Articles - 2ou0 mentioned but not cited (3)
- Predicting absolute ligand binding free energies to a simple model site. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA. J Mol Biol 371 1118-1134 (2007)
- Small-molecule ligand docking into comparative models with Rosetta. Combs SA, Deluca SL, Deluca SH, Lemmon GH, Nannemann DP, Nguyen ED, Willis JR, Sheehan JH, Meiler J. Nat Protoc 8 1277-1298 (2013)
- Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics. Wang K, Chodera JD, Yang Y, Shirts MR. J Comput Aided Mol Des 27 989-1007 (2013)
Reviews citing this publication (19)
- Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". Mobley DL, Dill KA. Structure 17 489-498 (2009)
- Alchemical free energy methods for drug discovery: progress and challenges. Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS. Curr Opin Struct Biol 21 150-160 (2011)
- Computations of standard binding free energies with molecular dynamics simulations. Deng Y, Roux B. J Phys Chem B 113 2234-2246 (2009)
- Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Chodera JD, Mobley DL. Annu Rev Biophys 42 121-142 (2013)
- Predicting Binding Free Energies: Frontiers and Benchmarks. Mobley DL, Gilson MK. Annu Rev Biophys 46 531-558 (2017)
- Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. Michel J, Essex JW. J Comput Aided Mol Des 24 639-658 (2010)
- Docking Screens for Novel Ligands Conferring New Biology. Irwin JJ, Shoichet BK. J Med Chem 59 4103-4120 (2016)
- Molecular recognition and ligand association. Baron R, McCammon JA. Annu Rev Phys Chem 64 151-175 (2013)
- Classical electrostatics for biomolecular simulations. Cisneros GA, Karttunen M, Ren P, Sagui C. Chem Rev 114 779-814 (2014)
- Structure-based systems biology for analyzing off-target binding. Xie L, Xie L, Bourne PE. Curr Opin Struct Biol 21 189-199 (2011)
- Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition. Wereszczynski J, McCammon JA. Q Rev Biophys 45 1-25 (2012)
- Advances in free-energy-based simulations of protein folding and ligand binding. Perez A, Morrone JA, Simmerling C, Dill KA. Curr Opin Struct Biol 36 25-31 (2016)
- Recent theoretical and computational advances for modeling protein-ligand binding affinities. Gallicchio E, Levy RM. Adv Protein Chem Struct Biol 85 27-80 (2011)
- A survey of the year 2007 literature on applications of isothermal titration calorimetry. Bjelić S, Jelesarov I. J Mol Recognit 21 289-312 (2008)
- Protein storytelling through physics. Brini E, Simmerling C, Dill K. Science 370 eaaz3041 (2020)
- Recent Developments in Free Energy Calculations for Drug Discovery. King E, Aitchison E, Li H, Luo R. Front Mol Biosci 8 712085 (2021)
- Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Bakan A, Lazo JS, Wipf P, Brummond KM, Bahar I. Curr Med Chem 15 2536-2544 (2008)
- Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis. Kingdon ADH, Alderwick LJ. Comput Struct Biotechnol J 19 3708-3719 (2021)
- The slow but steady rise of binding free energy calculations in drug discovery. Xu H. J Comput Aided Mol Des 37 67-74 (2023)
Articles citing this publication (138)
- DOCK 6: Impact of new features and current docking performance. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC. J Comput Chem 36 1132-1156 (2015)
- Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Bikadi Z, Hazai E. J Cheminform 1 15 (2009)
- Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements. Beauchamp KA, Lin YS, Das R, Pande VS. J Chem Theory Comput 8 1409-1414 (2012)
- Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. Steinbrecher T, Mobley DL, Case DA. J Chem Phys 127 214108 (2007)
- Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations. Jiang W, Roux B. J Chem Theory Comput 6 2559-2565 (2010)
- Computational fragment-based binding site identification by ligand competitive saturation. Guvench O, MacKerell AD. PLoS Comput Biol 5 e1000435 (2009)
- Accurate calculation of the absolute free energy of binding for drug molecules. Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC. Chem Sci 7 207-218 (2016)
- Standard binding free energies from computer simulations: What is the best strategy? Gumbart JC, Roux B, Chipot C. J Chem Theory Comput 9 794-802 (2013)
- Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. Boyce SE, Mobley DL, Rocklin GJ, Graves AP, Dill KA, Shoichet BK. J Mol Biol 394 747-763 (2009)
- Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. Xie L, Evangelidis T, Xie L, Bourne PE. PLoS Comput Biol 7 e1002037 (2011)
- Rescoring docking hit lists for model cavity sites: predictions and experimental testing. Graves AP, Shivakumar DM, Boyce SE, Jacobson MP, Case DA, Shoichet BK. J Mol Biol 377 914-934 (2008)
- Perspective: Alchemical free energy calculations for drug discovery. Mobley DL, Klimovich PV. J Chem Phys 137 230901 (2012)
- The Binding Energy Distribution Analysis Method (BEDAM) for the Estimation of Protein-Ligand Binding Affinities. Gallicchio E, Lapelosa M, Levy RM. J Chem Theory Comput 6 2961-2977 (2010)
- Druggability Assessment of Allosteric Proteins by Dynamics Simulations in the Presence of Probe Molecules. Bakan A, Nevins N, Lakdawala AS, Bahar I. J Chem Theory Comput 8 2435-2447 (2012)
- Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. Deng Y, Roux B. J Chem Phys 128 115103 (2008)
- A machine learning-based method to improve docking scoring functions and its application to drug repurposing. Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE. J Chem Inf Model 51 408-419 (2011)
- Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory. Hohenstein EG, Sherrill CD. J Chem Phys 133 014101 (2010)
- Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations. Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC. J Am Chem Soc 139 946-957 (2017)
- Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes. König G, Hudson PS, Boresch S, Woodcock HL. J Chem Theory Comput 10 1406-1419 (2014)
- Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations. Klimovich PV, Mobley DL. J Comput Aided Mol Des 24 307-316 (2010)
- research-article Molecular binding: Under water's influence. Hummer G. Nat Chem 2 906-907 (2010)
- Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: investigating the fundamental forces of DNA-intercalator interactions. Hohenstein EG, Parrish RM, Sherrill CD, Turney JM, Schaefer HF. J Chem Phys 135 174107 (2011)
- Efficiency of alchemical free energy simulations. I. A practical comparison of the exponential formula, thermodynamic integration, and Bennett's acceptance ratio method. Bruckner S, Boresch S. J Comput Chem 32 1303-1319 (2011)
- Lead optimization mapper: automating free energy calculations for lead optimization. Liu S, Wu Y, Lin T, Abel R, Redmann JP, Summa CM, Jaber VR, Lim NM, Mobley DL. J Comput Aided Mol Des 27 755-770 (2013)
- Limits of Free Energy Computation for Protein-Ligand Interactions. Merz KM. J Chem Theory Comput 6 1018-1027 (2010)
- Escaping Atom Types in Force Fields Using Direct Chemical Perception. Mobley DL, Bannan CC, Rizzi A, Bayly CI, Chodera JD, Lim VT, Lim NM, Beauchamp KA, Slochower DR, Shirts MR, Gilson MK, Eastman PK. J Chem Theory Comput 14 6076-6092 (2018)
- Let's get honest about sampling. Mobley DL. J Comput Aided Mol Des 26 93-95 (2012)
- Best Practices for Alchemical Free Energy Calculations [Article v1.0]. Mey ASJS, Allen BK, Macdonald HEB, Chodera JD, Hahn DF, Kuhn M, Michel J, Mobley DL, Naden LN, Prasad S, Rizzi A, Scheen J, Shirts MR, Tresadern G, Xu H. Living J Comput Mol Sci 2 18378 (2020)
- The free energy landscape of small molecule unbinding. Huang D, Caflisch A. PLoS Comput Biol 7 e1002002 (2011)
- Protein-ligand binding with the coarse-grained Martini model. Souza PCT, Thallmair S, Conflitti P, Ramírez-Palacios C, Alessandri R, Raniolo S, Limongelli V, Marrink SJ. Nat Commun 11 3714 (2020)
- Alchemical prediction of hydration free energies for SAMPL. Mobley DL, Liu S, Cerutti DS, Swope WC, Rice JE. J Comput Aided Mol Des 26 551-562 (2012)
- Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations. Lapelosa M, Gallicchio E, Levy RM. J Chem Theory Comput 8 47-60 (2012)
- Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning. Cole DJ, Vilseck JZ, Tirado-Rives J, Payne MC, Jorgensen WL. J Chem Theory Comput 12 2312-2323 (2016)
- Implementation of the Hungarian algorithm to account for ligand symmetry and similarity in structure-based design. Allen WJ, Rizzo RC. J Chem Inf Model 54 518-529 (2014)
- Non-Boltzmann sampling and Bennett's acceptance ratio method: how to profit from bending the rules. König G, Boresch S. J Comput Chem 32 1082-1090 (2011)
- Design of protein-ligand binding based on the molecular-mechanics energy model. Boas FE, Harbury PB. J Mol Biol 380 415-424 (2008)
- CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations. Kim S, Oshima H, Zhang H, Kern NR, Re S, Lee J, Roux B, Sugita Y, Jiang W, Im W. J Chem Theory Comput 16 7207-7218 (2020)
- Uncertainty Quantification in Alchemical Free Energy Methods. Bhati AP, Wan S, Hu Y, Sherborne B, Coveney PV. J Chem Theory Comput 14 2867-2880 (2018)
- Ligand binding to the voltage-gated Kv1.5 potassium channel in the open state--docking and computer simulations of a homology model. Andér M, Luzhkov VB, Aqvist J. Biophys J 94 820-831 (2008)
- Sensitivity in Binding Free Energies Due to Protein Reorganization. Lim NM, Wang L, Abel R, Mobley DL. J Chem Theory Comput 12 4620-4631 (2016)
- Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition. Parrish RM, Sherrill CD. J Chem Phys 141 044115 (2014)
- A comparison of different initialization protocols to obtain statistically independent molecular dynamics simulations. Genheden S, Ryde U. J Comput Chem 32 187-195 (2011)
- Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo. Gill SC, Lim NM, Grinaway PB, Rustenburg AS, Fass J, Ross GA, Chodera JD, Mobley DL. J Phys Chem B 122 5579-5598 (2018)
- The nature of DNA-base-carbon-nanotube interactions. Johnson RR, Johnson AT, Klein ML. Small 6 31-34 (2010)
- Computational investigation of glycosylation effects on a family 1 carbohydrate-binding module. Taylor CB, Talib MF, McCabe C, Bu L, Adney WS, Himmel ME, Crowley MF, Beckham GT. J Biol Chem 287 3147-3155 (2012)
- Blind prediction of charged ligand binding affinities in a model binding site. Rocklin GJ, Boyce SE, Fischer M, Fish I, Mobley DL, Shoichet BK, Dill KA. J Mol Biol 425 4569-4583 (2013)
- Computing Relative Binding Affinity of Ligands to Receptor: An Effective Hybrid Single-Dual-Topology Free-Energy Perturbation Approach in NAMD. Jiang W, Chipot C, Roux B. J Chem Inf Model 59 3794-3802 (2019)
- Elucidating the energetics of entropically driven protein-ligand association: calculations of absolute binding free energy and entropy. Deng NJ, Zhang P, Cieplak P, Lai L. J Phys Chem B 115 11902-11910 (2011)
- Relative Binding Free Energy Calculations Applied to Protein Homology Models. Cappel D, Hall ML, Lenselink EB, Beuming T, Qi J, Bradner J, Sherman W. J Chem Inf Model 56 2388-2400 (2016)
- AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening. Pencheva T, Lagorce D, Pajeva I, Villoutreix BO, Miteva MA. BMC Bioinformatics 9 438 (2008)
- Improved Binding Free Energy Predictions from Single-Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange. Khavrutskii IV, Wallqvist A. J Chem Theory Comput 7 3001-3011 (2011)
- Accounting for ligand conformational restriction in calculations of protein-ligand binding affinities. Gao C, Park MS, Stern HA. Biophys J 98 901-910 (2010)
- Biophysical limits of protein-ligand binding. Smith RD, Engdahl AL, Dunbar JB, Carlson HA. J Chem Inf Model 52 2098-2106 (2012)
- Resolving the Ligand-Binding Specificity in c-MYC G-Quadruplex DNA: Absolute Binding Free Energy Calculations and SPR Experiment. Deng N, Wickstrom L, Cieplak P, Lin C, Yang D. J Phys Chem B 121 10484-10497 (2017)
- Convolutional neural network scoring and minimization in the D3R 2017 community challenge. Sunseri J, King JE, Francoeur PG, Koes DR, Koes DR. J Comput Aided Mol Des 33 19-34 (2019)
- Efficient consideration of coordinated water molecules improves computational protein-protein and protein-ligand docking discrimination. Pavlovicz RE, Park H, DiMaio F. PLoS Comput Biol 16 e1008103 (2020)
- Insights from free-energy calculations: protein conformational equilibrium, driving forces, and ligand-binding modes. Huang YM, Chen W, Potter MJ, Chang CE. Biophys J 103 342-351 (2012)
- Predicting binding affinities of host-guest systems in the SAMPL3 blind challenge: the performance of relative free energy calculations. König G, Brooks BR. J Comput Aided Mol Des 26 543-550 (2012)
- Application of a polarizable force field to calculations of relative protein-ligand binding affinities. Khoruzhii O, Donchev AG, Galkin N, Illarionov A, Olevanov M, Ozrin V, Queen C, Tarasov V. Proc Natl Acad Sci U S A 105 10378-10383 (2008)
- Quantitative Assessment of the Energetics of Dopamine Translocation by Human Dopamine Transporter. Cheng MH, Kaya C, Bahar I. J Phys Chem B 122 5336-5346 (2018)
- Absolute Binding Free Energies between T4 Lysozyme and 141 Small Molecules: Calculations Based on Multiple Rigid Receptor Configurations. Xie B, Nguyen TH, Minh DDL. J Chem Theory Comput 13 2930-2944 (2017)
- Challenges Encountered Applying Equilibrium and Nonequilibrium Binding Free Energy Calculations. Baumann HM, Gapsys V, de Groot BL, Mobley DL. J Phys Chem B 125 4241-4261 (2021)
- Using thermodynamic integration MD simulation to compute relative protein-ligand binding free energy of a GSK3β kinase inhibitor and its analogs. Lee HC, Hsu WC, Liu AL, Hsu CJ, Sun YC. J Mol Graph Model 51 37-49 (2014)
- Modeling molecular and ionic absolute solvation free energies with quasichemical theory bounds. Rogers DM, Beck TL. J Chem Phys 129 134505 (2008)
- The effect of different electrostatic potentials on docking accuracy: a case study using DOCK5.4. Tsai KC, Wang SH, Hsiao NW, Li M, Wang B. Bioorg Med Chem Lett 18 3509-3512 (2008)
- The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions. Krapf S, Koslowski T, Steinbrecher T. Phys Chem Chem Phys 12 9516-9525 (2010)
- Calculating the sensitivity and robustness of binding free energy calculations to force field parameters. Rocklin GJ, Mobley DL, Dill KA. J Chem Theory Comput 9 3072-3083 (2013)
- Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis. Jiang W, Thirman J, Jo S, Roux B. J Phys Chem B 122 9435-9442 (2018)
- Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design. Faller CE, Raman EP, MacKerell AD, Guvench O. Methods Mol Biol 1289 75-87 (2015)
- Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study. Zhu S, Travis SM, Elcock AH. J Chem Theory Comput 9 3151-3164 (2013)
- Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme. Mondal J, Ahalawat N, Pandit S, Kay LE, Vallurupalli P. PLoS Comput Biol 14 e1006180 (2018)
- Bayesian estimation of free energies from equilibrium simulations. Habeck M. Phys Rev Lett 109 100601 (2012)
- Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways. Nunes-Alves A, Zuckerman DM, Arantes GM. Biophys J 114 1058-1066 (2018)
- II. Dissociation free energies in drug-receptor systems via nonequilibrium alchemical simulations: application to the FK506-related immunophilin ligands. Nerattini F, Chelli R, Procacci P. Phys Chem Chem Phys 18 15005-15018 (2016)
- Absolute free energy of binding of avidin/biotin, revisited. General IJ, Dragomirova R, Meirovitch H. J Phys Chem B 116 6628-6636 (2012)
- Avoiding the van der Waals endpoint problem using serial atomic insertion. Boresch S, Bruckner S. J Comput Chem 32 2449-2458 (2011)
- Enhancing Side Chain Rotamer Sampling Using Nonequilibrium Candidate Monte Carlo. Burley KH, Gill SC, Lim NM, Mobley DL. J Chem Theory Comput 15 1848-1862 (2019)
- Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation. Izadi S, Aguilar B, Onufriev AV. J Chem Theory Comput 11 4450-4459 (2015)
- Comparison of the umbrella sampling and the double decoupling method in binding free energy predictions for SAMPL6 octa-acid host-guest challenges. Nishikawa N, Han K, Wu X, Tofoleanu F, Brooks BR. J Comput Aided Mol Des 32 1075-1086 (2018)
- Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding. Cabeza de Vaca I, Qian Y, Vilseck JZ, Tirado-Rives J, Jorgensen WL. J Chem Theory Comput 14 3279-3288 (2018)
- Identification of protein binding surfaces using surface triplet propensities. Mehio W, Kemp GJ, Taylor P, Walkinshaw MD. Bioinformatics 26 2549-2555 (2010)
- Molecular insights of protein contour recognition with ligand pharmacophoric sites through combinatorial library design and MD simulation in validating HTLV-1 PR inhibitors. Selvaraj C, Omer A, Singh P, Singh SK. Mol Biosyst 11 178-189 (2015)
- Temperature artifacts in protein structures bias ligand-binding predictions. Bradford SYC, El Khoury L, Ge Y, Osato M, Mobley DL, Fischer M. Chem Sci 12 11275-11293 (2021)
- Density functional theory calculations on entire proteins for free energies of binding: application to a model polar binding site. Fox SJ, Dziedzic J, Fox T, Tautermann CS, Skylaris CK. Proteins 82 3335-3346 (2014)
- Effects of Biomolecular Flexibility on Alchemical Calculations of Absolute Binding Free Energies. Lawrenz M, Baron R, Wang Y, McCammon JA. J Chem Theory Comput 7 2224-2232 (2011)
- QM/MM refinement and analysis of protein bound retinoic acid. Li X, Fu Z, Merz KM. J Comput Chem 33 301-310 (2012)
- Separated topologies--a method for relative binding free energy calculations using orientational restraints. Rocklin GJ, Mobley DL, Dill KA. J Chem Phys 138 085104 (2013)
- Enhanced Sampling in Free Energy Calculations: Combining SGLD with the Bennett's Acceptance Ratio and Enveloping Distribution Sampling Methods. König G, Miller BT, Boresch S, Wu X, Brooks BR. J Chem Theory Comput 8 3650-3662 (2012)
- The errors of our ways: taking account of error in computer-aided drug design to build confidence intervals for our next 25 years. Stouch TR. J Comput Aided Mol Des 26 125-134 (2012)
- Using free energy of binding calculations to improve the accuracy of virtual screening predictions. Malmstrom RD, Watowich SJ. J Chem Inf Model 51 1648-1655 (2011)
- Using the fast fourier transform in binding free energy calculations. Nguyen TH, Zhou HX, Minh DDL. J Comput Chem 39 621-636 (2018)
- Computation of protein-ligand binding free energies using quantum mechanical bespoke force fields. Cole DJ, Cabeza de Vaca I, Jorgensen WL. Medchemcomm 10 1116-1120 (2019)
- Bringing Clarity to the Prediction of Protein-Ligand Binding Free Energies via "Blurring" Ucisik MN, Zheng Z, Faver JC, Merz KM. J Chem Theory Comput 10 1314-1325 (2014)
- Computation of relative binding free energy for an inhibitor and its analogs binding with Erk kinase using thermodynamic integration MD simulation. Wu KW, Chen PC, Wang J, Sun YC. J Comput Aided Mol Des 26 1159-1169 (2012)
- Multiscale Monte Carlo Sampling of Protein Sidechains: Application to Binding Pocket Flexibility. Nilmeier J, Jacobson M. J Chem Theory Comput 4 835-846 (2008)
- Quantifying water-mediated protein-ligand interactions in a glutamate receptor: a DFT study. Sahai MA, Biggin PC. J Phys Chem B 115 7085-7096 (2011)
- Thermodynamics of DNA: sensitizer recognition. Characterizing binding motifs with all-atom simulations. Gattuso H, Dumont E, Chipot C, Monari A, Dehez F. Phys Chem Chem Phys 18 33180-33186 (2016)
- Absolute binding free energies for octa-acids and guests in SAMPL5 : Evaluating binding free energies for octa-acid and guest complexes in the SAMPL5 blind challenge. Tofoleanu F, Lee J, Pickard Iv FC, König G, Huang J, Baek M, Seok C, Brooks BR. J Comput Aided Mol Des 31 107-118 (2017)
- Computing Relative Free Energies of Solvation using Single Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange. Khavrutskii IV, Wallqvist A. J Chem Theory Comput 6 3427-3441 (2010)
- Energy penalties enhance flexible receptor docking in a model cavity. Kamenik AS, Singh I, Lak P, Balius TE, Liedl KR, Shoichet BK. Proc Natl Acad Sci U S A 118 e2106195118 (2021)
- Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme L99A Mutant. Feher VA, Schiffer JM, Mermelstein DJ, Mih N, Pierce LCT, McCammon JA, Amaro RE. Biophys J 116 205-214 (2019)
- Modeling loop backbone flexibility in receptor-ligand docking simulations. Flick J, Tristram F, Wenzel W. J Comput Chem 33 2504-2515 (2012)
- New method for calculating the absolute free energy of binding: the effect of a mobile loop on the avidin/biotin complex. General IJ, Dragomirova R, Meirovitch H. J Phys Chem B 115 168-175 (2011)
- Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis. Wang Q, Edupuganti R, Tavares CD, Dalby KN, Ren P. Front Mol Biosci 2 9 (2015)
- Absolute Binding Free Energy Calculations for Highly Flexible Protein MDM2 and Its Inhibitors. Singh N, Li W. Int J Mol Sci 21 E4765 (2020)
- Computationally-guided optimization of small-molecule inhibitors of the Aurora A kinase-TPX2 protein-protein interaction. Cole DJ, Janecek M, Stokes JE, Rossmann M, Faver JC, McKenzie GJ, Venkitaraman AR, Hyvönen M, Spring DR, Huggins DJ, Jorgensen WL. Chem Commun (Camb) 53 9372-9375 (2017)
- Computing Ligands Bound to Proteins Using MELD-Accelerated MD. Liu C, Brini E, Perez A, Dill KA. J Chem Theory Comput 16 6377-6382 (2020)
- Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities. Dolenc J, Riniker S, Gaspari R, Daura X, van Gunsteren WF. J Comput Aided Mol Des 25 709-716 (2011)
- Insights into Ligand-Protein Binding from Local Mechanical Response. Patel JS, Branduardi D, Masetti M, Rocchia W, Cavalli A. J Chem Theory Comput 7 3368-3378 (2011)
- No free energy lunch. Shoichet BK. Nat Biotechnol 25 1109-1110 (2007)
- Robust Free Energy Perturbation Protocols for Creating Molecules in Solution. Cabeza de Vaca I, Zarzuela R, Tirado-Rives J, Jorgensen WL. J Chem Theory Comput 15 3941-3948 (2019)
- Absolute Protein Binding Free Energy Simulations for Ligands with Multiple Poses, a Thermodynamic Path That Avoids Exhaustive Enumeration of the Poses. Sakae Y, Zhang BW, Levy RM, Deng N. J Comput Chem 41 56-68 (2020)
- Accurate absolute free energies for ligand-protein binding based on non-equilibrium approaches. Gapsys V, Yildirim A, Aldeghi M, Khalak Y, van der Spoel D, de Groot BL. Commun Chem 4 61 (2021)
- Free energy calculations on snake venom metalloproteinase BaP1. Lingott T, Merfort I, Steinbrecher T. Chem Biol Drug Des 79 990-1000 (2012)
- The measured and calculated affinity of methyl- and methoxy-substituted benzoquinones for the Q(A) site of bacterial reaction centers. Zheng Z, Dutton PL, Gunner MR. Proteins 78 2638-2654 (2010)
- Alchemical Grid Dock (AlGDock): Binding Free Energy Calculations between Flexible Ligands and Rigid Receptors. Minh DDL. J Comput Chem 41 715-730 (2020)
- Calculation of the Absolute Free Energy of Binding and Related Entropies with the HSMD-TI Method: The FKBP12-L8 Complex. General IJ, Dragomirova R, Meirovitch H. J Chem Theory Comput 7 4196-4207 (2011)
- Enantiomeric discrimination of chiral organic salts by chiral aza-15-crown-5 ether with C 1 symmetry: experimental and theoretical approaches. Kocakaya SÖ, Turgut Y, Pirinççioglu N. J Mol Model 21 55 (2015)
- Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy. Wu Y, Brooks CL. J Chem Inf Model 61 5535-5549 (2021)
- Dependency of ligand free energy landscapes on charge parameters and solvent models. Okamoto Y, Tanaka T, Kokubo H. J Comput Aided Mol Des 24 699-712 (2010)
- Docking-undocking combination applied to the D3R Grand Challenge 2015. Ruiz-Carmona S, Barril X. J Comput Aided Mol Des 30 805-815 (2016)
- Evaluating the use of absolute binding free energy in the fragment optimisation process. Alibay I, Magarkar A, Seeliger D, Biggin PC. Commun Chem 5 105 (2022)
- Harnessing Deep Learning for Optimization of Lennard-Jones Parameters for the Polarizable Classical Drude Oscillator Force Field. Chatterjee P, Sengul MY, Kumar A, MacKerell AD. J Chem Theory Comput 18 2388-2407 (2022)
- Improving the Accuracy of Protein-Ligand Binding Mode Prediction Using a Molecular Dynamics-Based Pocket Generation Approach. Araki M, Iwata H, Ma B, Fujita A, Terayama K, Sagae Y, Ono F, Tsuda K, Kamiya N, Okuno Y. J Comput Chem 39 2679-2689 (2018)
- Path-integral method for predicting relative binding affinities of protein-ligand complexes. Mulakala C, Kaznessis YN. J Am Chem Soc 131 4521-4528 (2009)
- QM/QM docking method based on the variational finite localized molecular orbital approximation. Anisimov VM, Bugaenko VL. J Comput Chem 30 784-798 (2009)
- Virtual substitution scan via single-step free energy perturbation. Chiang YC, Wang Y. Biopolymers 105 324-336 (2016)
- Optimal allosteric stabilization sites using contact stabilization analysis. Dickson A, Bailey CT, Karanicolas J. J Comput Chem 38 1138-1146 (2017)
- Role of structural water for prediction of cation binding sites in apoproteins. Uroshlev LA, Kulakovskiy IV, Esipova NG, Tumanyan VG, Rahmanov SV, Makeev VJ. J Biomol Struct Dyn 36 221-232 (2018)
- A Physics-Guided Neural Network for Predicting Protein-Ligand Binding Free Energy: From Host-Guest Systems to the PDBbind Database. Cain S, Risheh A, Forouzesh N. Biomolecules 12 919 (2022)
- Accelerated Enveloping Distribution Sampling (AEDS) Allows for Efficient Sampling of Orthogonal Degrees of Freedom. Gracia Carmona O, Oostenbrink C. J Chem Inf Model 63 197-207 (2023)
- An overview of the SAMPL8 host-guest binding challenge. Amezcua M, Setiadi J, Ge Y, Mobley DL. J Comput Aided Mol Des 36 707-734 (2022)
- Assessing the effect of forcefield parameter sets on the accuracy of relative binding free energy calculations. Sun S, Huggins DJ. Front Mol Biosci 9 972162 (2022)
- Correlating protein hot spot surface analysis using ProBiS with simulated free energies of protein-protein interfacial residues. Carl N, Hodošček M, Vehar B, Konc J, Brooks BR, Janežič D. J Chem Inf Model 52 2541-2549 (2012)
- Engineered Chimeras Unveil Swappable Modular Features of Fatty Acid and Polyketide Synthase Acyl Carrier Proteins. Cho YI, Armstrong CL, Sulpizio A, Acheampong KK, Banks KN, Bardhan O, Churchill SJ, Connolly-Sporing AE, Crawford CEW, Cruz Parrilla PL, Curtis SM, De La Ossa LM, Epstein SC, Farrehi CJ, Hamrick GS, Hillegas WJ, Kang A, Laxton OC, Ling J, Matsumura SM, Merino VM, Mukhtar SH, Shah NJ, Londergan CH, Daly CA, Kokona B, Charkoudian LK. Biochemistry 61 217-227 (2022)
- Implicit ligand theory for relative binding free energies: II. An estimator based on control variates. Nguyen TH, Minh DDL. J Phys Commun 4 115010 (2020)
- Influence of ligand's directional configuration, chrysenes as model compounds, on the binding activity with aryl hydrocarbon receptor. Kim T, Zhen J, Lee J, Bauer R, Lee C, Kwon BO, Chae KH, Hong S, Giesy JP, Chang GS, Khim JS. Sci Rep 10 13821 (2020)
- Scoring Functions for Protein-Ligand Binding Affinity Prediction using Structure-Based Deep Learning: A Review. Meli R, Morris GM, Biggin PC. Front Bioinform 2 885983 (2022)