosho M, Bax A. J Biomol NMR 27 133-142 (2003)
  38. Solution structure of the transmembrane domain of the insulin receptor in detergent micelles. Li Q, Wong YL, Kang C. Biochim Biophys Acta 1838 1313-1321 (2014)
  39. Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID, Downing AK. J Mol Biol 316 113-125 (2002)
  40. Synergistic activity of the ninth and tenth FIII domains of human fibronectin depends upon structural stability. Altroff H, Choulier L, Mardon HJ. J Biol Chem 278 491-497 (2003)
  41. The structure of free L11 and functional dynamics of L11 in free, L11-rRNA(58 nt) binary and L11-rRNA(58 nt)-thiostrepton ternary complexes. Lee D, Walsh JD, Yu P, Markus MA, Choli-Papadopoulou T, Schwieters CD, Krueger S, Draper DE, Wang YX. J Mol Biol 367 1007-1022 (2007)
  42. Modularity and homology: modelling of the titin type I modules and their interfaces. Amodeo P, Fraternali F, Lesk AM, Pastore A. J Mol Biol 311 283-296 (2001)
  43. Novel mutant human fibronectin FIII9-10 domain pair with increased conformational stability and biological activity. van der Walle CF, Altroff H, Mardon HJ. Protein Eng 15 1021-1024 (2002)
  44. Arginine side-chain dynamics in the HIV-1 rev-RRE complex. Wilkinson TA, Botuyan MV, Kaplan BE, Rossi JJ, Chen Y. J Mol Biol 303 515-529 (2000)
  45. Refining the overall structure and subdomain orientation of ribosomal protein S4 delta41 with dipolar couplings measured by NMR in uniaxial liquid crystalline phases. Markus MA, Gerstner RB, Draper DE, Torchia DA. J Mol Biol 292 375-387 (1999)
  46. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly. Brennan JR, Hocking DC. Acta Biomater 32 198-209 (2016)
  47. NCAM-derived peptides function as agonists for the fibroblast growth factor receptor. Hansen SM, Køhler LB, Li S, Kiselyov V, Christensen C, Owczarek S, Bock E, Berezin V. J Neurochem 106 2030-2041 (2008)
  48. Letter NMR structure of human fibronectin EDA. Niimi T, Osawa M, Yamaji N, Yasunaga K, Sakashita H, Mase T, Tanaka A, Fujita S. J Biomol NMR 21 281-284 (2001)
  49. Effect of D to E mutation of the RGD motif in rhodostomin on its activity, structure, and dynamics: importance of the interactions between the D residue and integrin. Chen CY, Shiu JH, Hsieh YH, Liu YC, Chen YC, Chen YC, Jeng WY, Tang MJ, Lo SJ, Chuang WJ. Proteins 76 808-821 (2009)
  50. Calpha-H...O = C hydrogen bonds contribute to the specificity of RGD cell-adhesion interactions. Bella J, Humphries MJ. BMC Struct Biol 5 4 (2005)
  51. Self-assembling multimeric integrin alpha5beta1 ligands for cell attachment and spreading. Kreiner M, Li Z, Beattie J, Kelly SM, Mardon HJ, van der Walle CF. Protein Eng Des Sel 21 553-560 (2008)
  52. The intestinal zonula occludens toxin (ZOT) receptor recognises non-native ZOT conformers and localises to the intercellular contacts. Lee A, White N, van der Walle CF. FEBS Lett 555 638-642 (2003)
  53. The relative orientation of the fibronectin 6F1(1)F2 module pair: a 15N NMR relaxation study. Hashimoto Y, Smith SP, Pickford AR, Bocquier AA, Campbell ID, Werner JM. J Biomol NMR 17 203-214 (2000)
  54. Structure and unfolding of the third type III domain from human fibronectin. Stine JM, Sun Y, Armstrong G, Bowler BE, Briknarová K. Biochemistry 54 6724-6733 (2015)
  55. Integrin beta1-chain residues involved in substrate recognition and specificity of binding to invasin. Krukonis ES, Isberg RR. Cell Microbiol 2 219-230 (2000)
  56. Solution formulation and lyophilisation of a recombinant fibronectin fragment. Pereira P, Kelly SM, Cooper A, Mardon HJ, Gellert PR, van der Walle CF. Eur J Pharm Biopharm 67 309-319 (2007)
  57. Compensating increases in protein backbone flexibility occur when the Dead ringer AT-rich interaction domain (ARID) binds DNA: a nitrogen-15 relaxation study. Iwahara J, Peterson RD, Clubb RT. Protein Sci 14 1140-1150 (2005)
  58. In vitro selection of fibronectin gain-of-function mutations. Tani PH, Loftus JC, Bowditch RD. Biochem J 365 287-294 (2002)
  59. Semiquantitative evaluation of fibronectin adsorption on unmodified and sulfonated polystyrene, as related to cell adhesion. Kowalczyńska HM, Nowak-Wyrzykowska M, Kołos R, Dobkowski J, Kamiński J. J Biomed Mater Res A 87 944-956 (2008)
  60. Interdomain mobility and conformational stability of type III fibronectin domain pairs control surface adsorption, desorption and unfolding. Pereira P, Kelly SM, Gellert PR, van der Walle CF. Colloids Surf B Biointerfaces 64 1-9 (2008)
  61. Protein backbone (15)N relaxation rates as a tool for the diagnosis of structure quality. de Alba E, Tjandra N. J Magn Reson 144 367-371 (2000)
  62. Structure-activity relationship of human bone sialoprotein peptides. Rapuano BE, MacDonald DE. Eur J Oral Sci 121 600-609 (2013)
  63. Dynamics of integrin α5β1, fibronectin, and their complex reveal sites of interaction and conformational change. Su Y, Iacob RE, Li J, Engen JR, Springer TA. J Biol Chem 298 102323 (2022)
  64. RGD mounted on an L-proline scaffold. Enholm E, Bharadwaj A. Bioorg Med Chem Lett 15 3470-3471 (2005)
  65. Dynamics in the cyclic Enterobacterial common antigen as studied by 13C NMR relaxation. Andersson A, Ahl A, Eklund R, Widmalm G, Mäler L. J Biomol NMR 31 311-320 (2005)
  66. Engineering of Bio-Adhesive Ligand Containing Recombinant RGD and PHSRN Fibronectin Cell-Binding Domains in Fusion with a Colored Multi Affinity Tag: Simple Approach for Fragment Study from Expression to Adsorption. Ben Abla A, Boeuf G, Elmarjou A, Dridi C, Poirier F, Changotade S, Lutomski D, Elm'selmi A. Int J Mol Sci 22 7362 (2021)
  67. Interrogating protonated/deuterated fibronectin fragment layers adsorbed to titania by neutron reflectivity and their concomitant control over cell adhesion. McIntosh L, Whitelaw C, Rekas A, Holt SA, van der Walle CF. J R Soc Interface 12 20150164 (2015)