2os2 Citations

Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity.

Abstract

Post-translational histone modification has a fundamental role in chromatin biology and is proposed to constitute a 'histone code' in epigenetic regulation. Differential methylation of histone H3 and H4 lysyl residues regulates processes including heterochromatin formation, X-chromosome inactivation, genome imprinting, DNA repair and transcriptional regulation. The discovery of lysyl demethylases using flavin (amine oxidases) or Fe(II) and 2-oxoglutarate as cofactors (2OG oxygenases) has changed the view of methylation as a stable epigenetic marker. However, little is known about how the demethylases are selective for particular lysyl-containing sequences in specific methylation states, a key to understanding their functions. Here we reveal how human JMJD2A (jumonji domain containing 2A), which is selective towards tri- and dimethylated histone H3 lysyl residues 9 and 36 (H3K9me3/me2 and H3K36me3/me2), discriminates between methylation states and achieves sequence selectivity for H3K9. We report structures of JMJD2A-Ni(II)-Zn(II) inhibitor complexes bound to tri-, di- and monomethyl forms of H3K9 and the trimethyl form of H3K36. The structures reveal a lysyl-binding pocket in which substrates are bound in distinct bent conformations involving the Zn-binding site. We propose a mechanism for achieving methylation state selectivity involving the orientation of the substrate methyl groups towards a ferryl intermediate. The results suggest distinct recognition mechanisms in different demethylase subfamilies and provide a starting point to develop chemical tools for drug discovery and to study and dissect the complexity of reversible histone methylation and its role in chromatin biology.

Reviews - 2os2 mentioned but not cited (6)

  1. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Black JC, Van Rechem C, Whetstine JR. Mol Cell 48 491-507 (2012)
  2. Histone modifying enzymes: structures, mechanisms, and specificities. Marmorstein R, Trievel RC. Biochim Biophys Acta 1789 58-68 (2009)
  3. Structural insights into histone lysine demethylation. Hou H, Yu H. Curr Opin Struct Biol 20 739-748 (2010)
  4. Histone demethylases and cancer. Kampranis SC, Tsichlis PN. Adv Cancer Res 102 103-169 (2009)
  5. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Andreoli F, Barbosa AJ, Parenti MD, Del Rio A. Curr Pharm Des 19 578-613 (2013)
  6. Dynamics of histone lysine methylation: structures of methyl writers and erasers. Upadhyay AK, Cheng X. Prog Drug Res 67 107-124 (2011)

Articles - 2os2 mentioned but not cited (7)

  1. Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. Hillringhaus L, Yue WW, Rose NR, Ng SS, Gileadi C, Loenarz C, Bello SH, Bray JE, Schofield CJ, Oppermann U. J Biol Chem 286 41616-41625 (2011)
  2. Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases. Horton JR, Engstrom A, Zoeller EL, Liu X, Shanks JR, Zhang X, Johns MA, Vertino PM, Fu H, Cheng X. J Biol Chem 291 2631-2646 (2016)
  3. Inhibition of histone demethylases by 4-carboxy-2,2'-bipyridyl compounds. Chang KH, King ONF, Tumber A, Woon ECY, Heightman TD, McDonough MA, Schofield CJ, Rose NR. ChemMedChem 6 759-764 (2011)
  4. Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain. Upadhyay AK, Horton JR, Zhang X, Cheng X. Curr Opin Struct Biol 21 750-760 (2011)
  5. Small molecule KDM4s inhibitors as anti-cancer agents. Lin H, Li Q, Li Q, Zhu J, Gu K, Jiang X, Hu Q, Feng F, Qu W, Chen Y, Sun H. J Enzyme Inhib Med Chem 33 777-793 (2018)
  6. Chemical biology of lysine demethylases. Heightman TD. Curr Chem Genomics 5 62-71 (2011)
  7. Structural investigations of the nickel-induced inhibition of truncated constructs of the JMJD2 family of histone demethylases using X-ray absorption spectroscopy. Giri NC, Passantino L, Sun H, Zoroddu MA, Costa M, Maroney MJ. Biochemistry 52 4168-4183 (2013)


Reviews citing this publication (69)

  1. Molecular mechanisms and potential functions of histone demethylases. Kooistra SM, Helin K. Nat Rev Mol Cell Biol 13 297-311 (2012)
  2. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Cloos PA, Christensen J, Agger K, Helin K. Genes Dev 22 1115-1140 (2008)
  3. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Mosammaparast N, Shi Y. Annu Rev Biochem 79 155-179 (2010)
  4. Histone lysine demethylases as targets for anticancer therapy. Højfeldt JW, Agger K, Helin K. Nat Rev Drug Discov 12 917-930 (2013)
  5. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Berry WL, Janknecht R. Cancer Res 73 2936-2942 (2013)
  6. Inhibition of 2-oxoglutarate dependent oxygenases. Rose NR, McDonough MA, King ON, Kawamura A, Schofield CJ. Chem Soc Rev 40 4364-4397 (2011)
  7. Chemical mechanisms of histone lysine and arginine modifications. Smith BC, Denu JM. Biochim Biophys Acta 1789 45-57 (2009)
  8. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Loenarz C, Schofield CJ. Trends Biochem Sci 36 7-18 (2011)
  9. Structural studies on human 2-oxoglutarate dependent oxygenases. McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ. Curr Opin Struct Biol 20 659-672 (2010)
  10. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Cyr AR, Domann FE. Antioxid Redox Signal 15 551-589 (2011)
  11. Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Cheng X, Blumenthal RM. Biochemistry 49 2999-3008 (2010)
  12. 2-Oxoglutarate-Dependent Oxygenases. Islam MS, Leissing TM, Chowdhury R, Hopkinson RJ, Schofield CJ. Annu Rev Biochem 87 585-620 (2018)
  13. Chemical biology of protein arginine modifications in epigenetic regulation. Fuhrmann J, Clancy KW, Thompson PR. Chem Rev 115 5413-5461 (2015)
  14. Histone H3 phosphorylation - a versatile chromatin modification for different occasions. Sawicka A, Seiser C. Biochimie 94 2193-2201 (2012)
  15. Targeting histone lysine methylation in cancer. McGrath J, Trojer P. Pharmacol Ther 150 1-22 (2015)
  16. Mechanisms of human histone and nucleic acid demethylases. Walport LJ, Hopkinson RJ, Schofield CJ. Curr Opin Chem Biol 16 525-534 (2012)
  17. The roles of Jumonji-type oxygenases in human disease. Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U. Epigenomics 6 89-120 (2014)
  18. Inhibitors of Protein Methyltransferases and Demethylases. Kaniskan HÜ, Martini ML, Jin J. Chem Rev 118 989-1068 (2018)
  19. Dynamic protein methylation in chromatin biology. Ng SS, Yue WW, Oppermann U, Klose RJ. Cell Mol Life Sci 66 407-422 (2009)
  20. Histone demethylases in chromatin biology and beyond. Dimitrova E, Turberfield AH, Klose RJ. EMBO Rep 16 1620-1639 (2015)
  21. IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. Mondesir J, Willekens C, Touat M, de Botton S. J Blood Med 7 171-180 (2016)
  22. Physiological roles of class I HDAC complex and histone demethylase. Hayakawa T, Nakayama J. J Biomed Biotechnol 2011 129383 (2011)
  23. Targeting histone lysine demethylases - progress, challenges, and the future. Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ. Biochim Biophys Acta 1839 1416-1432 (2014)
  24. A peek into the complex realm of histone phosphorylation. Banerjee T, Chakravarti D. Mol Cell Biol 31 4858-4873 (2011)
  25. LSD1 and the chemistry of histone demethylation. Culhane JC, Cole PA. Curr Opin Chem Biol 11 561-568 (2007)
  26. Epigenetic regulation by histone demethylases in hypoxia. Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A. Epigenomics 7 791-811 (2015)
  27. Targeting Metalloenzymes for Therapeutic Intervention. Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Chem Rev 119 1323-1455 (2019)
  28. Chemical and Biochemical Perspectives of Protein Lysine Methylation. Luo M. Chem Rev 118 6656-6705 (2018)
  29. The role of histone demethylases in cancer therapy. Hoffmann I, Roatsch M, Schmitt ML, Carlino L, Pippel M, Sippl W, Jung M. Mol Oncol 6 683-703 (2012)
  30. Epigenetic regulation in cancer progression. Baxter E, Windloch K, Gannon F, Lee JS. Cell Biosci 4 45 (2014)
  31. Structure-function relationships of human JmjC oxygenases-demethylases versus hydroxylases. Markolovic S, Leissing TM, Chowdhury R, Wilkins SE, Lu X, Schofield CJ. Curr Opin Struct Biol 41 62-72 (2016)
  32. Inhibitors of histone demethylases. Lohse B, Kristensen JL, Kristensen LH, Agger K, Helin K, Gajhede M, Clausen RP. Bioorg Med Chem 19 3625-3636 (2011)
  33. Sensing core histone phosphorylation - a matter of perfect timing. Sawicka A, Seiser C. Biochim Biophys Acta 1839 711-718 (2014)
  34. Structure and function of histone H3 lysine 9 methyltransferases and demethylases. Krishnan S, Horowitz S, Trievel RC. Chembiochem 12 254-263 (2011)
  35. The role of the histone demethylase KDM4A in cancer. Guerra-Calderas L, González-Barrios R, Herrera LA, Cantú de León D, Soto-Reyes E. Cancer Genet 208 215-224 (2015)
  36. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. de Lera AR, Ganesan A. Clin Epigenetics 8 105 (2016)
  37. Effect of posttranslational modifications on enzyme function and assembly. Ryšlavá H, Doubnerová V, Kavan D, Vaněk O. J Proteomics 92 80-109 (2013)
  38. A new role for LOX and LOXL2 proteins in transcription regulation. Iturbide A, García de Herreros A, Peiró S. FEBS J 282 1768-1773 (2015)
  39. Prolyl isomerases in gene transcription. Hanes SD. Biochim Biophys Acta 1850 2017-2034 (2015)
  40. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Salminen A, Kauppinen A, Kaarniranta K. Cell Mol Life Sci 72 3897-3914 (2015)
  41. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Nat Prod Rep 35 792-837 (2018)
  42. Molecular basis for substrate recognition by lysine methyltransferases and demethylases. Del Rizzo PA, Trievel RC. Biochim Biophys Acta 1839 1404-1415 (2014)
  43. Base excision repair facilitates a functional relationship between Guanine oxidation and histone demethylation. Li J, Braganza A, Sobol RW. Antioxid Redox Signal 18 2429-2443 (2013)
  44. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X. Front Oncol 9 705 (2019)
  45. Recent advances in 17beta-hydroxysteroid dehydrogenases. Prehn C, Möller G, Adamski J. J Steroid Biochem Mol Biol 114 72-77 (2009)
  46. Rebelled epigenome: histone H3S10 phosphorylation and H3S10 kinases in cancer biology and therapy. Komar D, Juszczynski P. Clin Epigenetics 12 147 (2020)
  47. Structural genomics and drug discovery: all in the family. Weigelt J, McBroom-Cerajewski LD, Schapira M, Zhao Y, Arrowsmith CH. Curr Opin Chem Biol 12 32-39 (2008)
  48. Advances in Histone Demethylase KDM3A as a Cancer Therapeutic Target. Yoo J, Jeon YH, Cho HY, Lee SW, Kim GW, Lee DH, Kwon SH. Cancers (Basel) 12 E1098 (2020)
  49. Imposing function down a (cupin)-barrel: secondary structure and metal stereochemistry in the αKG-dependent oxygenases. Hangasky JA, Taabazuing CY, Valliere MA, Knapp MJ. Metallomics 5 287-301 (2013)
  50. Small-molecular modulators of cancer-associated epigenetic mechanisms. Itoh Y, Suzuki T, Miyata N. Mol Biosyst 9 873-896 (2013)
  51. Structural definitions of Jumonji family demethylase selectivity. Pilka ES, James T, Lisztwan JH. Drug Discov Today 20 743-749 (2015)
  52. Small molecule epigenetic inhibitors targeted to histone lysine methyltransferases and demethylases. Wang Z, Patel DJ. Q Rev Biophys 46 349-373 (2013)
  53. Defining the orphan functions of lysine acetyltransferases. Montgomery DC, Sorum AW, Meier JL. ACS Chem Biol 10 85-94 (2015)
  54. Epigenetic markers and their cross-talk. Winter S, Fischle W. Essays Biochem 48 45-61 (2010)
  55. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  56. Dynamics of H3K27me3 methylation and demethylation in plant development. Gan ES, Xu Y, Ito T. Plant Signal Behav 10 e1027851 (2015)
  57. Advances and challenges in understanding histone demethylase biology. Nowak RP, Tumber A, Johansson C, Che KH, Brennan P, Owen D, Oppermann U. Curr Opin Chem Biol 33 151-159 (2016)
  58. Modular paths to 'decoding' and 'wiping' histone lysine methylation. Kustatscher G, Ladurner AG. Curr Opin Chem Biol 11 628-635 (2007)
  59. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Maas MN, Hintzen JCJ, Porzberg MRB, Mecinović J. Int J Mol Sci 21 E9451 (2020)
  60. Ubiquitin Regulation: The Histone Modifying Enzyme's Story. Wang J, Qiu Z, Wu Y. Cells 7 E118 (2018)
  61. Application of Quantum Computing to Biochemical Systems: A Look to the Future. Cheng HP, Deumens E, Freericks JK, Li C, Sanders BA. Front Chem 8 587143 (2020)
  62. Computational methods for de novo protein design and its applications to the human immunodeficiency virus 1, purine nucleoside phosphorylase, ubiquitin specific protease 7, and histone demethylases. Bellows ML, Floudas CA. Curr Drug Targets 11 264-278 (2010)
  63. High-throughput structural biology of metabolic enzymes and its impact on human diseases. Yue WW, Oppermann U. J Inherit Metab Dis 34 575-581 (2011)
  64. A decade of the human genome sequence--how does the medicinal chemist benefit? Brunschweiger A, Hall J. ChemMedChem 7 194-203 (2012)
  65. Recent Advances with KDM4 Inhibitors and Potential Applications. Wu Q, Young B, Wang Y, Davidoff AM, Rankovic Z, Yang J. J Med Chem 65 9564-9579 (2022)
  66. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. Walport LJ, Schofield CJ. Chem Rec 18 1760-1781 (2018)
  67. CTCF and Its Multi-Partner Network for Chromatin Regulation. Del Moral-Morales A, Salgado-Albarrán M, Sánchez-Pérez Y, Wenke NK, Baumbach J, Soto-Reyes E. Cells 12 1357 (2023)
  68. Novel Dioxygenases, HIF-α Specific Prolyl-hydroxylase and Asparanginyl-hydroxylase: O2 Switch for Cell Survival. Park H. Toxicol Res 24 101-107 (2008)
  69. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. Genes Dis 11 645-663 (2024)

Articles citing this publication (131)

  1. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M, McDonough MA, King ON, Clifton IJ, Klose RJ, Claridge TD, Ratcliffe PJ, Schofield CJ, Kawamura A. EMBO Rep 12 463-469 (2011)
  2. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K, Joberty G, Bantscheff M, Bountra C, Bridges A, Diallo H, Eberhard D, Hutchinson S, Jones E, Katso R, Leveridge M, Mander PK, Mosley J, Ramirez-Molina C, Rowland P, Schofield CJ, Sheppard RJ, Smith JE, Swales C, Tanner R, Thomas P, Tumber A, Drewes G, Oppermann U, Patel DJ, Lee K, Wilson DM. Nature 488 404-408 (2012)
  3. Expanding chemical biology of 2-oxoglutarate oxygenases. Loenarz C, Schofield CJ. Nat Chem Biol 4 152-156 (2008)
  4. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X. Nat Struct Mol Biol 17 38-43 (2010)
  5. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Xiang Y, Zhu Z, Han G, Ye X, Xu B, Peng Z, Ma Y, Yu Y, Lin H, Chen AP, Chen CD. Proc Natl Acad Sci U S A 104 19226-19231 (2007)
  6. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S. EMBO J 31 1865-1878 (2012)
  7. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth. Wang L, Chang J, Varghese D, Dellinger M, Kumar S, Best AM, Ruiz J, Bruick R, Peña-Llopis S, Xu J, Babinski DJ, Frantz DE, Brekken RA, Quinn AM, Simeonov A, Easmon J, Martinez ED. Nat Commun 4 2035 (2013)
  8. Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. Lee J, Thompson JR, Botuyan MV, Mer G. Nat Struct Mol Biol 15 109-111 (2008)
  9. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Chowdhury R, McDonough MA, Mecinović J, Loenarz C, Flashman E, Hewitson KS, Domene C, Schofield CJ. Structure 17 981-989 (2009)
  10. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K, Friedrichs N, Patnaik D, Higgins JM, Potier N, Scheidtmann KH, Buettner R, Schüle R. Nat Cell Biol 10 53-60 (2008)
  11. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. King ON, Li XS, Sakurai M, Kawamura A, Rose NR, Ng SS, Quinn AM, Rai G, Mott BT, Beswick P, Klose RJ, Oppermann U, Jadhav A, Heightman TD, Maloney DJ, Schofield CJ, Simeonov A. PLoS One 5 e15535 (2010)
  12. Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJD2/KDM4 Proteins. Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T, Reinberg D. J Biol Chem 284 8395-8405 (2009)
  13. The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Yang J, Jubb AM, Pike L, Buffa FM, Turley H, Baban D, Leek R, Gatter KC, Ragoussis J, Harris AL. Cancer Res 70 6456-6466 (2010)
  14. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Walport LJ, Hopkinson RJ, Chowdhury R, Schiller R, Ge W, Kawamura A, Schofield CJ. Nat Commun 7 11974 (2016)
  15. PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an Nepsilon-dimethyl lysine demethylase. Loenarz C, Ge W, Coleman ML, Rose NR, Cooper CD, Klose RJ, Ratcliffe PJ, Schofield CJ. Hum Mol Genet 19 217-222 (2010)
  16. Structural analysis of human KDM5B guides histone demethylase inhibitor development. Johansson C, Velupillai S, Tumber A, Szykowska A, Hookway ES, Nowak RP, Strain-Damerell C, Gileadi C, Philpott M, Burgess-Brown N, Wu N, Kopec J, Nuzzi A, Steuber H, Egner U, Badock V, Munro S, LaThangue NB, Westaway S, Brown J, Athanasou N, Prinjha R, Brennan PE, Oppermann U. Nat Chem Biol 12 539-545 (2016)
  17. Selective inhibitors of the JMJD2 histone demethylases: combined nondenaturing mass spectrometric screening and crystallographic approaches. Rose NR, Woon EC, Kingham GL, King ON, Mecinović J, Clifton IJ, Ng SS, Talib-Hardy J, Oppermann U, McDonough MA, Schofield CJ. J Med Chem 53 1810-1818 (2010)
  18. Structural basis for histone H3 Lys 27 demethylation by UTX/KDM6A. Sengoku T, Yokoyama S. Genes Dev 25 2266-2277 (2011)
  19. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Carbonneau M, M Gagné L, Lalonde ME, Germain MA, Motorina A, Guiot MC, Secco B, Vincent EE, Tumber A, Hulea L, Bergeman J, Oppermann U, Jones RG, Laplante M, Topisirovic I, Petrecca K, Huot MÉ, Mallette FA. Nat Commun 7 12700 (2016)
  20. Histone lysine methyltransferases and demethylases in Plasmodium falciparum. Cui L, Fan Q, Cui L, Miao J. Int J Parasitol 38 1083-1097 (2008)
  21. A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. Luo X, Liu Y, Kubicek S, Myllyharju J, Tumber A, Ng S, Che KH, Podoll J, Heightman TD, Oppermann U, Schreiber SL, Wang X. J Am Chem Soc 133 9451-9456 (2011)
  22. Interaction of JMJD6 with single-stranded RNA. Hong X, Zang J, White J, Wang C, Pan CH, Zhao R, Murphy RC, Dai S, Henson P, Kappler JW, Hagman J, Zhang G. Proc Natl Acad Sci U S A 107 14568-14572 (2010)
  23. 5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation. Hopkinson RJ, Tumber A, Yapp C, Chowdhury R, Aik W, Che KH, Li XS, Kristensen JBL, King ONF, Chan MC, Yeoh KK, Choi H, Walport LJ, Thinnes CC, Bush JT, Lejeune C, Rydzik AM, Rose NR, Bagg EA, McDonough MA, Krojer T, Yue WW, Ng SS, Olsen L, Brennan PE, Oppermann U, Muller-Knapp S, Klose RJ, Ratcliffe PJ, Schofield CJ, Kawamura A. Chem Sci 4 3110-3117 (2013)
  24. Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Huang C, Xiang Y, Wang Y, Li X, Xu L, Zhu Z, Zhang T, Zhu Q, Zhang K, Jing N, Chen CD. Cell Res 20 154-165 (2010)
  25. The histone demethylase, Jmjd1a, interacts with the myocardin factors to regulate SMC differentiation marker gene expression. Lockman K, Taylor JM, Mack CP. Circ Res 101 e115-23 (2007)
  26. Synthesis and activity of N-oxalylglycine and its derivatives as Jumonji C-domain-containing histone lysine demethylase inhibitors. Hamada S, Kim TD, Suzuki T, Itoh Y, Tsumoto H, Nakagawa H, Janknecht R, Miyata N. Bioorg Med Chem Lett 19 2852-2855 (2009)
  27. Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Chowdhury R, Sekirnik R, Brissett NC, Krojer T, Ho CH, Ng SS, Clifton IJ, Ge W, Kershaw NJ, Fox GC, Muniz JRC, Vollmar M, Phillips C, Pilka ES, Kavanagh KL, von Delft F, Oppermann U, McDonough MA, Doherty AJ, Schofield CJ. Nature 510 422-426 (2014)
  28. The KDM5 family of histone demethylases as targets in oncology drug discovery. Rasmussen PB, Staller P. Epigenomics 6 277-286 (2014)
  29. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Tarhonskaya H, Rydzik AM, Leung IK, Loik ND, Chan MC, Kawamura A, McCullagh JS, Claridge TD, Flashman E, Schofield CJ. Nat Commun 5 3423 (2014)
  30. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Liokatis S, Stützer A, Elsässer SJ, Theillet FX, Klingberg R, van Rossum B, Schwarzer D, Allis CD, Fischle W, Selenko P. Nat Struct Mol Biol 19 819-823 (2012)
  31. Structural and mechanistic studies on γ-butyrobetaine hydroxylase. Leung IK, Krojer TJ, Kochan GT, Henry L, von Delft F, Claridge TD, Oppermann U, McDonough MA, Schofield CJ. Chem Biol 17 1316-1324 (2010)
  32. Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails. Bock I, Kudithipudi S, Tamas R, Kungulovski G, Dhayalan A, Jeltsch A. BMC Biochem 12 48 (2011)
  33. A miniaturized screen for inhibitors of Jumonji histone demethylases. Sakurai M, Rose NR, Schultz L, Quinn AM, Jadhav A, Ng SS, Oppermann U, Schofield CJ, Simeonov A. Mol Biosyst 6 357-364 (2010)
  34. Lysyl oxidase-like 2 deaminates lysine 4 in histone H3. Herranz N, Dave N, Millanes-Romero A, Morey L, Díaz VM, Lórenz-Fonfría V, Gutierrez-Gallego R, Jerónimo C, Di Croce L, García de Herreros A, Peiró S. Mol Cell 46 369-376 (2012)
  35. 8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors. Bavetsias V, Lanigan RM, Ruda GF, Atrash B, McLaughlin MG, Tumber A, Mok NY, Le Bihan YV, Dempster S, Boxall KJ, Jeganathan F, Hatch SB, Savitsky P, Velupillai S, Krojer T, England KS, Sejberg J, Thai C, Donovan A, Pal A, Scozzafava G, Bennett JM, Kawamura A, Johansson C, Szykowska A, Gileadi C, Burgess-Brown NA, von Delft F, Oppermann U, Walters Z, Shipley J, Raynaud FI, Westaway SM, Prinjha RK, Fedorov O, Burke R, Schofield CJ, Westwood IM, Bountra C, Müller S, van Montfort RL, Brennan PE, Blagg J. J Med Chem 59 1388-1409 (2016)
  36. Characterization of Drosophila melanogaster JmjC+N histone demethylases. Lloret-Llinares M, Carré C, Vaquero A, de Olano N, Azorín F. Nucleic Acids Res 36 2852-2863 (2008)
  37. Crystal structure of the 2-oxoglutarate- and Fe(II)-dependent lysyl hydroxylase JMJD6. Mantri M, Krojer T, Bagg EA, Webby CJ, Butler DS, Kochan G, Kavanagh KL, Oppermann U, McDonough MA, Schofield CJ. J Mol Biol 401 211-222 (2010)
  38. Synthesis of a FTO inhibitor with anticonvulsant activity. Zheng G, Cox T, Tribbey L, Wang GZ, Iacoban P, Booher ME, Gabriel GJ, Zhou L, Bae N, Rowles J, He C, Olsen MJ. ACS Chem Neurosci 5 658-665 (2014)
  39. Inhibition of osteogenic differentiation of human adipose-derived stromal cells by retinoblastoma binding protein 2 repression of RUNX2-activated transcription. Ge W, Shi L, Zhou Y, Liu Y, Ma GE, Jiang Y, Xu Y, Zhang X, Feng H. Stem Cells 29 1112-1125 (2011)
  40. The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development. Pedersen MT, Agger K, Laugesen A, Johansen JV, Cloos PA, Christensen J, Helin K. Mol Cell Biol 34 1031-1045 (2014)
  41. Structural insights into a novel histone demethylase PHF8. Yu L, Wang Y, Huang S, Wang J, Deng Z, Zhang Q, Wu W, Zhang X, Liu Z, Gong W, Chen Z. Cell Res 20 166-173 (2010)
  42. A molecular threading mechanism underlies Jumonji lysine demethylase KDM2A regulation of methylated H3K36. Cheng Z, Cheung P, Kuo AJ, Yukl ET, Wilmot CM, Gozani O, Patel DJ. Genes Dev 28 1758-1771 (2014)
  43. Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates. Williams ST, Walport LJ, Hopkinson RJ, Madden SK, Chowdhury R, Schofield CJ, Kawamura A. Epigenetics 9 1596-1603 (2014)
  44. LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Fang R, Chen F, Dong Z, Hu D, Barbera AJ, Clark EA, Fang J, Yang Y, Mei P, Rutenberg M, Li Z, Zhang Y, Xu Y, Yang H, Wang P, Simon MD, Zhou Q, Li J, Marynick MP, Li X, Lu H, Kaiser UB, Kingston RE, Xu Y, Shi YG. Mol Cell 49 558-570 (2013)
  45. Studies of H3K4me3 demethylation by KDM5B/Jarid1B/PLU1 reveals strong substrate recognition in vitro and identifies 2,4-pyridine-dicarboxylic acid as an in vitro and in cell inhibitor. Kristensen LH, Nielsen AL, Helgstrand C, Lees M, Cloos P, Kastrup JS, Helin K, Olsen L, Gajhede M. FEBS J 279 1905-1914 (2012)
  46. Development of homogeneous luminescence assays for histone demethylase catalysis and binding. Kawamura A, Tumber A, Rose NR, King ON, Daniel M, Oppermann U, Heightman TD, Schofield C. Anal Biochem 404 86-93 (2010)
  47. Enabling lead discovery for histone lysine demethylases by high-throughput RapidFire mass spectrometry. Hutchinson SE, Leveridge MV, Heathcote ML, Francis P, Williams L, Gee M, Munoz-Muriedas J, Leavens B, Shillings A, Jones E, Homes P, Baddeley S, Chung CW, Bridges A, Argyrou A. J Biomol Screen 17 39-48 (2012)
  48. The PHD1 finger of KDM5B recognizes unmodified H3K4 during the demethylation of histone H3K4me2/3 by KDM5B. Zhang Y, Yang H, Guo X, Rong N, Song Y, Xu Y, Lan W, Zhang X, Liu M, Xu Y, Cao C. Protein Cell 5 837-850 (2014)
  49. Protein complex interactor analysis and differential activity of KDM3 subfamily members towards H3K9 methylation. Brauchle M, Yao Z, Arora R, Thigale S, Clay I, Inverardi B, Fletcher J, Taslimi P, Acker MG, Gerrits B, Voshol J, Bauer A, Schübeler D, Bouwmeester T, Ruffner H. PLoS One 8 e60549 (2013)
  50. Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. Chen Q, Chen X, Wang Q, Zhang F, Lou Z, Zhang Q, Zhou DX. PLoS Genet 9 e1003239 (2013)
  51. The role of histone demethylase KDM4B in Myc signaling in neuroblastoma. Yang J, AlTahan AM, Hu D, Wang Y, Cheng PH, Morton CL, Qu C, Nathwani AC, Shohet JM, Fotsis T, Koster J, Versteeg R, Okada H, Harris AL, Davidoff AM. J Natl Cancer Inst 107 djv080 (2015)
  52. Structural and functional analysis of JMJD2D reveals molecular basis for site-specific demethylation among JMJD2 demethylases. Krishnan S, Trievel RC. Structure 21 98-108 (2013)
  53. Crystal structure of a novel JmjC-domain-containing protein, TYW5, involved in tRNA modification. Kato M, Araiso Y, Noma A, Nagao A, Suzuki T, Ishitani R, Nureki O. Nucleic Acids Res 39 1576-1585 (2011)
  54. Identification of non-histone substrates for JMJD2A-C histone demethylases. Ponnaluri VK, Vavilala DT, Putty S, Gutheil WG, Mukherji M. Biochem Biophys Res Commun 390 280-284 (2009)
  55. Linking of 2-oxoglutarate and substrate binding sites enables potent and highly selective inhibition of JmjC histone demethylases. Woon EC, Tumber A, Kawamura A, Hillringhaus L, Ge W, Rose NR, Ma JH, Chan MC, Walport LJ, Che KH, Ng SS, Marsden BD, Oppermann U, McDonough MA, Schofield CJ. Angew Chem Int Ed Engl 51 1631-1634 (2012)
  56. The Activity of JmjC Histone Lysine Demethylase KDM4A is Highly Sensitive to Oxygen Concentrations. Hancock RL, Masson N, Dunne K, Flashman E, Kawamura A. ACS Chem Biol 12 1011-1019 (2017)
  57. Structural insights into a dual-specificity histone demethylase ceKDM7A from Caenorhabditis elegans. Yang Y, Hu L, Wang P, Hou H, Lin Y, Liu Y, Li Z, Gong R, Feng X, Zhou L, Zhang W, Dong Y, Yang H, Lin H, Wang Y, Chen CD, Xu Y. Cell Res 20 886-898 (2010)
  58. A cell-permeable ester derivative of the JmjC histone demethylase inhibitor IOX1. Schiller R, Scozzafava G, Tumber A, Wickens JR, Bush JT, Rai G, Lejeune C, Choi H, Yeh TL, Chan MC, Mott BT, McCullagh JS, Maloney DJ, Schofield CJ, Kawamura A. ChemMedChem 9 566-571 (2014)
  59. Inhibition of the histone lysine demethylase JMJD2A by ejection of structural Zn(II). Sekirnik R, Rose NR, Thalhammer A, Seden PT, Mecinović J, Schofield CJ. Chem Commun (Camb) 6376-6378 (2009)
  60. Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase. Sánchez-Fernández EM, Tarhonskaya H, Al-Qahtani K, Hopkinson RJ, McCullagh JS, Schofield CJ, Flashman E. Biochem J 449 491-496 (2013)
  61. Monitoring the activity of 2-oxoglutarate dependent histone demethylases by NMR spectroscopy: direct observation of formaldehyde. Hopkinson RJ, Hamed RB, Rose NR, Claridge TD, Schofield CJ. Chembiochem 11 506-510 (2010)
  62. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD. Reuter K, Pittelkow M, Bursy J, Heine A, Craan T, Bremer E. PLoS One 5 e10647 (2010)
  63. Fe(II)/alpha-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism. Simmons JM, Müller TA, Hausinger RP. Dalton Trans 5132-5142 (2008)
  64. Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins. Hahn P, Böse J, Edler S, Lengeling A. BMC Genomics 9 293 (2008)
  65. Modulation of 14-3-3 interaction with phosphorylated histone H3 by combinatorial modification patterns. Winter S, Fischle W, Seiser C. Cell Cycle 7 1336-1342 (2008)
  66. Crystal structure of the PHF8 Jumonji domain, an Nepsilon-methyl lysine demethylase. Yue WW, Hozjan V, Ge W, Loenarz C, Cooper CD, Schofield CJ, Kavanagh KL, Oppermann U, McDonough MA. FEBS Lett 584 825-830 (2010)
  67. Is JmjC oxygenase catalysis limited to demethylation? Hopkinson RJ, Walport LJ, Münzel M, Rose NR, Smart TJ, Kawamura A, Claridge TD, Schofield CJ. Angew Chem Int Ed Engl 52 7709-7713 (2013)
  68. Synthesis, biological activity and mechanistic insights of 1-substituted cyclopropylamine derivatives: a novel class of irreversible inhibitors of histone demethylase KDM1A. Vianello P, Botrugno OA, Cappa A, Ciossani G, Dessanti P, Mai A, Mattevi A, Meroni G, Minucci S, Thaler F, Tortorici M, Trifiró P, Valente S, Villa M, Varasi M, Mercurio C. Eur J Med Chem 86 352-363 (2014)
  69. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase. Daughtry KD, Xiao Y, Stoner-Ma D, Cho E, Orville AM, Liu P, Allen KN. J Am Chem Soc 134 2823-2834 (2012)
  70. Light-driven post-translational installation of reactive protein side chains. Josephson B, Fehl C, Isenegger PG, Nadal S, Wright TH, Poh AWJ, Bower BJ, Giltrap AM, Chen L, Batchelor-McAuley C, Roper G, Arisa O, Sap JBI, Kawamura A, Baldwin AJ, Mohammed S, Compton RG, Gouverneur V, Davis BG. Nature 585 530-537 (2020)
  71. Lysyl oxidase-like 2 (LOXL2) oxidizes trimethylated lysine 4 in histone H3. Herranz N, Dave N, Millanes-Romero A, Pascual-Reguant L, Morey L, Díaz VM, Lórenz-Fonfría V, Gutierrez-Gallego R, Jerónimo C, Iturbide A, Di Croce L, García de Herreros A, Peiró S. FEBS J 283 4263-4273 (2016)
  72. Navigating the passage between Charybdis and Scylla: recognizing the achievements of Noel Rose. Ansari AA, Gershwin ME. J Autoimmun 33 165-169 (2009)
  73. Primers on chromatin. Lall S. Nat Struct Mol Biol 14 1110-1115 (2007)
  74. Docking and Linking of Fragments To Discover Jumonji Histone Demethylase Inhibitors. Korczynska M, Le DD, Younger N, Gregori-Puigjané E, Tumber A, Krojer T, Velupillai S, Gileadi C, Nowak RP, Iwasa E, Pollock SB, Ortiz Torres I, Oppermann U, Shoichet BK, Fujimori DG. J Med Chem 59 1580-1598 (2016)
  75. Histone Demethylases KDM4A and KDM4C Regulate Differentiation of Embryonic Stem Cells to Endothelial Cells. Wu L, Wary KK, Revskoy S, Gao X, Tsang K, Komarova YA, Rehman J, Malik AB. Stem Cell Reports 5 10-21 (2015)
  76. Aspartate/asparagine-β-hydroxylase crystal structures reveal an unexpected epidermal growth factor-like domain substrate disulfide pattern. Pfeffer I, Brewitz L, Krojer T, Jensen SA, Kochan GT, Kershaw NJ, Hewitson KS, McNeill LA, Kramer H, Münzel M, Hopkinson RJ, Oppermann U, Handford PA, McDonough MA, Schofield CJ. Nat Commun 10 4910 (2019)
  77. JMJD5 is a human arginyl C-3 hydroxylase. Wilkins SE, Islam MS, Gannon JM, Markolovic S, Hopkinson RJ, Ge W, Schofield CJ, Chowdhury R. Nat Commun 9 1180 (2018)
  78. Targeting histone lysine demethylases by truncating the histone 3 tail to obtain selective substrate-based inhibitors. Lohse B, Nielsen AL, Kristensen JB, Helgstrand C, Cloos PA, Olsen L, Gajhede M, Clausen RP, Kristensen JL. Angew Chem Int Ed Engl 50 9100-9103 (2011)
  79. Maternal expression of the histone demethylase Kdm4a is crucial for pre-implantation development. Sankar A, Kooistra SM, Gonzalez JM, Ohlsson C, Poutanen M, Helin K. Development 144 3264-3277 (2017)
  80. Reconstitution of nucleosome demethylation and catalytic properties of a Jumonji histone demethylase. Shiau C, Trnka MJ, Bozicevic A, Ortiz Torres I, Al-Sady B, Burlingame AL, Narlikar GJ, Fujimori DG. Chem Biol 20 494-499 (2013)
  81. Structure of the Arabidopsis JMJ14-H3K4me3 Complex Provides Insight into the Substrate Specificity of KDM5 Subfamily Histone Demethylases. Yang Z, Qiu Q, Chen W, Jia B, Chen X, Hu H, He K, Deng X, Li S, Tao WA, Cao X, Du J. Plant Cell 30 167-177 (2018)
  82. The case for open-access chemical biology. A strategy for pre-competitive medicinal chemistry to promote drug discovery. Weigelt J. EMBO Rep 10 941-945 (2009)
  83. Computational characterization of chromatin domain boundary-associated genomic elements. Hong S, Kim D. Nucleic Acids Res 45 10403-10414 (2017)
  84. Crystal structure of the catalytic core of Saccharomyces cerevesiae histone demethylase Rph1: insights into the substrate specificity and catalytic mechanism. Chang Y, Wu J, Tong XJ, Zhou JQ, Ding J. Biochem J 433 295-302 (2011)
  85. Force field parameters for the simulation of modified histone tails. Grauffel C, Stote RH, Dejaegere A. J Comput Chem 31 2434-2451 (2010)
  86. Optimisation of a triazolopyridine based histone demethylase inhibitor yields a potent and selective KDM2A (FBXL11) inhibitor. England KS, Tumber A, Krojer T, Scozzafava G, Ng SS, Daniel M, Szykowska A, Che K, von Delft F, Burgess-Brown NA, Kawamura A, Schofield CJ, Brennan PE. Medchemcomm 5 1879-1886 (2014)
  87. Purification and assay protocols for obtaining highly active Jumonji C demethylases. Krishnan S, Collazo E, Ortiz-Tello PA, Trievel RC. Anal Biochem 420 48-53 (2012)
  88. Posttranslational modifications of the histone 3 tail and their impact on the activity of histone lysine demethylases in vitro. Lohse B, Helgstrand C, Kristensen JB, Leurs U, Cloos PA, Kristensen JL, Clausen RP. PLoS One 8 e67653 (2013)
  89. The small molecule JIB-04 disrupts O2 binding in the Fe-dependent histone demethylase KDM4A/JMJD2A. Cascella B, Lee SG, Singh S, Jez JM, Mirica LM. Chem Commun (Camb) 53 2174-2177 (2017)
  90. Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment. Cortopassi WA, Simion R, Honsby CE, França TC, Paton RS. Chemistry 21 18983-18992 (2015)
  91. KDM4C, a H3K9me3 Histone Demethylase, is Involved in the Maintenance of Human ESCC-Initiating Cells by Epigenetically Enhancing SOX2 Expression. Yuan X, Kong J, Ma Z, Li N, Jia R, Liu Y, Zhou F, Zhan Q, Liu G, Gao S. Neoplasia 18 594-609 (2016)
  92. Dual-action inhibitors of HIF prolyl hydroxylases that induce binding of a second iron ion. Yeoh KK, Chan MC, Thalhammer A, Demetriades M, Chowdhury R, Tian YM, Stolze I, McNeill LA, Lee MK, Woon ECY, Mackeen MM, Kawamura A, Ratcliffe PJ, Mecinović J, Schofield CJ. Org Biomol Chem 11 732-745 (2013)
  93. Comment Targeting the JMJD2A histone lysine demethylase. Wilson JR. Nat Struct Mol Biol 14 682-684 (2007)
  94. Epigenetic control and cancer: the potential of histone demethylases as therapeutic targets. Lizcano F, Garcia J. Pharmaceuticals (Basel) 5 963-990 (2012)
  95. Tetrazolylhydrazides as Selective Fragment-Like Inhibitors of the JumonjiC-Domain-Containing Histone Demethylase KDM4A. Rüger N, Roatsch M, Emmrich T, Franz H, Schüle R, Jung M, Link A. ChemMedChem 10 1875-1883 (2015)
  96. Catalysis by the JmjC histone demethylase KDM4A integrates substrate dynamics, correlated motions and molecular orbital control. Ramanan R, Chaturvedi SS, Lehnert N, Schofield CJ, Karabencheva-Christova TG, Christov CZ. Chem Sci 11 9950-9961 (2020)
  97. Dissecting the binding mode of low affinity phage display peptide ligands to protein targets by hydrogen/deuterium exchange coupled to mass spectrometry. Leurs U, Lohse B, Ming S, Cole PA, Clausen RP, Kristensen JL, Rand KD. Anal Chem 86 11734-11741 (2014)
  98. Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases. Kundu S. BMC Res Notes 5 410 (2012)
  99. Quantitative analysis of histone demethylase probes using fluorescence polarization. Xu W, Podoll JD, Dong X, Tumber A, Oppermann U, Wang X. J Med Chem 56 5198-5202 (2013)
  100. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray. Cornett EM, Dickson BM, Vaughan RM, Krishnan S, Trievel RC, Strahl BD, Rothbart SB. Methods Enzymol 574 31-52 (2016)
  101. 4-Biphenylalanine- and 3-Phenyltyrosine-Derived Hydroxamic Acids as Inhibitors of the JumonjiC-Domain-Containing Histone Demethylase KDM4A. Morera L, Roatsch M, Fürst MC, Hoffmann I, Senger J, Hau M, Franz H, Schüle R, Heinrich MR, Jung M. ChemMedChem 11 2063-2083 (2016)
  102. A comparative molecular dynamics study of methylation state specificity of JMJD2A. Ulucan O, Keskin O, Erman B, Gursoy A. PLoS One 6 e24664 (2011)
  103. Crystal Structure of the 2-Oxoglutarate- and Fe(II)-Dependent Lysyl Hydroxylase JMJD6. Mantri M, Krojer T, Bagg EA, Webby CA, Butler DS, Kochan G, Kavanagh KL, Oppermann U, McDonough MA, Schofield CJ. J Mol Biol (2010)
  104. Diverse ways to be specific: a novel Zn-binding domain confers substrate specificity to UTX/KDM6A histone H3 Lys 27 demethylase. Kim E, Song JJ. Genes Dev 25 2223-2226 (2011)
  105. Identification of a Novel Benzimidazole Pyrazolone Scaffold That Inhibits KDM4 Lysine Demethylases and Reduces Proliferation of Prostate Cancer Cells. Carter DM, Specker E, Przygodda J, Neuenschwander M, von Kries JP, Heinemann U, Nazaré M, Gohlke U. SLAS Discov 22 801-812 (2017)
  106. Mechanistic and structural studies of KDM-catalysed demethylation of histone 1 isotype 4 at lysine 26. Walport LJ, Hopkinson RJ, Chowdhury R, Zhang Y, Bonnici J, Schiller R, Kawamura A, Schofield CJ. FEBS Lett 592 3264-3273 (2018)
  107. The COMPASS-like complex modulates fungal development and pathogenesis by regulating H3K4me3-mediated targeted gene expression in Magnaporthe oryzae. Zhou S, Liu X, Sun W, Zhang M, Yin Y, Pan S, He D, Shen M, Yang J, Zheng Q, Wang W. Mol Plant Pathol 22 422-439 (2021)
  108. A scintillation proximity assay for histone demethylases. Yu W, Eram MS, Hajian T, Szykowska A, Burgess-Brown N, Vedadi M, Brown PJ. Anal Biochem 463 54-60 (2014)
  109. Lysine-241 Has a Role in Coupling 2OG Turnover with Substrate Oxidation During KDM4-Catalysed Histone Demethylation. Hancock RL, Abboud MI, Smart TJ, Flashman E, Kawamura A, Schofield CJ, Hopkinson RJ. Chembiochem 19 917-921 (2018)
  110. Substituted 2-(2-aminopyrimidin-4-yl)pyridine-4-carboxylates as potent inhibitors of JumonjiC domain-containing histone demethylases. Roatsch M, Robaa D, Pippel M, Nettleship JE, Reddivari Y, Bird LE, Hoffmann I, Franz H, Owens RJ, Schüle R, Flaig R, Sippl W, Jung M. Future Med Chem 8 1553-1571 (2016)
  111. Cell-type-dependent histone demethylase specificity promotes meiotic chromosome condensation in Arabidopsis. Wang J, Yu C, Zhang S, Ye J, Dai H, Wang H, Huang J, Cao X, Ma J, Ma H, Wang Y. Nat Plants 6 823-837 (2020)
  112. Pharmacological modulation of histone demethylase activity by a small molecule isolated from subcritical water extracts of Sasa senanensis leaves prolongs the lifespan of Drosophila melanogaster. Nakagawa-Yagi Y, Sato Y, Matsumoto E, Nakatsuka S, Sakaki T, Muramatsu Y, Hara T, Aigaki T. BMC Complement Altern Med 12 101 (2012)
  113. Two-State Reactivity of Histone Demethylases Containing Jumonji-C Active Sites: Different Mechanisms for Different Methylation Degrees. Alberro N, Torrent-Sucarrat M, Arrastia I, Arrieta A, Cossío FP. Chemistry 23 137-148 (2017)
  114. What Is the Catalytic Mechanism of Enzymatic Histone N-Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field? Ramanan R, Waheed SO, Schofield CJ, Christov CZ. Chemistry 27 11827-11836 (2021)
  115. Letter Bermuda Principles meet structural biology. Edwards A. Nat Struct Mol Biol 15 116 (2008)
  116. Human histone demethylase KDM6B can catalyse sequential oxidations. Hopkinson RJ, Langley GW, Belle R, Walport LJ, Dunne K, Münzel M, Salah E, Kawamura A, Claridge TDW, Schofield CJ. Chem Commun (Camb) 54 7975-7978 (2018)
  117. Structural analysis of the 2-oxoglutarate binding site of the circadian rhythm linked oxygenase JMJD5. Islam MS, Markoulides M, Chowdhury R, Schofield CJ. Sci Rep 12 20680 (2022)
  118. Structural cooperativity in histone H3 tail modifications. Sanli D, Keskin O, Gursoy A, Erman B. Protein Sci 20 1982-1990 (2011)
  119. A metal-binding site in the RTN1-C protein: new perspectives on the physiological role of a neuronal protein. Nepravishta R, Polizio F, Paci M, Melino S. Metallomics 4 480-487 (2012)
  120. C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-ones: Studies towards the identification of potent, cell penetrant Jumonji C domain containing histone lysine demethylase 4 subfamily (KDM4) inhibitors, compound profiling in cell-based target engagement assays. Le Bihan YV, Lanigan RM, Atrash B, McLaughlin MG, Velupillai S, Malcolm AG, England KS, Ruda GF, Mok NY, Tumber A, Tomlin K, Saville H, Shehu E, McAndrew C, Carmichael L, Bennett JM, Jeganathan F, Eve P, Donovan A, Hayes A, Wood F, Raynaud FI, Fedorov O, Brennan PE, Burke R, van Montfort RLM, Rossanese OW, Blagg J, Bavetsias V. Eur J Med Chem 177 316-337 (2019)
  121. Catalysis by KDM6 Histone Demethylases - A Synergy between the Non-Heme Iron(II) Center, Second Coordination Sphere, and Long-Range Interactions. Rifayee SBJS, Chaturvedi SS, Warner C, Wildey J, White W, Thompson M, Schofield CJ, Christov CZ. Chemistry 29 e202301305 (2023)
  122. Prohexadione, a plant growth regulator, inhibits histone lysine demethylases and modulates epigenetics. Vavilala DT, Reddy S, Sachchidanand, Prakash S, Ponnaluri VKC, Kumar A, Mukherji M. Toxicol Rep 1 1152-1161 (2014)
  123. Allele-Specific Chemical Rescue of Histone Demethylases Using Abiotic Cofactors. Scott V, Dey D, Kuwik J, Hinkelman K, Waldman M, Islam K. ACS Chem Biol 17 3321-3330 (2022)
  124. Fluorogenic probes for detecting deacylase and demethylase activity towards post-translationally-modified lysine residues. Hori Y, Nishiura M, Tao T, Baba R, Bull SD, Kikuchi K. Chem Sci 12 2498-2503 (2021)
  125. In-silico guided chemical exploration of KDM4A fragments hits. Lombino J, Vallone R, Cimino M, Gulotta MR, De Simone G, Morando MA, Sabbatella R, Di Martino S, Fogazza M, Sarno F, Coronnello C, De Rosa M, Cipollina C, Altucci L, Perricone U, Alfano C. Clin Epigenetics 15 197 (2023)
  126. JMJD8 Functions as a Novel AKT1 Lysine Demethylase. Wang Y, Zhang Y, Li Z, Wang J. Int J Mol Sci 24 460 (2022)
  127. KDM4 Demethylases: Structure, Function, and Inhibitors. Jiang Y, Liu L, Yang ZQ. Adv Exp Med Biol 1433 87-111 (2023)
  128. KDM4A, involved in the inflammatory and oxidative stress caused by traumatic brain injury-hemorrhagic shock, partly through the regulation of the microglia M1 polarization. Cai J, Yang Y, Han J, Gao Y, Li X, Ge X. BMC Neurosci 24 17 (2023)
  129. Reading and erasing of the phosphonium analogue of trimethyllysine by epigenetic proteins. Belle R, Kamps JJAG, Poater J, Kumar K, Pieters BJGE, Salah E, Claridge TDW, Paton RS, Matthias Bickelhaupt F, Kawamura A, Schofield CJ, Mecinović J. Commun Chem 5 s42004-022-00640-4 (2022)
  130. Reading and erasing of the phosphonium analogue of trimethyllysine by epigenetic proteins. Belle R, Kamps JJAG, Poater J, Kumar K, Pieters BJGE, Salah E, Claridge TDW, Paton RS, Bickelhaupt FM, Kawamura A, Schofield CJ, Mecinović J. Commun Chem 5 27 (2022)
  131. The quinoline compound, S4 effectively antagonizes alcohol intake in mice: Possible association with the histone H3 modifications. Banerjee TS, Hazra A, Mondal NB, Das S. Neurochem Int 87 117-127 (2015)