2mhr Citations

Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution.

J Mol Biol 197 273-96 (1987)
Cited: 207 times
EuropePMC logo PMID: 3681996

Abstract

The molecular model of myohemerythrin, an oxygen-carrying protein from sipunculan worms, has been refined by stereochemically restrained least-squares minimization at 1.7/1.3 A resolution to a conventional R-value of 0.158. The estimated positional standard deviation is better than 0.15 A for most of the 979 protein atoms. The average isotropic displacement parameter, B, for the protein atoms is 23.1 A2. This high average B parameter appears to be due to the overall motion of the molecule, which correlates with the observed anisotropic diffraction. The side-chains of seven residues were modeled in two conformations, i.e. the side-chains were discretely disordered, and B parameters for several lysine and glutamate side-chains indicate that they are poorly localized. Of the residues in myohemerythrin, 66% are helical, with 62% occurring in four long alpha-helices with mean values for the backbone torsion angles of phi = -65 degrees, psi = -42 degrees, and for the hydrogen bonds distances of N ... O, 3.0 A and H ... O, 2.1 A, and angles of N ... O = C, 153 degrees, N-H ... O, 157 degrees, and H ... O = C, 147 degrees. For two-thirds of the alpha-helical residues, the torsional rotation of the C alpha-C beta bond, chi 1, is approximately -60 degrees, and for one-third chi 1 is approximately 180 degrees. Although most turns in myohemerythrin are well-categorized by previous classification, two do not fit in established patterns. Also included in the refined model are three sulfate ions, all partially occupied, and 157 water molecules, 40% of which are modeled fully occupied. Only one water molecule is internal to the protein, the remainder occur on the surface and are observed principally between symmetry-related molecules contributing, along with van der Waals' contacts, most of the interactions between molecules. There are eight intermolecular protein-protein hydrogen bonds, of which only four are between well-located atoms.

Articles - 2mhr mentioned but not cited (17)

  1. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Lombardi A, Summa CM, Geremia S, Randaccio L, Pavone V, DeGrado WF. Proc. Natl. Acad. Sci. U.S.A. 97 6298-6305 (2000)
  2. SABBAC: online Structural Alphabet-based protein BackBone reconstruction from Alpha-Carbon trace. Maupetit J, Gautier R, Tufféry P. Nucleic Acids Res 34 W147-51 (2006)
  3. A procedure for the prediction of temperature-sensitive mutants of a globular protein based solely on the amino acid sequence. Varadarajan R, Nagarajaram HA, Ramakrishnan C. Proc Natl Acad Sci U S A 93 13908-13913 (1996)
  4. Associative memory hamiltonians for structure prediction without homology: alpha-helical proteins. Hardin C, Eastwood MP, Luthey-Schulten Z, Wolynes PG. Proc. Natl. Acad. Sci. U.S.A. 97 14235-14240 (2000)
  5. Full cyclic coordinate descent: solving the protein loop closure problem in Calpha space. Boomsma W, Hamelryck T. BMC Bioinformatics 6 159 (2005)
  6. Generating properly weighted ensemble of conformations of proteins from sparse or indirect distance constraints. Lin M, Lu HM, Chen R, Liang J. J Chem Phys 129 094101 (2008)
  7. Towards accurate residue-residue hydrophobic contact prediction for alpha helical proteins via integer linear optimization. Rajgaria R, McAllister SR, Floudas CA. Proteins 74 929-947 (2009)
  8. Iterative assembly of helical proteins by optimal hydrophobic packing. Wu GA, Coutsias EA, Dill KA. Structure 16 1257-1266 (2008)
  9. Minimum message length inference of secondary structure from protein coordinate data. Konagurthu AS, Lesk AM, Allison L. Bioinformatics 28 i97-105 (2012)
  10. Analysis of the impact of solvent on contacts prediction in proteins. Samsonov SA, Teyra J, Anders G, Pisabarro MT. BMC Struct. Biol. 9 22 (2009)
  11. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain. Alvarez-Carreño C, Becerra A, Lazcano A. PLoS ONE 11 e0157904 (2016)
  12. Fine grained sampling of residue characteristics using molecular dynamics simulation. Joo H, Qu X, Swanson R, McCallum CM, Tsai J. Comput Biol Chem 34 172-183 (2010)
  13. Reduction of the secondary structure topological space through direct estimation of the contact energy formed by the secondary structures. Sun W, He J. BMC Bioinformatics 10 Suppl 1 S40 (2009)
  14. Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction. Tan CW, Jones DT. BMC Bioinformatics 9 94 (2008)
  15. Variable-Temperature ESI-IMS-MS Analysis of Myohemerythrin Reveals Ligand Losses, Unfolding, and a Non-Native Disulfide Bond. Woodall DW, El-Baba TJ, Fuller DR, Liu W, Brown CJ, Laganowsky A, Russell DH, Clemmer DE. Anal Chem 91 6808-6814 (2019)
  16. Expanded explorations into the optimization of an energy function for protein design. Huang YM, Bystroff C. IEEE/ACM Trans Comput Biol Bioinform 10 1176-1187 (2013)
  17. Structure, function and evolution of the hemerythrin-like domain superfamily. Alvarez-Carreño C, Alva V, Becerra A, Lazcano A. Protein Sci. 27 848-860 (2018)


Reviews citing this publication (15)

  1. How TCRs bind MHCs, peptides, and coreceptors. Rudolph MG, Stanfield RL, Wilson IA. Annu. Rev. Immunol. 24 419-466 (2006)
  2. Interactions of protein antigens with antibodies. Davies DR, Cohen GH. Proc. Natl. Acad. Sci. U.S.A. 93 7-12 (1996)
  3. Antibody-antigen interactions: new structures and new conformational changes. Wilson IA, Stanfield RL. Curr. Opin. Struct. Biol. 4 857-867 (1994)
  4. Mechanisms of cooperativity and allosteric regulation in proteins. Perutz MF. Q. Rev. Biophys. 22 139-237 (1989)
  5. The specificity of TCR/pMHC interaction. Rudolph MG, Wilson IA. Curr. Opin. Immunol. 14 52-65 (2002)
  6. Anatomy of CD1-lipid antigen complexes. Moody DB, Zajonc DM, Wilson IA. Nat. Rev. Immunol. 5 387-399 (2005)
  7. Di-iron-carboxylate proteins. Nordlund P, Eklund H. Curr. Opin. Struct. Biol. 5 758-766 (1995)
  8. Getting a sense for signals: regulation of the plant iron deficiency response. Hindt MN, Guerinot ML. Biochim. Biophys. Acta 1823 1521-1530 (2012)
  9. Structural and thermodynamic correlates of T cell signaling. Rudolph MG, Luz JG, Wilson IA. Annu Rev Biophys Biomol Struct 31 121-149 (2002)
  10. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Julien JP, Lee PS, Wilson IA. Immunol. Rev. 250 180-198 (2012)
  11. Structure-function relationships of the alternative oxidase of plant mitochondria: a model of the active site. Moore AL, Umbach AL, Siedow JN. J. Bioenerg. Biomembr. 27 367-377 (1995)
  12. Hydrolytic antibodies: variations on a theme. MacBeath G, Hilvert D. Chem. Biol. 3 433-445 (1996)
  13. Anomalous diffraction in crystallographic phase evaluation. Hendrickson WA. Q. Rev. Biophys. 47 49-93 (2014)
  14. Protein degradation and iron homeostasis. Thompson JW, Bruick RK. Biochim. Biophys. Acta 1823 1484-1490 (2012)
  15. Defining antibody-antigen recognition: towards engineered antibodies and epitopes. Tainer JA, Deal CD, Geysen HM, Roberts VA, Getzoff ED. Int. Rev. Immunol. 7 165-188 (1991)

Articles citing this publication (175)

  1. Structural analysis of substrate binding by the molecular chaperone DnaK. Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA. Science 272 1606-1614 (1996)
  2. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Hubbard SR, Wei L, Ellis L, Hendrickson WA. Nature 372 746-754 (1994)
  3. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, Stanfield RL, Julien JP, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C, Paulson JC, Feizi T, Scanlan CN, Wong CH, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA. Science 334 1097-1103 (2011)
  4. High-resolution three-dimensional structure of horse heart cytochrome c. Bushnell GW, Louie GV, Brayer GD. J. Mol. Biol. 214 585-595 (1990)
  5. Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH. Eur. J. Biochem. 243 518-526 (1997)
  6. Highly conserved protective epitopes on influenza B viruses. Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M, van der Vlugt R, Lamrani M, Korse HJ, Geelen E, Sahin Ö, Sieuwerts M, Brakenhoff JP, Vogels R, Li OT, Poon LL, Peiris M, Koudstaal W, Ward AB, Wilson IA, Goudsmit J, Friesen RH. Science 337 1343-1348 (2012)
  7. Accurate modeling of protein conformation by automatic segment matching. Levitt M. J. Mol. Biol. 226 507-533 (1992)
  8. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, Katinger H, Burton DR, Wilson IA. Immunity 22 163-173 (2005)
  9. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. Katti SK, LeMaster DM, Eklund H. J. Mol. Biol. 212 167-184 (1990)
  10. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JM, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G. Nature 349 541-544 (1991)
  11. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nordlund P, Sjöberg BM, Eklund H. Nature 345 593-598 (1990)
  12. Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. Dyson HJ, Rance M, Houghten RA, Wright PE, Lerner RA. J. Mol. Biol. 201 201-217 (1988)
  13. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Padlan EA, Silverton EW, Sheriff S, Cohen GH, Smith-Gill SJ, Davies DR. Proc. Natl. Acad. Sci. U.S.A. 86 5938-5942 (1989)
  14. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN. Plant Cell 22 2219-2236 (2010)
  15. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. Lindqvist Y, Huang W, Schneider G, Shanklin J. EMBO J. 15 4081-4092 (1996)
  16. An empirical energy function for threading protein sequence through the folding motif. Bryant SH, Lawrence CE. Proteins 16 92-112 (1993)
  17. Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Calarese DA, Lee HK, Huang CY, Best MD, Astronomo RD, Stanfield RL, Katinger H, Burton DR, Wong CH, Wilson IA. Proc. Natl. Acad. Sci. U.S.A. 102 13372-13377 (2005)
  18. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. Dyson HJ, Merutka G, Waltho JP, Lerner RA, Wright PE. J. Mol. Biol. 226 795-817 (1992)
  19. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. De Azevedo WF, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH. Proc. Natl. Acad. Sci. U.S.A. 93 2735-2740 (1996)
  20. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. Louie GV, Brayer GD. J. Mol. Biol. 214 527-555 (1990)
  21. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Whitehead TA, Chevalier A, Song Y, Dreyfus C, Fleishman SJ, De Mattos C, Myers CA, Kamisetty H, Blair P, Wilson IA, Baker D. Nat. Biotechnol. 30 543-548 (2012)
  22. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 A. Zajonc DM, Elsliger MA, Teyton L, Wilson IA. Nat. Immunol. 4 808-815 (2003)
  23. High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Hough E, Hansen LK, Birknes B, Jynge K, Hansen S, Hordvik A, Little C, Dodson E, Derewenda Z. Nature 338 357-360 (1989)
  24. Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding. Bhat TN, Bentley GA, Fischmann TO, Boulot G, Poljak RJ. Nature 347 483-485 (1990)
  25. Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Fremont DH, Stura EA, Matsumura M, Peterson PA, Wilson IA. Proc. Natl. Acad. Sci. U.S.A. 92 2479-2483 (1995)
  26. Three-dimensional structure of an idiotope-anti-idiotope complex. Bentley GA, Boulot G, Riottot MM, Poljak RJ. Nature 348 254-257 (1990)
  27. Major antigen-induced domain rearrangements in an antibody. Stanfield RL, Takimoto-Kamimura M, Rini JM, Profy AT, Wilson IA. Structure 1 83-93 (1993)
  28. Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447-52D. Stanfield RL, Gorny MK, Williams C, Zolla-Pazner S, Wilson IA. Structure 12 193-204 (2004)
  29. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. Hempstead PD, Yewdall SJ, Fernie AR, Lawson DM, Artymiuk PJ, Rice DW, Ford GC, Harrison PM. J. Mol. Biol. 268 424-448 (1997)
  30. Hydrogen bond stereochemistry in protein structure and function. Ippolito JA, Alexander RS, Christianson DW. J. Mol. Biol. 215 457-471 (1990)
  31. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Wang JH, Smolyar A, Tan K, Liu JH, Kim M, Sun ZY, Wagner G, Reinherz EL. Cell 97 791-803 (1999)
  32. Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex. Tulip WR, Varghese JN, Laver WG, Webster RG, Colman PM. J. Mol. Biol. 227 122-148 (1992)
  33. Atomic structure of an alphabeta T cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody. Wang J, Lim K, Smolyar A, Teng M, Liu J, Tse AG, Liu J, Hussey RE, Chishti Y, Thomson CT, Sweet RM, Nathenson SG, Chang HC, Sacchettini JC, Reinherz EL. EMBO J. 17 10-26 (1998)
  34. Structural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Speir JA, Garcia KC, Brunmark A, Degano M, Peterson PA, Teyton L, Wilson IA. Immunity 8 553-562 (1998)
  35. CEP: a conformational epitope prediction server. Kulkarni-Kale U, Bhosle S, Kolaskar AS. Nucleic Acids Res. 33 W168-71 (2005)
  36. Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Schulze-Gahmen U, Brandsen J, Jones HD, Morgan DO, Meijer L, Vesely J, Kim SH. Proteins 22 378-391 (1995)
  37. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. Volbeda A, Lahm A, Sakiyama F, Suck D. EMBO J. 10 1607-1618 (1991)
  38. Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. Cardoso RM, Brunel FM, Ferguson S, Zwick M, Burton DR, Dawson PE, Wilson IA. J. Mol. Biol. 365 1533-1544 (2007)
  39. Hydrogen bonds involving sulfur atoms in proteins. Gregoret LM, Rader SD, Fletterick RJ, Cohen FE. Proteins 9 99-107 (1991)
  40. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG. Cell 121 541-552 (2005)
  41. Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity. Stanfield RL, Gorny MK, Zolla-Pazner S, Wilson IA. J. Virol. 80 6093-6105 (2006)
  42. The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody. Malby RL, Tulip WR, Harley VR, McKimm-Breschkin JL, Laver WG, Webster RG, Colman PM. Structure 2 733-746 (1994)
  43. Antigen recognition by variable lymphocyte receptors. Han BW, Herrin BR, Cooper MD, Wilson IA. Science 321 1834-1837 (2008)
  44. Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing fabs. Stanfield R, Cabezas E, Satterthwait A, Stura E, Profy A, Wilson I. Structure 7 131-142 (1999)
  45. Molecular structure of leucine aminopeptidase at 2.7-A resolution. Burley SK, David PR, Taylor A, Lipscomb WN. Proc. Natl. Acad. Sci. U.S.A. 87 6878-6882 (1990)
  46. Taxonomy and conformational analysis of loops in proteins. Ring CS, Kneller DG, Langridge R, Cohen FE. J. Mol. Biol. 224 685-699 (1992)
  47. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli. Uhlin U, Cox GB, Guss JM. Structure 5 1219-1230 (1997)
  48. Correlation between the location of antigenic sites and the prediction of turns in proteins. Pellequer JL, Westhof E, Van Regenmortel MH. Immunol. Lett. 36 83-99 (1993)
  49. 26-10 Fab-digoxin complex: affinity and specificity due to surface complementarity. Jeffrey PD, Strong RK, Sieker LC, Chang CY, Campbell RL, Petsko GA, Haber E, Margolies MN, Sheriff S. Proc. Natl. Acad. Sci. U.S.A. 90 10310-10314 (1993)
  50. Beta-lactamase of Bacillus licheniformis 749/C. Refinement at 2 A resolution and analysis of hydration. Knox JR, Moews PC. J. Mol. Biol. 220 435-455 (1991)
  51. A conformational switch in human immunodeficiency virus gp41 revealed by the structures of overlapping epitopes recognized by neutralizing antibodies. Pejchal R, Gach JS, Brunel FM, Cardoso RM, Stanfield RL, Dawson PE, Burton DR, Zwick MB, Wilson IA. J. Virol. 83 8451-8462 (2009)
  52. Rigid protein motion as a model for crystallographic temperature factors. Kuriyan J, Weis WI. Proc. Natl. Acad. Sci. U.S.A. 88 2773-2777 (1991)
  53. Structural analysis of ligand stimulation of the histidine kinase NarX. Cheung J, Hendrickson WA. Structure 17 190-201 (2009)
  54. Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing V(beta) Interactions. Luz JG, Huang M, Garcia KC, Rudolph MG, Apostolopoulos V, Teyton L, Wilson IA. J. Exp. Med. 195 1175-1186 (2002)
  55. Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin. Burley SK, David PR, Sweet RM, Taylor A, Lipscomb WN. J. Mol. Biol. 224 113-140 (1992)
  56. Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA. Proteins 29 141-152 (1997)
  57. The active site of the cyanide-resistant oxidase from plant mitochondria contains a binuclear iron center. Siedow JN, Umbach AL, Moore AL. FEBS Lett. 362 10-14 (1995)
  58. Formation of a novel four-helix bundle and molecular recognition sites by dimerization of a response regulator phosphotransferase. Varughese KI, Madhusudan, Zhou XZ, Whiteley JM, Hoch JA. Mol. Cell 2 485-493 (1998)
  59. Refined structure of dienelactone hydrolase at 1.8 A. Pathak D, Ollis D. J. Mol. Biol. 214 497-525 (1990)
  60. Crystal structure of the borna disease virus nucleoprotein. Rudolph MG, Kraus I, Dickmanns A, Eickmann M, Garten W, Ficner R. Structure 11 1219-1226 (2003)
  61. Two different, highly exposed, bulged structures for an unusually long peptide bound to rat MHC class I RT1-Aa. Speir JA, Stevens J, Joly E, Butcher GW, Wilson IA. Immunity 14 81-92 (2001)
  62. Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. Hong M, Lee PS, Hoffman RM, Zhu X, Krause JC, Laursen NS, Yoon SI, Song L, Tussey L, Crowe JE, Ward AB, Wilson IA. J. Virol. 87 12471-12480 (2013)
  63. Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL. Speir JA, Abdel-Motal UM, Jondal M, Wilson IA. Immunity 10 51-61 (1999)
  64. Structure of antibody F425-B4e8 in complex with a V3 peptide reveals a new binding mode for HIV-1 neutralization. Bell CH, Pantophlet R, Schiefner A, Cavacini LA, Stanfield RL, Burton DR, Wilson IA. J. Mol. Biol. 375 969-978 (2008)
  65. Crystal structure of the murine NK cell-activating receptor NKG2D at 1.95 A. Wolan DW, Teyton L, Rudolph MG, Villmow B, Bauer S, Busch DH, Wilson IA. Nat. Immunol. 2 248-254 (2001)
  66. Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 influenza virus hemagglutinin. Dreyfus C, Ekiert DC, Wilson IA. J. Virol. 87 7149-7154 (2013)
  67. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Lee PS, Ohshima N, Stanfield RL, Yu W, Iba Y, Okuno Y, Kurosawa Y, Wilson IA. Nat Commun 5 3614 (2014)
  68. 1H-NMR stereospecific assignments by conformational data-base searches. Nilges M, Clore GM, Gronenborn AM. Biopolymers 29 813-822 (1990)
  69. Crystal structure of a human rhinovirus neutralizing antibody complexed with a peptide derived from viral capsid protein VP2. Tormo J, Blaas D, Parry NR, Rowlands D, Stuart D, Fita I. EMBO J. 13 2247-2256 (1994)
  70. Crystal structure of turnip yellow mosaic virus. Canady MA, Larson SB, Day J, McPherson A. Nat. Struct. Biol. 3 771-781 (1996)
  71. Crystal structure of a sweet tasting protein thaumatin I, at 1.65 A resolution. Ogata CM, Gordon PF, de Vos AM, Kim SH. J. Mol. Biol. 228 893-908 (1992)
  72. Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-peptide antibodies with a protein alpha-helix. Fieser TM, Tainer JA, Geysen HM, Houghten RA, Lerner RA. Proc. Natl. Acad. Sci. U.S.A. 84 8568-8572 (1987)
  73. Crystal structure of an idiotype-anti-idiotype Fab complex. Ban N, Escobar C, Garcia R, Hasel K, Day J, Greenwood A, McPherson A. Proc. Natl. Acad. Sci. U.S.A. 91 1604-1608 (1994)
  74. Structure-based design of a constrained peptide mimic of the HIV-1 V3 loop neutralization site. Ghiara JB, Ferguson DC, Satterthwait AC, Dyson HJ, Wilson IA. J. Mol. Biol. 266 31-39 (1997)
  75. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG. Proc. Natl. Acad. Sci. U.S.A. 103 81-86 (2006)
  76. Influenza human monoclonal antibody 1F1 interacts with three major antigenic sites and residues mediating human receptor specificity in H1N1 viruses. Tsibane T, Ekiert DC, Krause JC, Martinez O, Crowe JE, Wilson IA, Basler CF. PLoS Pathog. 8 e1003067 (2012)
  77. Structure and mechanism of the Propionibacterium acnes polyunsaturated fatty acid isomerase. Liavonchanka A, Hornung E, Feussner I, Rudolph MG. Proc. Natl. Acad. Sci. U.S.A. 103 2576-2581 (2006)
  78. An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure. Monge A, Friesner RA, Honig B. Proc. Natl. Acad. Sci. U.S.A. 91 5027-5029 (1994)
  79. Alternate protein frameworks for molecular recognition. Ku J, Schultz PG. Proc. Natl. Acad. Sci. U.S.A. 92 6552-6556 (1995)
  80. Structures of met and azidomet hemerythrin at 1.66 A resolution. Holmes MA, Stenkamp RE. J. Mol. Biol. 220 723-737 (1991)
  81. Identification, characterization, and structure analysis of the cyclic di-AMP-binding PII-like signal transduction protein DarA. Gundlach J, Dickmanns A, Schröder-Tittmann K, Neumann P, Kaesler J, Kampf J, Herzberg C, Hammer E, Schwede F, Kaever V, Tittmann K, Stülke J, Ficner R. J. Biol. Chem. 290 3069-3080 (2015)
  82. Predicting the helix packing of globular proteins by self-correcting distance geometry. Mumenthaler C, Braun W. Protein Sci. 4 863-871 (1995)
  83. Recurring conformation of the human immunodeficiency virus type 1 gp120 V3 loop. Stanfield RL, Ghiara JB, Ollmann Saphire E, Profy AT, Wilson IA. Virology 315 159-173 (2003)
  84. Crystal structure of glycinamide ribonucleotide transformylase from Escherichia coli at 3.0 A resolution. A target enzyme for chemotherapy. Chen P, Schulze-Gahmen U, Stura EA, Inglese J, Johnson DL, Marolewski A, Benkovic SJ, Wilson IA. J. Mol. Biol. 227 283-292 (1992)
  85. Structure and specificity of the anti-digoxin antibody 40-50. Jeffrey PD, Schildbach JF, Chang CY, Kussie PH, Margolies MN, Sheriff S. J. Mol. Biol. 248 344-360 (1995)
  86. Characterization of a prokaryotic haemerythrin from the methanotrophic bacterium Methylococcus capsulatus (Bath). Karlsen OA, Ramsevik L, Bruseth LJ, Larsen Ø, Brenner A, Berven FS, Jensen HB, Lillehaug JR. FEBS J. 272 2428-2440 (2005)
  87. Structural origins of efficient proton abstraction from carbon by a catalytic antibody. Debler EW, Ito S, Seebeck FP, Heine A, Hilvert D, Wilson IA. Proc. Natl. Acad. Sci. U.S.A. 102 4984-4989 (2005)
  88. Crystal structure and nucleotide binding of the Thermus thermophilus RNA helicase Hera N-terminal domain. Rudolph MG, Heissmann R, Wittmann JG, Klostermeier D. J. Mol. Biol. 361 731-743 (2006)
  89. Crystal structure of a cocaine-binding antibody. Larsen NA, Zhou B, Heine A, Wirsching P, Janda KD, Wilson IA. J. Mol. Biol. 311 9-15 (2001)
  90. Structural analysis of metal sites in proteins: non-heme iron sites as a case study. Andreini C, Bertini I, Cavallaro G, Najmanovich RJ, Thornton JM. J. Mol. Biol. 388 356-380 (2009)
  91. A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility. Klostermeier D, Rudolph MG. Nucleic Acids Res. 37 421-430 (2009)
  92. The 2.2 A resolution structure of the O(H) blood-group-specific lectin I from Ulex europaeus. Audette GF, Vandonselaar M, Delbaere LT. J. Mol. Biol. 304 423-433 (2000)
  93. Alternative recognition of the conserved stem epitope in influenza A virus hemagglutinin by a VH3-30-encoded heterosubtypic antibody. Wyrzucki A, Dreyfus C, Kohler I, Steck M, Wilson IA, Hangartner L. J. Virol. 88 7083-7092 (2014)
  94. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding. Hlodan R, Tempst P, Hartl FU. Nat. Struct. Biol. 2 587-595 (1995)
  95. Crystal structures of the free and liganded form of an esterolytic catalytic antibody. Wedemayer GJ, Wang LH, Patten PA, Schultz PG, Stevens RC. J. Mol. Biol. 268 390-400 (1997)
  96. Pseudo 2-fold symmetry in the copper-binding domain of arthropodan haemocyanins. Possible implications for the evolution of oxygen transport proteins. Volbeda A, Hol WG. J. Mol. Biol. 206 531-546 (1989)
  97. Structural and functional analysis of the globular head domain of p115 provides insight into membrane tethering. An Y, Chen CY, Moyer B, Rotkiewicz P, Elsliger MA, Godzik A, Wilson IA, Balch WE. J. Mol. Biol. 391 26-41 (2009)
  98. Structural evaluation of potent NKT cell agonists: implications for design of novel stimulatory ligands. Schiefner A, Fujio M, Wu D, Wong CH, Wilson IA. J. Mol. Biol. 394 71-82 (2009)
  99. Modulation of antibody affinity by a non-contact residue. Schillbach JF, Near RI, Bruccoleri RE, Haber E, Jeffrey PD, Novotny J, Sheriff S, Margolies MN. Protein Sci. 2 206-214 (1993)
  100. Structure and refinement of the oxidized P21 form of uteroglobin at 1.64 A resolution. Bally R, Delettré J. J. Mol. Biol. 206 153-170 (1989)
  101. A peptide inhibitor of HIV-1 neutralizing antibody 2G12 is not a structural mimic of the natural carbohydrate epitope on gp120. Menendez A, Calarese DA, Stanfield RL, Chow KC, Scanlan CN, Kunert R, Katinger H, Burton DR, Wilson IA, Scott JK. FASEB J. 22 1380-1392 (2008)
  102. Brownian dynamics simulations of protein folding: access to milliseconds time scale and beyond. Rojnuckarin A, Kim S, Subramaniam S. Proc. Natl. Acad. Sci. U.S.A. 95 4288-4292 (1998)
  103. Toward the detection and validation of repeats in protein structure. Murray KB, Taylor WR, Thornton JM. Proteins 57 365-380 (2004)
  104. Crystal structure of a hypothetical protein, TM841 of Thermotoga maritima, reveals its function as a fatty acid-binding protein. Schulze-Gahmen U, Pelaschier J, Yokota H, Kim R, Kim SH. Proteins 50 526-530 (2003)
  105. How H13 histocompatibility peptides differing by a single methyl group and lacking conventional MHC binding anchor motifs determine self-nonself discrimination. Ostrov DA, Roden MM, Shi W, Palmieri E, Christianson GJ, Mendoza L, Villaflor G, Tilley D, Shastri N, Grey H, Almo SC, Roopenian D, Nathenson SG. J Immunol 168 283-289 (2002)
  106. Structure of the human fatty acid synthase KS-MAT didomain as a framework for inhibitor design. Pappenberger G, Benz J, Gsell B, Hennig M, Ruf A, Stihle M, Thoma R, Rudolph MG. J. Mol. Biol. 397 508-519 (2010)
  107. Models of the serine protease domain of the human antithrombotic plasma factor activated protein C and its zymogen. Fisher CL, Greengard JS, Griffin JH. Protein Sci. 3 588-599 (1994)
  108. Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes. Rosenberg J, Dickmanns A, Neumann P, Gunka K, Arens J, Kaever V, Stülke J, Ficner R, Commichau FM. J. Biol. Chem. 290 6596-6606 (2015)
  109. The 2.5 A resolution structure of the jel42 Fab fragment/HPr complex. Prasad L, Waygood EB, Lee JS, Delbaere LT. J. Mol. Biol. 280 829-845 (1998)
  110. Pattern recognition and self-correcting distance geometry calculations applied to myohemerythrin. Hänggi G, Braun W. FEBS Lett. 344 147-153 (1994)
  111. Altering the antigenicity of proteins. Alexander H, Alexander S, Getzoff ED, Tainer JA, Geysen HM, Lerner RA. Proc. Natl. Acad. Sci. U.S.A. 89 3352-3356 (1992)
  112. Characterization of the backbone dynamics of an anti-digoxin antibody VL domain by inverse detected 1H-15N NMR: comparisons with X-ray data for the Fab. Constantine KL, Friedrichs MS, Goldfarb V, Jeffrey PD, Sheriff S, Mueller L. Proteins 15 290-311 (1993)
  113. H7N9 influenza virus neutralizing antibodies that possess few somatic mutations. Thornburg NJ, Zhang H, Bangaru S, Sapparapu G, Kose N, Lampley RM, Bombardi RG, Yu Y, Graham S, Branchizio A, Yoder SM, Rock MT, Creech CB, Edwards KM, Lee D, Li S, Wilson IA, García-Sastre A, Albrecht RA, Crowe JE. J. Clin. Invest. 126 1482-1494 (2016)
  114. Mutagenesis studies on the amino acid residues involved in the iron-binding and the activity of human 5-lipoxygenase. Ishii S, Noguchi M, Miyano M, Matsumoto T, Noma M. Biochem. Biophys. Res. Commun. 182 1482-1490 (1992)
  115. Molecular dynamics study of secondary structure motions in proteins: application to myohemerythrin. Rojewska D, Elber R. Proteins 7 265-279 (1990)
  116. Structure-based design of a protein immunogen that displays an HIV-1 gp41 neutralizing epitope. Stanfield RL, Julien JP, Pejchal R, Gach JS, Zwick MB, Wilson IA. J. Mol. Biol. 414 460-476 (2011)
  117. Think twice: understanding the high potency of bis(phenyl)methane inhibitors of thrombin. Baum B, Muley L, Heine A, Smolinski M, Hangauer D, Klebe G. J. Mol. Biol. 391 552-564 (2009)
  118. Application of a directed conformational search for generating 3-D coordinates for protein structures from alpha-carbon coordinates. Bassolino-Klimas D, Bruccoleri RE. Proteins 14 465-474 (1992)
  119. Assessing methods for identifying pair-wise atomic contacts across binding interfaces. Fischer TB, Holmes JB, Miller IR, Parsons JR, Tung L, Hu JC, Tsai J. J. Struct. Biol. 153 103-112 (2006)
  120. Complete reaction cycle of a cocaine catalytic antibody at atomic resolution. Zhu X, Dickerson TJ, Rogers CJ, Kaufmann GF, Mee JM, McKenzie KM, Janda KD, Wilson IA. Structure 14 205-216 (2006)
  121. Crystal structure of Taq DNA polymerase in complex with an inhibitory Fab: the Fab is directed against an intermediate in the helix-coil dynamics of the enzyme. Murali R, Sharkey DJ, Daiss JL, Murthy HM. Proc. Natl. Acad. Sci. U.S.A. 95 12562-12567 (1998)
  122. Structure of Hepatitis C Virus Envelope Glycoprotein E1 Antigenic Site 314-324 in Complex with Antibody IGH526. Kong L, Kadam RU, Giang E, Ruwona TB, Nieusma T, Culhane JC, Stanfield RL, Dawson PE, Wilson IA, Law M. J. Mol. Biol. 427 2617-2628 (2015)
  123. A variable light domain fluorogen activating protein homodimerizes to activate dimethylindole red. Senutovitch N, Stanfield RL, Bhattacharyya S, Rule GS, Wilson IA, Armitage BA, Waggoner AS, Berget PB. Biochemistry 51 2471-2485 (2012)
  124. Amino acid sequence of the small cadmium-binding protein (MP II) from Nereis diversicolor (annelida, polychaeta). Evidence for a myohemerythrin structure. Demuynck S, Li KW, Van der Schors R, Dhainaut-Courtois N. Eur. J. Biochem. 217 151-156 (1993)
  125. Comparative docking studies on ligand binding to the multispecific antibodies IgE-La2 and IgE-Lb4. Sotriffer CA, Winger RH, Liedl KR, Rode BM, Varga JM. J Comput Aided Mol Des 10 305-320 (1996)
  126. Crystal structure analysis and in silico pKa calculations suggest strong pKa shifts of ligands as driving force for high-affinity binding to TGT. Ritschel T, Hoertner S, Heine A, Diederich F, Klebe G. Chembiochem 10 716-727 (2009)
  127. Crystal structures of a quorum-quenching antibody. Debler EW, Kaufmann GF, Kirchdoerfer RN, Mee JM, Janda KD, Wilson IA. J. Mol. Biol. 368 1392-1402 (2007)
  128. Hydrophobic interaction between globin helices. Weaver DL. Biopolymers 32 477-490 (1992)
  129. Solution structure, hydrodynamics and thermodynamics of the UvrB C-terminal domain. Alexandrovich A, Czisch M, Frenkiel TA, Kelly GP, Goosen N, Moolenaar GF, Chowdhry BZ, Sanderson MR, Lane AN. J. Biomol. Struct. Dyn. 19 219-236 (2001)
  130. Understanding binding selectivity toward trypsin and factor Xa: the role of aromatic interactions. Di Fenza A, Heine A, Koert U, Klebe G. ChemMedChem 2 297-308 (2007)
  131. A peptide that antagonizes TCR-mediated reactions with both syngeneic and allogeneic agonists: functional and structural aspects. Rudolph MG, Shen LQ, Lamontagne SA, Luz JG, Delaney JR, Ge Q, Cho BK, Palliser D, McKinley CA, Chen J, Wilson IA, Eisen HN. J Immunol 172 2994-3002 (2004)
  132. Metal substitutions at the diiron sites of hemerythrin and myohemerythrin: contributions of divalent metals to stability of a four-helix bundle protein. Zhang JH, Kurtz DM. Proc. Natl. Acad. Sci. U.S.A. 89 7065-7069 (1992)
  133. Primary structure of myohemerythrin from the annelid Nereis diversicolor. Takagi T, Cox JA. FEBS Lett. 285 25-27 (1991)
  134. Structural basis for antibody catalysis of a cationic cyclization reaction. Zhu X, Heine A, Monnat F, Houk KN, Janda KD, Wilson IA. J. Mol. Biol. 329 69-83 (2003)
  135. Antigen-antibody interactions: an NMR approach. Wright PE, Dyson HJ, Lerner RA, Riechmann L, Tsang P. Biochem. Pharmacol. 40 83-88 (1990)
  136. Cloning and expression analysis of a cDNA that encodes a leech hemerythrin. Coutte L, Slomianny MC, Malecha J, Baert JL. Biochim. Biophys. Acta 1518 282-286 (2001)
  137. Fragment-based lead discovery: screening and optimizing fragments for thermolysin inhibition. Englert L, Silber K, Steuber H, Brass S, Over B, Gerber HD, Heine A, Diederich WE, Klebe G. ChemMedChem 5 930-940 (2010)
  138. Packing and recognition of protein structural elements: a new approach applied to the 4-helix bundle of myohemerythrin. Tufféry P, Lavery R. Proteins 15 413-425 (1993)
  139. A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Bangaru S, Zhang H, Gilchuk IM, Voss TG, Irving RP, Gilchuk P, Matta P, Zhu X, Lang S, Nieusma T, Richt JA, Albrecht RA, Vanderven HA, Bombardi R, Kent SJ, Ward AB, Wilson IA, Crowe JE. Nat Commun 9 2669 (2018)
  140. Contribution of a single heavy chain residue to specificity of an anti-digoxin monoclonal antibody. Schildbach JF, Shaw SY, Bruccoleri RE, Haber E, Herzenberg LA, Jager GC, Jeffrey PD, Panka DJ, Parks DR, Near RI. Protein Sci. 3 737-749 (1994)
  141. Developing Adnectins that target SRC co-activator binding to PXR: a structural approach toward understanding promiscuity of PXR. Khan JA, Camac DM, Low S, Tebben AJ, Wensel DL, Wright MC, Su J, Jenny V, Gupta RD, Ruzanov M, Russo KA, Bell A, An Y, Bryson JW, Gao M, Gambhire P, Baldwin ET, Gardner D, Cavallaro CL, Duncia JV, Hynes J. J. Mol. Biol. 427 924-942 (2015)
  142. Specific recognition of a DNA immunogen by its elicited antibody. Sanguineti S, Centeno Crowley JM, Lodeiro Merlo MF, Cerutti ML, Wilson IA, Goldbaum FA, Stanfield RL, de Prat-Gay G. J. Mol. Biol. 370 183-195 (2007)
  143. Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Stanfield RL, De Castro C, Marzaioli AM, Wilson IA, Pantophlet R. Glycobiology 25 412-419 (2015)
  144. Crystal structure of viral macrophage inflammatory protein I encoded by Kaposi's sarcoma-associated herpesvirus at 1.7A. Luz JG, Yu M, Su Y, Wu Z, Zhou Z, Sun R, Wilson IA. J. Mol. Biol. 352 1019-1028 (2005)
  145. Investigation of specificity determinants in bacterial tRNA-guanine transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor. Biela I, Tidten-Luksch N, Immekus F, Glinca S, Nguyen TX, Gerber HD, Heine A, Klebe G, Reuter K. PLoS ONE 8 e64240 (2013)
  146. Conformational studies on beta-bend containing a cis peptide unit. Nagarajaram HA, Paul PK, Ramanarayanan K, Soman KV, Ramakrishnan C. Int J Pept Protein Res 40 383-394 (1992)
  147. Crystallization and preliminary X-ray analysis of the methane monooxygenase hydroxylase protein from Methylococcus capsulatus (Bath). Rosenzweig AC, Frederick CA, Lippard SJ. J. Mol. Biol. 227 583-585 (1992)
  148. Ligand binding by antibody IgE Lb4: assessment of binding site preferences using microcalorimetry, docking, and free energy simulations. Sotriffer CA, Flader W, Cooper A, Rode BM, Linthicum DS, Liedl KR, Varga JM. Biophys. J. 76 2966-2977 (1999)
  149. Structure-based design, synthesis, evaluation, and crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase. Xu L, Chong Y, Hwang I, D'Onofrio A, Amore K, Beardsley GP, Li C, Olson AJ, Boger DL, Wilson IA. J Biol Chem 282 13033-13046 (2007)
  150. Conformational study of a peptide epitope shows large preferences for beta-turn conformations. Ripoll DR. Int J Pept Protein Res 40 575-581 (1992)
  151. Crystal structures of apo and inhibitor-bound TGFβR2 kinase domain: insights into TGFβR isoform selectivity. Tebben AJ, Ruzanov M, Gao M, Xie D, Kiefer SE, Yan C, Newitt JA, Zhang L, Kim K, Lu H, Kopcho LM, Sheriff S. Acta Crystallogr D Struct Biol 72 658-674 (2016)
  152. Structure and substrate docking of a hydroxy(phenyl)pyruvate reductase from the higher plant Coleus blumei Benth. Janiak V, Petersen M, Zentgraf M, Klebe G, Heine A. Acta Crystallogr. D Biol. Crystallogr. 66 593-603 (2010)
  153. Folding kinetics of designer proteins. Application of the diffusion-collision model to a de novo designed four-helix bundle. Yapa KK, Weaver DL. Biophys. J. 63 296-299 (1992)
  154. Molecular insights into γδ T cell costimulation by an anti-JAML antibody. Verdino P, Witherden DA, Ferguson MS, Corper AL, Schiefner A, Havran WL, Wilson IA. Structure 19 80-89 (2011)
  155. Structural basis for a disfavored elimination reaction in catalytic antibody 1D4. Larsen NA, Heine A, Crane L, Cravatt BF, Lerner RA, Wilson IA. J. Mol. Biol. 314 93-102 (2001)
  156. Synthesis and characterization of a recombinant myohemerythrin protein encoded by a synthetic gene. Alexander H, Alexander S, Heffron F, Fieser TM, Hay BN, Getzoff ED, Tainer JA, Lerner RA. Gene 99 151-156 (1991)
  157. 1H-NMR conformational analysis of a high-affinity antigenic 11-residue peptide from the tryptophan synthase beta 2 subunit. Delepierre M, Larvor MP, Baleux F, Goldberg ME. Eur. J. Biochem. 201 681-693 (1991)
  158. Abduction of iron(III) from the soluble methane monooxygenase hydroxylase and reconstitution of the binuclear site with iron and manganese. Atta M, Fontecave M, Wilkins PC, Dalton H. Eur. J. Biochem. 217 217-223 (1993)
  159. Iron Oxidation in Escherichia coli Bacterioferritin Ferroxidase Centre, a Site Designed to React Rapidly with H2 O2 but Slowly with O2. Pullin J, Wilson MT, Clémancey M, Blondin G, Bradley JM, Moore GR, Le Brun NE, Lučić M, Worrall JAR, Svistunenko DA. Angew Chem Int Ed Engl 60 8361-8369 (2021)
  160. Primary structure of a myohemerythrin-like cadmium-binding protein, isolated from a terrestrial annelid oligochaete. Nejmeddine A, Wouters-Tyrou D, Baert JL, Sautière P. C. R. Acad. Sci. III, Sci. Vie 320 459-468 (1997)
  161. Annotation and Molecular Characterisation of the TaIRO3 and TaHRZ Iron Homeostasis Genes in Bread Wheat (Triticum aestivum L.). Carey-Fung O, Beasley JT, Johnson AAT. Genes (Basel) 12 653 (2021)
  162. Conformations of arginine and lysine side chains in association with anions. Chakrabarti P. Int J Pept Protein Res 43 284-291 (1994)
  163. Evidence for two histidine ligands at the diiron site of methane monooxygenase. Smith DD, Dalton H. Eur. J. Biochem. 210 629-633 (1992)
  164. Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicate the refinement of a pentameric coiled-coil structure of NSP4 of rotavirus. Chacko AR, Zwart PH, Read RJ, Dodson EJ, Rao CD, Suguna K. Acta Crystallogr. D Biol. Crystallogr. 68 1541-1548 (2012)
  165. Soaking suggests "alternative facts": Only co-crystallization discloses major ligand-induced interface rearrangements of a homodimeric tRNA-binding protein indicating a novel mode-of-inhibition. Ehrmann FR, Stojko J, Metz A, Debaene F, Barandun LJ, Heine A, Diederich F, Cianférani S, Reuter K, Klebe G. PLoS ONE 12 e0175723 (2017)
  166. Discovery of Small-Molecule Nonfluorescent Inhibitors of Fluorogen-Fluorogen Activating Protein Binding Pair. Wu Y, Stauffer SR, Stanfield RL, Tapia PH, Ursu O, Fisher GW, Szent-Gyorgyi C, Evangelisti A, Waller A, Strouse JJ, Carter MB, Bologa C, Gouveia K, Poslusney M, Waggoner AS, Lindsley CW, Jarvik JW, Sklar LA. J Biomol Screen 21 74-87 (2016)
  167. Graphical representation of the salient conformational features of protein residues. Pal D, Chakrabarti P. Protein Eng. 12 523-526 (1999)
  168. Spectroscopic studies of oxo-centered, carboxylate-bridged, trinuclear mixed-valence iron (ІІІ, ІІІ, ІІ) complexes with aromatic hydroxycarboxylic acids. Singh AK, Singh AK. Spectrochim Acta A Mol Biomol Spectrosc 112 422-428 (2013)
  169. The linked phi psi chain plot for visual comparison of the backbone conformation of peptides and proteins. McClain RD, Erickson BW. Int J Pept Protein Res 45 272-281 (1995)
  170. A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity. Bravi B, Di Gioacchino A, Fernandez-de-Cossio-Diaz J, Walczak AM, Mora T, Cocco S, Monasson R. Elife 12 e85126 (2023)
  171. Catalytic residues, substrate specificity, and role in carbon starvation of the 2-hydroxy FA dioxygenase Mpo1 in yeast. Mori K, Obara T, Seki N, Miyamoto M, Naganuma T, Kitamura T, Kihara A. J Lipid Res 61 1104-1114 (2020)
  172. Cryo-EM structure of P. falciparum circumsporozoite protein with a vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. Oyen D, Torres JL, Cottrell CA, Richter King C, Wilson IA, Ward AB, Ward AB. Sci Adv 4 eaau8529 (2018)
  173. Crystallographic Fragment Screening on the Shigella Type III Secretion System Chaperone IpgC. Gárdonyi M, Hasewinkel C, Wallbaum J, Wollenhaupt J, Weiss MS, Klebe G, Reuter K, Heine A. ACS Omega 8 46051-46065 (2023)
  174. Oxymyohemerythrin: discriminating between O2 release and autoxidation. Lloyd CR, Raner GM, Moser A, Eyring EM, Ellis WR. J. Inorg. Biochem. 81 293-300 (2000)
  175. Structural analysis of coniferyl alcohol 9-O-methyltransferase from Linum nodiflorum reveals a novel active-site environment. Wolters S, Neeb M, Berim A, Schulze Wischeler J, Petersen M, Heine A. Acta Crystallogr. D Biol. Crystallogr. 69 888-900 (2013)


Related citations provided by authors (9)

  1. Location of Iron and Sulfur Atoms in Myohemerythrin from Anomalous-Scattering Measurements. Sheriff S, Hendrickson WA Acta Crystallogr., B 43 209- (1987)
  2. General Density Function Corresponding to X-Ray Diffraction with Anomalous Scattering Included. Hendrickson WA, Sheriff S Acta Crystallogr., A, Found. Crystallogr. 43 121- (1987)
  3. Description of Overall Anisotropy in Diffraction from Macromolecular Crystals. Sheriff S, Hendrickson WA Acta Crystallogr., A, Found. Crystallogr. 43 118- (1987)
  4. Structural Heterogeneity in Protein Crystals. Smith JL, Hendrickson WA, Honzatko RB, Sheriff S Biochemistry 25 5018- (1986)
  5. Mobility and Heterogeneity in Protein Structure as Seen by Diffraction. Hendrickson WA, Smith JL, Sheriff S Biomolecular Stereodynamics III. Proceedings of the Fourth Conversation in the Discipline of Biomolecular Stereodynamics 217- (1986)
  6. Influence of solvent accessibility and intermolecular contacts on atomic mobilities in hemerythrins.. Sheriff S, Hendrickson WA, Stenkamp RE, Sieker LC, Jensen LH Proc Natl Acad Sci U S A 82 1104-7 (1985)
  7. Structure and Function of Hemerythrins. Hendrickson WA, Smith JL, Sheriff S Respiratory Pigments in Animals 1- (1985)
  8. Structure of the Active Center of Hemerythrins. Sheriff S, Hendrickson WA, Smith JL Life Chem. Rep.,Suppl. Ser. 1 305- (1983)
  9. Tertiary structure of myohemerythrin at low resolution.. Hendrickson WA, Klippenstein GL, Ward KB Proc Natl Acad Sci U S A 72 2160-4 (1975)