2o5j Citations

Structural basis for substrate loading in bacterial RNA polymerase.

Abstract

The mechanism of substrate loading in multisubunit RNA polymerase is crucial for understanding the general principles of transcription yet remains hotly debated. Here we report the 3.0-A resolution structures of the Thermus thermophilus elongation complex (EC) with a non-hydrolysable substrate analogue, adenosine-5'-[(alpha,beta)-methyleno]-triphosphate (AMPcPP), and with AMPcPP plus the inhibitor streptolydigin. In the EC/AMPcPP structure, the substrate binds to the active ('insertion') site closed through refolding of the trigger loop (TL) into two alpha-helices. In contrast, the EC/AMPcPP/streptolydigin structure reveals an inactive ('preinsertion') substrate configuration stabilized by streptolydigin-induced displacement of the TL. Our structural and biochemical data suggest that refolding of the TL is vital for catalysis and have three main implications. First, despite differences in the details, the two-step preinsertion/insertion mechanism of substrate loading may be universal for all RNA polymerases. Second, freezing of the preinsertion state is an attractive target for the design of novel antibiotics. Last, the TL emerges as a prominent target whose refolding can be modulated by regulatory factors.

Reviews - 2o5j mentioned but not cited (8)

  1. Structural biology of bacterial RNA polymerase. Murakami KS. Biomolecules 5 848-864 (2015)
  2. Bacterial Transcription as a Target for Antibacterial Drug Development. Ma C, Yang X, Lewis PJ. Microbiol Mol Biol Rev 80 139-160 (2016)
  3. Regulation of Transcript Elongation. Belogurov GA, Artsimovitch I. Annu Rev Microbiol 69 49-69 (2015)
  4. Isolation and characterization of transcription fidelity mutants. Strathern JN, Jin DJ, Court DL, Kashlev M. Biochim Biophys Acta 1819 694-699 (2012)
  5. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. Belogurov GA, Artsimovitch I. J Mol Biol 431 3975-4006 (2019)
  6. Multisubunit RNA Polymerases of Jumbo Bacteriophages. Sokolova ML, Misovetc I, V Severinov K. Viruses 12 E1064 (2020)
  7. Computational simulation strategies for analysis of multisubunit RNA polymerases. Wang B, Feig M, Cukier RI, Burton ZF. Chem Rev 113 8546-8566 (2013)
  8. Forks, pincers, and triggers: the tools for nucleotide incorporation and translocation in multi-subunit RNA polymerases. Erie DA, Kennedy SR. Curr Opin Struct Biol 19 708-714 (2009)

Articles - 2o5j mentioned but not cited (60)

  1. Bacterial transcription terminators: the RNA 3'-end chronicles. Peters JM, Vangeloff AD, Landick R. J Mol Biol 412 793-813 (2011)
  2. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Kireeva ML, Nedialkov YA, Cremona GH, Purtov YA, Lubkowska L, Malagon F, Burton ZF, Strathern JN, Kashlev M. Mol Cell 30 557-566 (2008)
  3. Molecular evolution of multisubunit RNA polymerases: sequence analysis. Lane WJ, Darst SA. J Mol Biol 395 671-685 (2010)
  4. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme. Basu RS, Warner BA, Molodtsov V, Pupov D, Esyunina D, Fernández-Tornero C, Kulbachinskiy A, Murakami KS. J Biol Chem 289 24549-24559 (2014)
  5. Role of the RNA polymerase trigger loop in catalysis and pausing. Zhang J, Palangat M, Landick R. Nat Struct Mol Biol 17 99-104 (2010)
  6. Molecular evolution of multisubunit RNA polymerases: structural analysis. Lane WJ, Darst SA. J Mol Biol 395 686-704 (2010)
  7. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Sevostyanova A, Belogurov GA, Mooney RA, Landick R, Artsimovitch I. Mol Cell 43 253-262 (2011)
  8. Stepwise mechanism for transcription fidelity. Yuzenkova Y, Bochkareva A, Tadigotla VR, Roghanian M, Zorov S, Severinov K, Zenkin N. BMC Biol 8 54 (2010)
  9. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Hein PP, Kolb KE, Windgassen T, Bellecourt MJ, Darst SA, Mooney RA, Landick R. Nat Struct Mol Biol 21 794-802 (2014)
  10. Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex. Kang JY, Olinares PD, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Elife 6 e25478 (2017)
  11. Active site opening and closure control translocation of multisubunit RNA polymerase. Malinen AM, Turtola M, Parthiban M, Vainonen L, Johnson MS, Belogurov GA. Nucleic Acids Res 40 7442-7451 (2012)
  12. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. Tan L, Wiesler S, Trzaska D, Carney HC, Weinzierl RO. J Biol 7 40 (2008)
  13. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation. Lennon CW, Ross W, Martin-Tumasz S, Toulokhonov I, Vrentas CE, Rutherford ST, Lee JH, Butcher SE, Gourse RL. Genes Dev 26 2634-2646 (2012)
  14. Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution. Utrilla J, O'Brien EJ, Chen K, McCloskey D, Cheung J, Wang H, Armenta-Medina D, Feist AM, Palsson BO. Cell Syst 2 260-271 (2016)
  15. Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Hudson BP, Quispe J, Lara-González S, Kim Y, Berman HM, Arnold E, Ebright RH, Lawson CL. Proc Natl Acad Sci U S A 106 19830-19835 (2009)
  16. Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis. Yuzenkova Y, Zenkin N. Proc Natl Acad Sci U S A 107 10878-10883 (2010)
  17. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β' subunit of RNA polymerase. Song T, Park Y, Shamputa IC, Seo S, Lee SY, Jeon HS, Choi H, Lee M, Glynne RJ, Barnes SW, Walker JR, Batalov S, Yusim K, Feng S, Tung CS, Theiler J, Via LE, Boshoff HI, Murakami KS, Korber B, Barry CE, Cho SN. Mol Microbiol 91 1106-1119 (2014)
  18. Transcription inhibition by the depsipeptide antibiotic salinamide A. Degen D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N, Arnold E, Fenical W, Ebright RH. Elife 3 e02451 (2014)
  19. Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism. Liu B, Zuo Y, Steitz TA. Proc Natl Acad Sci U S A 113 4051-4056 (2016)
  20. TRANSCRIPTION. Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies. Yang Y, Darbari VC, Zhang N, Lu D, Glyde R, Wang YP, Winkelman JT, Gourse RL, Murakami KS, Buck M, Zhang X. Science 349 882-885 (2015)
  21. Isolation and characterization of RNA polymerase rpoB mutations that alter transcription slippage during elongation in Escherichia coli. Zhou YN, Lubkowska L, Hui M, Court C, Chen S, Court DL, Strathern J, Jin DJ, Kashlev M. J Biol Chem 288 2700-2710 (2013)
  22. Controlled interplay between trigger loop and Gre factor in the RNA polymerase active centre. Roghanian M, Yuzenkova Y, Zenkin N. Nucleic Acids Res 39 4352-4359 (2011)
  23. Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape. Pupov D, Kuzin I, Bass I, Kulbachinskiy A. Nucleic Acids Res 42 4494-4504 (2014)
  24. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Braffman NR, Piscotta FJ, Hauver J, Campbell EA, Link AJ, Darst SA. Proc Natl Acad Sci U S A 116 1273-1278 (2019)
  25. NusG inhibits RNA polymerase backtracking by stabilizing the minimal transcription bubble. Turtola M, Belogurov GA. Elife 5 e18096 (2016)
  26. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Nayak D, Voss M, Windgassen T, Mooney RA, Landick R. Mol Cell 50 882-893 (2013)
  27. Trigger loop of RNA polymerase is a positional, not acid-base, catalyst for both transcription and proofreading. Mishanina TV, Palo MZ, Nayak D, Mooney RA, Landick R. Proc Natl Acad Sci U S A 114 E5103-E5112 (2017)
  28. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase. Kireeva ML, Opron K, Seibold SA, Domecq C, Cukier RI, Coulombe B, Kashlev M, Burton ZF. BMC Biophys 5 11 (2012)
  29. A two-state model for the dynamics of the pyrophosphate ion release in bacterial RNA polymerase. Da LT, Pardo Avila F, Wang D, Huang X. PLoS Comput Biol 9 e1003020 (2013)
  30. Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase. Seibold SA, Singh BN, Zhang C, Kireeva M, Domecq C, Bouchard A, Nazione AM, Feig M, Cukier RI, Coulombe B, Kashlev M, Hampsey M, Burton ZF. Biochim Biophys Acta 1799 575-587 (2010)
  31. Coliphage HK022 Nun protein inhibits RNA polymerase translocation. Vitiello CL, Kireeva ML, Lubkowska L, Kashlev M, Gottesman M. Proc Natl Acad Sci U S A 111 E2368-75 (2014)
  32. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Windgassen TA, Mooney RA, Nayak D, Palangat M, Zhang J, Landick R. Nucleic Acids Res 42 12707-12721 (2014)
  33. Trigger loop folding determines transcription rate of Escherichia coli's RNA polymerase. Mejia YX, Nudler E, Bustamante C. Proc Natl Acad Sci U S A 112 743-748 (2015)
  34. A mutation of the RNA polymerase β' subunit (rpoC) confers cephalosporin resistance in Bacillus subtilis. Lee YH, Nam KH, Helmann JD. Antimicrob Agents Chemother 57 56-65 (2013)
  35. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation. Nedialkov YA, Opron K, Assaf F, Artsimovitch I, Kireeva ML, Kashlev M, Cukier RI, Nudler E, Burton ZF. Biochim Biophys Acta 1829 187-198 (2013)
  36. Interplay between the trigger loop and the F loop during RNA polymerase catalysis. Miropolskaya N, Esyunina D, Klimasauskas S, Nikiforov V, Artsimovitch I, Kulbachinskiy A. Nucleic Acids Res 42 544-552 (2014)
  37. research-article The bridge helix coordinates movements of modules in RNA polymerase. Hein PP, Landick R. BMC Biol 8 141 (2010)
  38. Structural Basis of Transcription Inhibition by CBR Hydroxamidines and CBR Pyrazoles. Feng Y, Degen D, Wang X, Gigliotti M, Liu S, Zhang Y, Das D, Michalchuk T, Ebright YW, Talaue M, Connell N, Ebright RH. Structure 23 1470-1481 (2015)
  39. A bridge to transcription by RNA polymerase. Kaplan CD, Kornberg RD. J Biol 7 39 (2008)
  40. A model for genesis of transcription systems. Burton ZF, Opron K, Wei G, Geiger JH. Transcription 7 1-13 (2016)
  41. RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes. NandyMazumdar M, Nedialkov Y, Svetlov D, Sevostyanova A, Belogurov GA, Artsimovitch I. Proc Natl Acad Sci U S A 113 14994-14999 (2016)
  42. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Kouba T, Koval' T, Sudzinová P, Pospíšil J, Brezovská B, Hnilicová J, Šanderová H, Janoušková M, Šiková M, Halada P, Sýkora M, Barvík I, Nováček J, Trundová M, Dušková J, Skálová T, Chon U, Murakami KS, Dohnálek J, Krásný L. Nat Commun 11 6419 (2020)
  43. RNA Polymerase Clamp Movement Aids Dissociation from DNA but Is Not Required for RNA Release at Intrinsic Terminators. Bellecourt MJ, Ray-Soni A, Harwig A, Mooney RA, Landick R. J Mol Biol 431 696-713 (2019)
  44. Closing and opening of the RNA polymerase trigger loop. Mazumder A, Lin M, Kapanidis AN, Ebright RH. Proc Natl Acad Sci U S A 117 15642-15649 (2020)
  45. Multiple active centers of multi-subunit RNA polymerases. Yuzenkova Y, Roghanian M, Zenkin N. Transcription 3 115-118 (2012)
  46. X-ray crystal structure of a reiterative transcription complex reveals an atypical RNA extension pathway. Murakami KS, Shin Y, Turnbough CL, Molodtsov V. Proc Natl Acad Sci U S A 114 8211-8216 (2017)
  47. Five checkpoints maintaining the fidelity of transcription by RNA polymerases in structural and energetic details. Wang B, Opron K, Burton ZF, Cukier RI, Feig M. Nucleic Acids Res 43 1133-1146 (2015)
  48. Flexibility-rigidity index for protein-nucleic acid flexibility and fluctuation analysis. Opron K, Xia K, Burton Z, Wei GW. J Comput Chem 37 1283-1295 (2016)
  49. Obligate movements of an active site-linked surface domain control RNA polymerase elongation and pausing via a Phe pocket anchor. Bao Y, Landick R. Proc Natl Acad Sci U S A 118 e2101805118 (2021)
  50. Hinge action versus grip in translocation by RNA polymerase. Nedialkov YA, Opron K, Caudill HL, Assaf F, Anderson AJ, Cukier RI, Wei G, Burton ZF. Transcription 9 1-16 (2018)
  51. Novel ribonucleotide discrimination in the RNA polymerase-like two-barrel catalytic core of Family D DNA polymerases. Zatopek KM, Alpaslan E, Evans TC, Sauguet L, Gardner AF. Nucleic Acids Res 48 12204-12218 (2020)
  52. Response to Klyuyev and Vassylyev: on the mechanism of tagetitoxin inhibition of transcription. Svetlov V, Artsimovitch I, Nudler E. Transcription 3 51-55 (2012)
  53. Conserved Trigger Loop Histidine of RNA Polymerase II Functions as a Positional Catalyst Primarily through Steric Effects. Palo MZ, Zhu J, Mishanina TV, Landick R. Biochemistry 60 3323-3336 (2021)
  54. Mutations compensating for the fitness cost of rifampicin resistance in Escherichia coli exert pleiotropic effect on RNA polymerase catalysis. Kurepina N, Chudaev M, Kreiswirth BN, Nikiforov V, Mustaev A. Nucleic Acids Res 50 5739-5756 (2022)
  55. Suppression of capsule expression in Δlon strains of Escherichia coli by two novel rpoB mutations in concert with HNS: possible role for DNA bending at rcsA promoter. Meenakshi S, Munavar MH. Microbiologyopen 4 712-729 (2015)
  56. Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase. Agapov A, Ignatov A, Turtola M, Belogurov G, Esyunina D, Kulbachinskiy A. J Biol Chem 295 9583-9595 (2020)
  57. Crystal structure and functional implication of a bacterial cyclic AMP-AMP-GMP synthetase. Ko TP, Wang YC, Tsai CL, Yang CS, Hou MH, Chen Y. Nucleic Acids Res 49 4725-4737 (2021)
  58. Insights into RNA polymerase catalysis and adaptive evolution gained from mutational analysis of a locus conferring rifampicin resistance. Yurieva O, Nikiforov V, Nikiforov V, O'Donnell M, Mustaev A. Nucleic Acids Res 45 11327-11340 (2017)
  59. research-article Structural basis of transcription: RNA Polymerase II substrate binding and metal coordination at 3.0 Å using a free-electron laser. Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. bioRxiv 2023.09.22.559052 (2023)
  60. Tail-tape-fused virion and non-virion RNA polymerases of a thermophilic virus with an extremely long tail. Chaban A, Minakhin L, Goldobina E, Bae B, Hao Y, Borukhov S, Putzeys L, Boon M, Kabinger F, Lavigne R, Makarova KS, Koonin EV, Nair SK, Tagami S, Severinov K, Sokolova ML. Nat Commun 15 317 (2024)


Reviews citing this publication (35)

  1. Structure of eukaryotic RNA polymerases. Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A. Annu Rev Biophys 37 337-352 (2008)
  2. Organization and regulation of gene transcription. Cramer P. Nature 573 45-54 (2019)
  3. RNA polymerase active center: the molecular engine of transcription. Nudler E. Annu Rev Biochem 78 335-361 (2009)
  4. RNA polymerase elongation factors. Roberts JW, Shankar S, Filter JJ. Annu Rev Microbiol 62 211-233 (2008)
  5. RNA polymerase fidelity and transcriptional proofreading. Sydow JF, Cramer P. Curr Opin Struct Biol 19 732-739 (2009)
  6. RNA polymerase II transcription: structure and mechanism. Liu X, Bushnell DA, Kornberg RD. Biochim Biophys Acta 1829 2-8 (2013)
  7. Structure and function of archaeal RNA polymerases. Werner F. Mol Microbiol 65 1395-1404 (2007)
  8. Structures of RNA polymerase-antibiotic complexes. Ho MX, Hudson BP, Das K, Arnold E, Ebright RH. Curr Opin Struct Biol 19 715-723 (2009)
  9. Structural basis of transcription elongation. Martinez-Rucobo FW, Cramer P. Biochim Biophys Acta 1829 9-19 (2013)
  10. A movie of the RNA polymerase nucleotide addition cycle. Brueckner F, Ortiz J, Cramer P. Curr Opin Struct Biol 19 294-299 (2009)
  11. Mechanisms for activating bacterial RNA polymerase. Ghosh T, Bose D, Zhang X. FEMS Microbiol Rev 34 611-627 (2010)
  12. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Tomar SK, Artsimovitch I. Chem Rev 113 8604-8619 (2013)
  13. Basic mechanism of transcription by RNA polymerase II. Svetlov V, Nudler E. Biochim Biophys Acta 1829 20-28 (2013)
  14. Distinct Mechanisms of Transcription Initiation by RNA Polymerases I and II. Engel C, Neyer S, Cramer P. Annu Rev Biophys 47 425-446 (2018)
  15. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Jin DJ, Cagliero C, Zhou YN. Chem Rev 113 8662-8682 (2013)
  16. Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. Kaplan CD. Biochim Biophys Acta 1829 39-54 (2013)
  17. Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. Westhof E, Yusupov M, Yusupova G. F1000Prime Rep 6 19 (2014)
  18. Macromolecular micromovements: how RNA polymerase translocates. Svetlov V, Nudler E. Curr Opin Struct Biol 19 701-707 (2009)
  19. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Lee J, Borukhov S. Front Mol Biosci 3 73 (2016)
  20. Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases. Ruprich-Robert G, Thuriaux P. Nucleic Acids Res 38 4559-4569 (2010)
  21. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  22. The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD. Burton ZF. Transcription 5 e28674 (2014)
  23. Elongation by RNA polymerase: a race through roadblocks. Vassylyev DG. Curr Opin Struct Biol 19 691-700 (2009)
  24. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications. Imashimizu M, Shimamoto N, Oshima T, Kashlev M. Transcription 5 e28285 (2014)
  25. Unboxing the T-box riboswitches-A glimpse into multivalent and multimodal RNA-RNA interactions. Zhang J. Wiley Interdiscip Rev RNA 11 e1600 (2020)
  26. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. Barvík I, Rejman D, Panova N, Šanderová H, Krásný L. FEMS Microbiol Rev 41 131-138 (2017)
  27. Single-molecule studies of RNAPII elongation. Zhou J, Schweikhard V, Block SM. Biochim Biophys Acta 1829 29-38 (2013)
  28. Transcription elongation. Mustaev A, Roberts J, Gottesman M. Transcription 8 150-161 (2017)
  29. The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry. Hantsche M, Cramer P. Angew Chem Int Ed Engl 55 15972-15981 (2016)
  30. Functional assays for transcription mechanisms in high-throughput. Qiu C, Kaplan CD. Methods 159-160 115-123 (2019)
  31. Ancient RNA stems that terminate transcription. Zenkin N. RNA Biol 11 295-297 (2014)
  32. RNA polymerase pausing, stalling and bypass during transcription of damaged DNA: from molecular basis to functional consequences. Agapov A, Olina A, Kulbachinskiy A. Nucleic Acids Res 50 3018-3041 (2022)
  33. Early Evolution of Transcription Systems and Divergence of Archaea and Bacteria. Lei L, Burton ZF. Front Mol Biosci 8 651134 (2021)
  34. Towards molecular systems biology of gene transcription and regulation. Cramer P. Biol Chem 391 731-735 (2010)
  35. How to Shut Down Transcription in Archaea during Virus Infection. Pilotto S, Werner F. Microorganisms 10 1824 (2022)

Articles citing this publication (156)

  1. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Cheung AC, Cramer P. Nature 471 249-253 (2011)
  2. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Kaplan CD, Larsson KM, Kornberg RD. Mol Cell 30 547-556 (2008)
  3. RNA polymerase backtracking in gene regulation and genome instability. Nudler E. Cell 149 1438-1445 (2012)
  4. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Brueckner F, Cramer P. Nat Struct Mol Biol 15 811-818 (2008)
  5. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Toulokhonov I, Zhang J, Palangat M, Landick R. Mol Cell 27 406-419 (2007)
  6. The X-ray crystal structure of RNA polymerase from Archaea. Hirata A, Klein BJ, Murakami KS. Nature 451 851-854 (2008)
  7. Structure and function of a membrane component SecDF that enhances protein export. Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, Nureki O. Nature 474 235-238 (2011)
  8. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Sydow JF, Brueckner F, Cheung AC, Damsma GE, Dengl S, Lehmann E, Vassylyev D, Cramer P. Mol Cell 34 710-721 (2009)
  9. X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. Murakami KS. J Biol Chem 288 9126-9134 (2013)
  10. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Sainsbury S, Niesser J, Cramer P. Nature 493 437-440 (2013)
  11. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. Tagami S, Sekine S, Kumarevel T, Hino N, Murayama Y, Kamegamori S, Yamamoto M, Sakamoto K, Yokoyama S. Nature 468 978-982 (2010)
  12. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Rutherford ST, Villers CL, Lee JH, Ross W, Gourse RL. Genes Dev 23 236-248 (2009)
  13. Structural basis of transcriptional pausing in bacteria. Weixlbaumer A, Leon K, Landick R, Darst SA. Cell 152 431-441 (2013)
  14. Applied force reveals mechanistic and energetic details of transcription termination. Larson MH, Greenleaf WJ, Landick R, Block SM. Cell 132 971-982 (2008)
  15. Transcription inactivation through local refolding of the RNA polymerase structure. Belogurov GA, Vassylyeva MN, Sevostyanova A, Appleman JR, Xiang AX, Lira R, Webber SE, Klyuyev S, Nudler E, Artsimovitch I, Vassylyev DG. Nature 457 332-335 (2009)
  16. Architecture of a transcribing-translating expressome. Kohler R, Mooney RA, Mills DJ, Landick R, Cramer P. Science 356 194-197 (2017)
  17. An allosteric path to transcription termination. Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E. Mol Cell 28 991-1001 (2007)
  18. Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Shu B, Gong P. Proc Natl Acad Sci U S A 113 E4005-14 (2016)
  19. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Bunch H, Zheng X, Burkholder A, Dillon ST, Motola S, Birrane G, Ebmeier CC, Levine S, Fargo D, Hu G, Taatjes DJ, Calderwood SK. Nat Struct Mol Biol 21 876-883 (2014)
  20. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD, Landick R, Block SM. Proc Natl Acad Sci U S A 109 6555-6560 (2012)
  21. Mechanism of sequence-specific pausing of bacterial RNA polymerase. Kireeva ML, Kashlev M. Proc Natl Acad Sci U S A 106 8900-8905 (2009)
  22. RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing. Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. Mol Cell 69 802-815.e5 (2018)
  23. Structural Basis for NusA Stabilized Transcriptional Pausing. Guo X, Myasnikov AG, Chen J, Crucifix C, Papai G, Takacs M, Schultz P, Weixlbaumer A. Mol Cell 69 816-827.e4 (2018)
  24. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. Dangkulwanich M, Ishibashi T, Liu S, Kireeva ML, Lubkowska L, Kashlev M, Bustamante CJ. Elife 2 e00971 (2013)
  25. Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. Da LT, Wang D, Huang X. J Am Chem Soc 134 2399-2406 (2012)
  26. A movie of RNA polymerase II transcription. Cheung AC, Cramer P. Cell 149 1431-1437 (2012)
  27. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. Opalka N, Brown J, Lane WJ, Twist KA, Landick R, Asturias FJ, Darst SA. PLoS Biol 8 e1000483 (2010)
  28. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. Kaplan CD, Jin H, Zhang IL, Belyanin A. PLoS Genet 8 e1002627 (2012)
  29. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Dong YW, Liao ML, Meng XL, Somero GN. Proc Natl Acad Sci U S A 115 1274-1279 (2018)
  30. Structural basis of initial RNA polymerase II transcription. Cheung AC, Sainsbury S, Cramer P. EMBO J 30 4755-4763 (2011)
  31. Purification of bacterial RNA polymerase: tools and protocols. Svetlov V, Artsimovitch I. Methods Mol Biol 1276 13-29 (2015)
  32. Allosteric control of the RNA polymerase by the elongation factor RfaH. Svetlov V, Belogurov GA, Shabrova E, Vassylyev DG, Artsimovitch I. Nucleic Acids Res 35 5694-5705 (2007)
  33. Still looking for the magic spot: the crystallographically defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation. Vrentas CE, Gaal T, Berkmen MB, Rutherford ST, Haugen SP, Vassylyev DG, Ross W, Gourse RL. J Mol Biol 377 551-564 (2008)
  34. The ratcheted and ratchetable structural states of RNA polymerase underlie multiple transcriptional functions. Sekine S, Murayama Y, Svetlov V, Nudler E, Yokoyama S. Mol Cell 57 408-421 (2015)
  35. Stepwise Promoter Melting by Bacterial RNA Polymerase. Chen J, Chiu C, Gopalkrishnan S, Chen AY, Olinares PDB, Saecker RM, Winkelman JT, Maloney MF, Chait BT, Ross W, Gourse RL, Campbell EA, Darst SA. Mol Cell 78 275-288.e6 (2020)
  36. Structural Basis of Transcription: RNA Polymerase Backtracking and Its Reactivation. Abdelkareem M, Saint-André C, Takacs M, Papai G, Crucifix C, Guo X, Ortiz J, Weixlbaumer A. Mol Cell 75 298-309.e4 (2019)
  37. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides. Zhang Y, Degen D, Ho MX, Sineva E, Ebright KY, Ebright YW, Mekler V, Vahedian-Movahed H, Feng Y, Yin R, Tuske S, Irschik H, Jansen R, Maffioli S, Donadio S, Arnold E, Ebright RH. Elife 3 e02450 (2014)
  38. RNA polymerase II trigger loop residues stabilize and position the incoming nucleotide triphosphate in transcription. Huang X, Wang D, Weiss DR, Bushnell DA, Kornberg RD, Levitt M. Proc Natl Acad Sci U S A 107 15745-15750 (2010)
  39. Factor-independent transcription pausing caused by recognition of the RNA-DNA hybrid sequence. Bochkareva A, Yuzenkova Y, Tadigotla VR, Zenkin N. EMBO J 31 630-639 (2012)
  40. RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases. Baharoglu Z, Lestini R, Duigou S, Michel B. Mol Microbiol 77 324-336 (2010)
  41. Structural evolution of multisubunit RNA polymerases. Werner F. Trends Microbiol 16 247-250 (2008)
  42. Thermal probing of E. coli RNA polymerase off-pathway mechanisms. Mejia YX, Mao H, Forde NR, Bustamante C. J Mol Biol 382 628-637 (2008)
  43. RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation. Feig M, Burton ZF. Biophys J 99 2577-2586 (2010)
  44. RNA transcript 3'-proximal sequence affects translocation bias of RNA polymerase. Hein PP, Palangat M, Landick R. Biochemistry 50 7002-7014 (2011)
  45. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle. Schulz S, Gietl A, Smollett K, Tinnefeld P, Werner F, Grohmann D. Proc Natl Acad Sci U S A 113 E1816-25 (2016)
  46. Structure of RNA polymerase bound to ribosomal 30S subunit. Demo G, Rasouly A, Vasilyev N, Svetlov V, Loveland AB, Diaz-Avalos R, Grigorieff N, Nudler E, Korostelev AA. Elife 6 e28560 (2017)
  47. Transcription initiation factor DksA has diverse effects on RNA chain elongation. Furman R, Sevostyanova A, Artsimovitch I. Nucleic Acids Res 40 3392-3402 (2012)
  48. Molecular insights into DNA polymerase deterrents for ribonucleotide insertion. Cavanaugh NA, Beard WA, Batra VK, Perera L, Pedersen LG, Wilson SH. J Biol Chem 286 31650-31660 (2011)
  49. Schizosacharomyces pombe RNA polymerase II at 3.6-A resolution. Spåhr H, Calero G, Bushnell DA, Kornberg RD. Proc Natl Acad Sci U S A 106 9185-9190 (2009)
  50. Structural basis for λN-dependent processive transcription antitermination. Said N, Krupp F, Anedchenko E, Santos KF, Dybkov O, Huang YH, Lee CT, Loll B, Behrmann E, Bürger J, Mielke T, Loerke J, Urlaub H, Spahn CMT, Weber G, Wahl MC. Nat Microbiol 2 17062 (2017)
  51. Allosteric control of catalysis by the F loop of RNA polymerase. Miropolskaya N, Artsimovitch I, Klimasauskas S, Nikiforov V, Kulbachinskiy A. Proc Natl Acad Sci U S A 106 18942-18947 (2009)
  52. Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9. Carlson JC, Fortman JL, Anzai Y, Li S, Burr DA, Sherman DH. Chembiochem 11 564-572 (2010)
  53. A unified model of transcription elongation: what have we learned from single-molecule experiments? Ó Maoiléidigh, Tadigotla VR, Nudler E, Ruckenstein AE. Biophys J 100 1157-1166 (2011)
  54. An insertion in the catalytic trigger loop gates the secondary channel of RNA polymerase. Furman R, Tsodikov OV, Wolf YI, Artsimovitch I. J Mol Biol 425 82-93 (2013)
  55. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nagy J, Grohmann D, Cheung AC, Schulz S, Smollett K, Werner F, Michaelis J. Nat Commun 6 6161 (2015)
  56. DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1. Parshin A, Shiver AL, Lee J, Ozerova M, Schneidman-Duhovny D, Gross CA, Borukhov S. Proc Natl Acad Sci U S A 112 E6862-71 (2015)
  57. Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II. Imashimizu M, Kireeva ML, Lubkowska L, Gotte D, Parks AR, Strathern JN, Kashlev M. J Mol Biol 425 697-712 (2013)
  58. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Wiedermannová J, Sudzinová P, Kovaľ T, Rabatinová A, Šanderova H, Ramaniuk O, Rittich Š, Dohnálek J, Fu Z, Halada P, Lewis P, Krásny L. Nucleic Acids Res 42 5151-5163 (2014)
  59. The RNA polymerase trigger loop functions in all three phases of the transcription cycle. Fouqueau T, Zeller ME, Cheung AC, Cramer P, Thomm M. Nucleic Acids Res 41 7048-7059 (2013)
  60. Transcriptional pausing without backtracking. Landick R. Proc Natl Acad Sci U S A 106 8797-8798 (2009)
  61. Divergent contributions of conserved active site residues to transcription by eukaryotic RNA polymerases I and II. Viktorovskaya OV, Engel KL, French SL, Cui P, Vandeventer PJ, Pavlovic EM, Beyer AL, Kaplan CD, Schneider DA. Cell Rep 4 974-984 (2013)
  62. Energetic and structural details of the trigger-loop closing transition in RNA polymerase II. Wang B, Predeus AV, Burton ZF, Feig M. Biophys J 105 767-775 (2013)
  63. Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis. Lahiri N, Shah RR, Layre E, Young D, Ford C, Murray MB, Fortune SM, Moody DB. J Biol Chem 291 14248-14256 (2016)
  64. Tracking of chromosome dynamics in live Streptococcus pneumoniae reveals that transcription promotes chromosome segregation. Kjos M, Veening JW. Mol Microbiol 91 1088-1105 (2014)
  65. CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase. Malinen AM, Nandymazumdar M, Turtola M, Malmi H, Grocholski T, Artsimovitch I, Belogurov GA. Nat Commun 5 3408 (2014)
  66. How the CCA-adding enzyme selects adenine over cytosine at position 76 of tRNA. Pan B, Xiong Y, Steitz TA. Science 330 937-940 (2010)
  67. 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products. Wurm R, Neußer T, Wagner R. Biol Chem 391 187-196 (2010)
  68. X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides. Gleghorn ML, Davydova EK, Basu R, Rothman-Denes LB, Murakami KS. Proc Natl Acad Sci U S A 108 3566-3571 (2011)
  69. High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop. Qiu C, Erinne OC, Dave JM, Cui P, Jin H, Muthukrishnan N, Tang LK, Babu SG, Lam KC, Vandeventer PJ, Strohner R, Van den Brulle J, Sze SH, Kaplan CD. PLoS Genet 12 e1006321 (2016)
  70. Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop. Artsimovitch I, Svetlov V, Nemetski SM, Epshtein V, Cardozo T, Nudler E. J Biol Chem 286 40395-40400 (2011)
  71. CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Bae B, Nayak D, Ray A, Mustaev A, Landick R, Darst SA. Proc Natl Acad Sci U S A 112 E4178-87 (2015)
  72. The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. Tafur L, Sadian Y, Hanske J, Wetzel R, Weis F, Müller CW. Elife 8 e43204 (2019)
  73. Watching the bacteriophage N4 RNA polymerase transcription by time-dependent soak-trigger-freeze X-ray crystallography. Basu RS, Murakami KS. J Biol Chem 288 3305-3311 (2013)
  74. Activity map of the Escherichia coli RNA polymerase bridge helix. Jovanovic M, Burrows PC, Bose D, Cámara B, Wiesler S, Zhang X, Wigneshweraraj S, Weinzierl RO, Buck M. J Biol Chem 286 14469-14479 (2011)
  75. Interaction of RNA polymerase II fork loop 2 with downstream non-template DNA regulates transcription elongation. Kireeva ML, Domecq C, Coulombe B, Burton ZF, Kashlev M. J Biol Chem 286 30898-30910 (2011)
  76. Structure-function studies of the RNA polymerase II elongation complex. Brueckner F, Armache KJ, Cheung A, Damsma GE, Kettenberger H, Lehmann E, Sydow J, Cramer P. Acta Crystallogr D Biol Crystallogr 65 112-120 (2009)
  77. Control of transcriptional fidelity by active center tuning as derived from RNA polymerase endonuclease reaction. Sosunova E, Sosunov V, Epshtein V, Nikiforov V, Mustaev A. J Biol Chem 288 6688-6703 (2013)
  78. Multiple roles of the RNA polymerase {beta}' SW2 region in transcription initiation, promoter escape, and RNA elongation. Pupov D, Miropolskaya N, Sevostyanova A, Bass I, Artsimovitch I, Kulbachinskiy A. Nucleic Acids Res 38 5784-5796 (2010)
  79. Rapid kinetic analysis of transcription elongation by Escherichia coli RNA polymerase. Johnson RS, Strausbauch M, Cooper R, Register JK. J Mol Biol 381 1106-1113 (2008)
  80. Tagetitoxin inhibits transcription by stabilizing pre-translocated state of the elongation complex. Yuzenkova Y, Roghanian M, Bochkareva A, Zenkin N. Nucleic Acids Res 41 9257-9265 (2013)
  81. Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins. Vassylyeva MN, Klyuyev S, Vassylyev AD, Wesson H, Zhang Z, Renfrow MB, Wang H, Higgins NP, Chow LT, Vassylyev DG. Proc Natl Acad Sci U S A 114 E5138-E5147 (2017)
  82. RNA polymerase II flexibility during translocation from normal mode analysis. Feig M, Burton ZF. Proteins 78 434-446 (2010)
  83. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis. Čabart P, Jin H, Li L, Kaplan CD. Transcription 5 e28869 (2014)
  84. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing. Zhilina E, Esyunina D, Brodolin K, Kulbachinskiy A. Nucleic Acids Res 40 3078-3091 (2012)
  85. Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription. Kennedy SR, Erie DA. Proc Natl Acad Sci U S A 108 6079-6084 (2011)
  86. Total synthesis of (-)-tirandamycin C. Chen M, Roush WR. Org Lett 14 426-428 (2012)
  87. A small post-translocation energy bias aids nucleotide selection in T7 RNA polymerase transcription. Yu J, Oster G. Biophys J 102 532-541 (2012)
  88. Chemical synthesis enables biochemical and antibacterial evaluation of streptolydigin antibiotics. Pronin SV, Martinez A, Kuznedelov K, Severinov K, Shuman HA, Kozmin SA. J Am Chem Soc 133 12172-12184 (2011)
  89. research-article Functional divergence in the growing family of RNA polymerases. Landick R. Structure 17 323-325 (2009)
  90. Inactivation of the bacterial RNA polymerase due to acquisition of secondary structure by the ω subunit. Sarkar P, Sardesai AA, Murakami KS, Chatterji D. J Biol Chem 288 25076-25087 (2013)
  91. RNA polymerase stalls in a post-translocated register and can hyper-translocate. Nedialkov YA, Nudler E, Burton ZF. Transcription 3 260-269 (2012)
  92. Size matters, so does shape: Inhibition of transcription of T7 RNA polymerase by iron(II) clathrochelates. Novikov VV, Varzatskii OA, Negrutska VV, Bubnov YN, Palchykovska LG, Dubey IY, Voloshin YZ. J Inorg Biochem 124 42-45 (2013)
  93. Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases. Esyunina D, Turtola M, Pupov D, Bass I, Klimašauskas S, Belogurov G, Kulbachinskiy A. Nucleic Acids Res 44 1298-1308 (2016)
  94. Organismal benefits of transcription speed control at gene boundaries. Leng X, Ivanov M, Kindgren P, Malik I, Thieffry A, Brodersen P, Sandelin A, Kaplan CD, Marquardt S. EMBO Rep 21 e49315 (2020)
  95. Structure and function of virion RNA polymerase of a crAss-like phage. Drobysheva AV, Panafidina SA, Kolesnik MV, Klimuk EI, Minakhin L, Yakunina MV, Borukhov S, Nilsson E, Holmfeldt K, Yutin N, Makarova KS, Koonin EV, Severinov KV, Leiman PG, Sokolova ML. Nature 589 306-309 (2021)
  96. Differential blocking effects of the acetaldehyde-derived DNA lesion N2-ethyl-2'-deoxyguanosine on transcription by multisubunit and single subunit RNA polymerases. Cheng TF, Hu X, Gnatt A, Brooks PJ. J Biol Chem 283 27820-27828 (2008)
  97. Lost in transcription--inhibition of RNA polymerase. Haebich D, von Nussbaum F. Angew Chem Int Ed Engl 48 3397-3400 (2009)
  98. Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Dimitri A, Goodenough AK, Guengerich FP, Broyde S, Scicchitano DA. J Mol Biol 375 353-366 (2008)
  99. Structural basis of R-loop recognition by the S9.6 monoclonal antibody. Bou-Nader C, Bothra A, Garboczi DN, Leppla SH, Zhang J. Nat Commun 13 1641 (2022)
  100. DNA sequences in gal operon override transcription elongation blocks. Lewis DE, Komissarova N, Le P, Kashlev M, Adhya S. J Mol Biol 382 843-858 (2008)
  101. Distinct roles for sequences upstream of and downstream from Physarum editing sites. Rhee AC, Somerlot BH, Parimi N, Gott JM. RNA 15 1753-1765 (2009)
  102. Regulation of transcriptional pausing through the secondary channel of RNA polymerase. Esyunina D, Agapov A, Kulbachinskiy A. Proc Natl Acad Sci U S A 113 8699-8704 (2016)
  103. Structure and RNA template requirements of Arabidopsis RNA-DEPENDENT RNA POLYMERASE 2. Fukudome A, Singh J, Mishra V, Reddem E, Martinez-Marquez F, Wenzel S, Yan R, Shiozaki M, Yu Z, Wang JC, Takagi Y, Pikaard CS. Proc Natl Acad Sci U S A 118 e2115899118 (2021)
  104. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes. Zhang L, Silva DA, Pardo-Avila F, Wang D, Huang X. PLoS Comput Biol 11 e1004354 (2015)
  105. RNA-DNA and DNA-DNA base-pairing at the upstream edge of the transcription bubble regulate translocation of RNA polymerase and transcription rate. KIreeva M, Trang C, Matevosyan G, Turek-Herman J, Chasov V, Lubkowska L, Kashlev M. Nucleic Acids Res 46 5764-5775 (2018)
  106. Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact. Ray-Soni A, Mooney RA, Landick R. Proc Natl Acad Sci U S A 114 E9233-E9242 (2017)
  107. A novel conformation of RNA polymerase sheds light on the mechanism of transcription. Tagami S, Sekine SI, Yokoyama S. Transcription 2 162-167 (2011)
  108. Constructing kinetic models to elucidate structural dynamics of a complete RNA polymerase II elongation cycle. Yu J, Da LT, Huang X. Phys Biol 12 016004 (2014)
  109. Modulation of RNA polymerase activity through the trigger loop folding. Miropolskaya N, Nikiforov V, Klimasauskas S, Artsimovitch I, Kulbachinskiy A. Transcription 1 89-94 (2010)
  110. On the validation of crystallographic symmetry and the quality of structures. Wang J. Protein Sci 24 621-632 (2015)
  111. A detailed study of antibacterial 3-acyltetramic acids and 3-acylpiperidine-2,4-diones. Jeong YC, Bikadi Z, Hazai E, Moloney MG. ChemMedChem 9 1826-1837 (2014)
  112. Active site closure stabilizes the backtracked state of RNA polymerase. Turtola M, Mäkinen JJ, Belogurov GA. Nucleic Acids Res 46 10870-10887 (2018)
  113. Backtracking and proofreading in DNA transcription. Voliotis M, Cohen N, Molina-París C, Liverpool TB. Phys Rev Lett 102 258101 (2009)
  114. Catalytic properties of RNA polymerases IV and V: accuracy, nucleotide incorporation and rNTP/dNTP discrimination. Marasco M, Li W, Lynch M, Pikaard CS. Nucleic Acids Res 45 11315-11326 (2017)
  115. Conserved functions of the trigger loop and Gre factors in RNA cleavage by bacterial RNA polymerases. Miropolskaya N, Esyunina D, Kulbachinskiy A. J Biol Chem 292 6744-6752 (2017)
  116. article-commentary Jamming the ratchet of transcription. Svetlov V, Nudler E. Nat Struct Mol Biol 15 777-779 (2008)
  117. Monitoring RNA dynamics in native transcriptional complexes. Chauvier A, St-Pierre P, Nadon JF, Hien EDM, Pérez-González C, Eschbach SH, Lamontagne AM, Penedo JC, Lafontaine DA. Proc Natl Acad Sci U S A 118 e2106564118 (2021)
  118. Lecture Multiple personalities of the RNA polymerase active centre. Zenkin N. Microbiology (Reading) 160 1316-1320 (2014)
  119. Search for proteins required for accurate gene expression under oxidative stress: roles of guanylate kinase and RNA polymerase. Inokuchi H, Ito R, Sekiguchi T, Sekiguchi M. J Biol Chem 288 32952-32962 (2013)
  120. The architecture of RNA polymerase fidelity. Kaplan CD. BMC Biol 8 85 (2010)
  121. The binding site and mechanism of the RNA polymerase inhibitor tagetitoxin: an issue open to debate. Klyuyev S, Vassylyev DG. Transcription 3 46-50 (2012)
  122. Translocation and fidelity of Escherichia coli RNA polymerase. Nedialkov YA, Burton ZF. Transcription 4 136-143 (2013)
  123. A structure-based kinetic model of transcription. Zuo Y, Steitz TA. Transcription 8 1-8 (2017)
  124. Comment Gene transcription: extending the message. Cramer P. Nature 448 142-143 (2007)
  125. Insights into the roles of exogenous glutamate and proline in improving streptolydigin production of Streptomyces lydicus with metabolomic analysis. Cheng JS, Cui SF, Ding MZ, Yuan YJ. J Ind Microbiol Biotechnol 40 1303-1314 (2013)
  126. Ratcheting of RNA polymerase toward structural principles of RNA polymerase operations. Sekine S, Murayama Y, Svetlov V, Nudler E, Yokoyama S. Transcription 6 56-60 (2015)
  127. A dynamic model for processive transcription elongation and backtracking long pauses by multisubunit RNA polymerases. Xie P. Proteins 80 2020-2034 (2012)
  128. Allosteric Activation of Bacterial Swi2/Snf2 (Switch/Sucrose Non-fermentable) Protein RapA by RNA Polymerase: BIOCHEMICAL AND STRUCTURAL STUDIES. Kakar S, Fang X, Lubkowska L, Zhou YN, Shaw GX, Wang YX, Jin DJ, Kashlev M, Ji X. J Biol Chem 290 23656-23669 (2015)
  129. Mutations in β' subunit of Escherichia coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance. Swapna G, Chakraborty A, Kumari V, Sen R, Nagaraja V. Mol Microbiol 80 1169-1185 (2011)
  130. Preparation of E. coli RNA polymerase transcription elongation complexes by selective photoelution from magnetic beads. Strobel EJ. J Biol Chem 297 100812 (2021)
  131. Ribonucleoside-5'-diphosphates (NDPs) support RNA polymerase transcription, suggesting NDPs may have been substrates for primordial nucleic acid biosynthesis. Gottesman ME, Mustaev A. J Biol Chem 294 11785-11792 (2019)
  132. Antibiotic streptolydigin requires noncatalytic Mg2+ for binding to RNA polymerase. Zorov S, Yuzenkova Y, Nikiforov V, Severinov K, Zenkin N. Antimicrob Agents Chemother 58 1420-1424 (2014)
  133. Optical investigations of the RNA polymerase molecular motor. Strick TR. J Biophotonics 1 269-279 (2008)
  134. research-article RNA polymerase structure, function, regulation, dynamics, fidelity, and roles in gene expression. Kireeva ML, Kashlev M, Burton ZF. Chem Rev 113 8325-8330 (2013)
  135. The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases. Mäkinen JJ, Shin Y, Vieras E, Virta P, Metsä-Ketelä M, Murakami KS, Belogurov GA. Nat Commun 12 796 (2021)
  136. Two distinct pathways of RNA polymerase backtracking determine the requirement for the Trigger Loop during RNA hydrolysis. Mosaei H, Zenkin N. Nucleic Acids Res 49 8777-8784 (2021)
  137. Crucial role of a dicarboxylic motif in the catalytic center of yeast RNA polymerases. Ruprich-Robert G, Wery M, Després D, Boulard Y, Thuriaux P. Curr Genet 57 327-334 (2011)
  138. Region 4 of the RNA polymerase σ subunit counteracts pausing during initial transcription. Brodolin K, Morichaud Z. J Biol Chem 296 100253 (2021)
  139. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday. Cramer P. J Mol Biol 429 2603-2610 (2017)
  140. Structural basis of RNA polymerase inhibition by viral and host factors. Pilotto S, Fouqueau T, Lukoyanova N, Sheppard C, Lucas-Staat S, Díaz-Santín LM, Matelska D, Prangishvili D, Cheung ACM, Werner F. Nat Commun 12 5523 (2021)
  141. Understanding the Molecular Basis of RNA Polymerase II Transcription. Zhang S, Wang D. Isr J Chem 53 (2013)
  142. Allosteric couplings upon binding of RfaH to transcription elongation complexes. Molina JA, Galaz-Davison P, Komives EA, Artsimovitch I, Ramírez-Sarmiento CA. Nucleic Acids Res 50 6384-6397 (2022)
  143. Exploring the molecular origin of the high selectivity of multisubunit RNA polymerases by stochastic kinetic models. Zhu R, de la Lande A, Zhang R, Salahub DR. Interdiscip Sci 1 91-98 (2009)
  144. News Merging the RNA and DNA worlds. Artsimovitch I, Vassylyev DG. Nat Struct Mol Biol 14 1122-1123 (2007)
  145. Molecular basis of RNA polymerase promoter specificity switch revealed through studies of Thermus bacteriophage transcription regulator. Severinov K, Minakhin L, Sekine SI, Lopatina A, Yokoyama S. Bacteriophage 4 e29399 (2014)
  146. Nucleotide Loading Modes of Human RNA Polymerase II as Deciphered by Molecular Simulations. Génin NEJ, Weinzierl ROJ. Biomolecules 10 E1289 (2020)
  147. Preparation and Characterization of Internally Modified DNA Templates for Chemical Transcription Roadblocking. Strobel EJ. Bio Protoc 11 e4141 (2021)
  148. A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase. Oh J, Shan Z, Hoshika S, Xu J, Chong J, Benner SA, Lyumkis D, Wang D. Nat Commun 14 8219 (2023)
  149. An NTP-driven mechanism for the nucleotide addition cycle of Escherichia coli RNA polymerase during transcription. Johnson RS, Strausbauch M, McCloud C. PLoS One 17 e0273746 (2022)
  150. Characterization of RNA polymerase II trigger loop mutations using molecular dynamics simulations and machine learning. Dutagaci B, Duan B, Qiu C, Kaplan CD, Feig M. PLoS Comput Biol 19 e1010999 (2023)
  151. Closed for business: exit-channel coupling to active site conformation in bacterial RNA polymerase. Martin CT, Theis K. Nat Struct Mol Biol 21 741-742 (2014)
  152. Elongation rate of RNA polymerase II affects pausing patterns across 3' UTRs. Khitun A, Brion C, Moqtaderi Z, Geisberg JV, Churchman LS, Struhl K. J Biol Chem 299 105289 (2023)
  153. Evolutionary conservation of the fidelity of transcription. Chung C, Verheijen BM, Navapanich Z, McGann EG, Shemtov S, Lai GJ, Arora P, Towheed A, Haroon S, Holczbauer A, Chang S, Manojlovic Z, Simpson S, Thomas KW, Kaplan C, van Hasselt P, Timmers M, Erie D, Chen L, Gout JF, Vermulst M. Nat Commun 14 1547 (2023)
  154. Proteopedia entry: beta-prime subunit of bacterial RNA polymerase. Dornfeld CL, Hoelzer M, Forst S. Biochem Mol Biol Educ 40 284 (2012)
  155. Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase. Oh J, Kimoto M, Xu H, Chong J, Hirao I, Wang D. Nat Commun 14 195 (2023)
  156. Structural insights into the dual activities of the two-barrel RNA polymerase QDE-1. Cui R, Li H, Zhao J, Li X, Gan J, Ma J. Nucleic Acids Res 50 10169-10186 (2022)