2ovh Citations

A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator.

Abstract

Selective progesterone receptor modulators (SPRMs) have been suggested as therapeutic agents for treatment of gynecological disorders. One such SPRM, asoprisnil, was recently in clinical trials for treatment of uterine fibroids and endometriosis. We present the crystal structures of progesterone receptor (PR) ligand binding domain complexed with asoprisnil and the corepressors nuclear receptor corepressor (NCoR) and SMRT. This is the first report of steroid nuclear receptor crystal structures with ligand and corepressors. These structures show PR in a different conformation than PR complexed with progesterone (P4). We profiled asoprisnil in PR-dependent assays to understand further the PR-mediated mechanism of action. We confirmed previous findings that asoprisnil demonstrated antagonism, but not agonism, in a PR-B transfection assay and the T47D breast cancer cell alkaline phosphatase activity assay. Asoprisnil, but not RU486, weakly recruited the coactivators SRC-1 and AIB1. However, asoprisnil strongly recruited the corepressor NCoR in a manner similar to RU486. Unlike RU486, NCoR binding to asoprisnil-bound PR could be displaced with equal affinity by NCoR or TIF2 peptides. We further showed that it weakly activated T47D cell gene expression of Sgk-1 and PPL and antagonized P4-induced expression of both genes. In rat leiomyoma ELT3 cells, asoprisnil demonstrated partial P4-like inhibition of cyclooxygenase (COX) enzymatic activity and COX-2 gene expression. In the rat uterotrophic assay, asoprisnil demonstrated no P4-like ability to oppose estrogen. Our data suggest that asoprisnil differentially recruits coactivators and corepressors compared to RU486 or P4, and this specific cofactor interaction profile is apparently insufficient to oppose estrogenic activity in rat uterus.

Articles - 2ovh mentioned but not cited (16)

  1. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. Da C, Kireev D. J Chem Inf Model 54 2555-2561 (2014)
  2. Systematic exploitation of multiple receptor conformations for virtual ligand screening. Bottegoni G, Rocchia W, Rueda M, Abagyan R, Cavalli A. PLoS One 6 e18845 (2011)
  3. The X-ray structure of RU486 bound to the progesterone receptor in a destabilized agonistic conformation. Raaijmakers HC, Versteegh JE, Uitdehaag JC. J Biol Chem 284 19572-19579 (2009)
  4. Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. Park SJ, Kufareva I, Abagyan R. J Comput Aided Mol Des 24 459-471 (2010)
  5. Darolutamide is a potent androgen receptor antagonist with strong efficacy in prostate cancer models. Sugawara T, Baumgart SJ, Nevedomskaya E, Reichert K, Steuber H, Lejeune P, Mumberg D, Haendler B. Int J Cancer 145 1382-1394 (2019)
  6. Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin. Nordeen SK, Bona BJ, Jones DN, Lambert JR, Jackson TA. Horm Cancer 4 293-300 (2013)
  7. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids. Lusher SJ, Raaijmakers HC, Vu-Pham D, Kazemier B, Bosch R, McGuire R, Azevedo R, Hamersma H, Dechering K, Oubrie A, van Duin M, de Vlieg J. J Biol Chem 287 20333-20343 (2012)
  8. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics. Zheng L, Lin VC, Mu Y. PLoS One 11 e0165824 (2016)
  9. StackPR is a new computational approach for large-scale identification of progesterone receptor antagonists using the stacking strategy. Schaduangrat N, Anuwongcharoen N, Moni MA, Lio' P, Charoenkwan P, Shoombuatong W. Sci Rep 12 16435 (2022)
  10. Virtual screening of potentially endocrine-disrupting chemicals against nuclear receptors and its application to identify PPARγ-bound fatty acids. Jaladanki CK, He Y, Zhao LN, Maurer-Stroh S, Loo LH, Song H, Fan H. Arch Toxicol 95 355-374 (2021)
  11. Human Growth Hormone Fragment 176-191 Peptide Enhances the Toxicity of Doxorubicin-Loaded Chitosan Nanoparticles Against MCF-7 Breast Cancer Cells. Habibullah MM, Mohan S, Syed NK, Makeen HA, Jamal QMS, Alothaid H, Bantun F, Alhazmi A, Hakamy A, Kaabi YA, Samlan G, Lohani M, Thangavel N, Al-Kasim MA. Drug Des Devel Ther 16 1963-1974 (2022)
  12. Ligand Binding Induces Agonistic-Like Conformational Adaptations in Helix 12 of Progesterone Receptor Ligand Binding Domain. Zheng L, Xia K, Mu Y. Front Chem 7 315 (2019)
  13. An Assay on the Possible Effect of Essential Oil Constituents on Receptors Involved in Women's Hormonal Health and Reproductive System Diseases. Sakhteman A, Pasdaran A, Afifi M, Hamedi A. J Evid Based Integr Med 25 2515690X20932527 (2020)
  14. EC313-a tissue selective SPRM reduces the growth and proliferation of uterine fibroids in a human uterine fibroid tissue xenograft model. Nair HB, Santhamma B, Dileep KV, Binkley P, Acosta K, Zhang KYJ, Schenken R, Nickisch K. Sci Rep 9 17279 (2019)
  15. Exploring Ligand Binding Domain Dynamics in the NRs Superfamily. D'Arrigo G, Autiero I, Gianquinto E, Siragusa L, Baroni M, Cruciani G, Spyrakis F. Int J Mol Sci 23 8732 (2022)
  16. Molecular modeling on structure-function analysis of human progesterone receptor modulators. Pal R, Islam MA, Hossain T, Saha A. Sci Pharm 79 461-477 (2011)


Reviews citing this publication (32)

  1. Endometriosis. Bulun SE. N Engl J Med 360 268-279 (2009)
  2. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Kim JJ, Kurita T, Bulun SE. Endocr Rev 34 130-162 (2013)
  3. Endometriosis. Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, Kohlmeier A, Yin P, Milad M, Wei J. Endocr Rev 40 1048-1079 (2019)
  4. Epigenetics of endometriosis. Guo SW. Mol Hum Reprod 15 587-607 (2009)
  5. Nuclear hormone receptor co-repressors: structure and function. Watson PJ, Fairall L, Schwabe JW. Mol Cell Endocrinol 348 440-449 (2012)
  6. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Chegini N. Semin Reprod Med 28 180-203 (2010)
  7. Pharmacologic therapies in endometriosis: a systematic review. Soares SR, Martínez-Varea A, Hidalgo-Mora JJ, Pellicer A. Fertil Steril 98 529-555 (2012)
  8. Stabilization of protein-protein interactions in drug discovery. Andrei SA, Sijbesma E, Hann M, Davis J, O'Mahony G, Perry MWD, Karawajczyk A, Eickhoff J, Brunsveld L, Doveston RG, Milroy LG, Ottmann C. Expert Opin Drug Discov 12 925-940 (2017)
  9. Estrogen and progesterone receptors: from molecular structures to clinical targets. Ellmann S, Sticht H, Thiel F, Beckmann MW, Strick R, Strissel PL. Cell Mol Life Sci 66 2405-2426 (2009)
  10. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications. Moravek MB, Yin P, Ono M, Coon JS, Dyson MT, Navarro A, Marsh EE, Chakravarti D, Kim JJ, Wei JJ, Bulun SE. Hum Reprod Update 21 1-12 (2015)
  11. Post-translational modifications of the progesterone receptors. Abdel-Hafiz HA, Horwitz KB. J Steroid Biochem Mol Biol 140 80-89 (2014)
  12. Structural and functional analysis of domains of the progesterone receptor. Hill KK, Roemer SC, Churchill ME, Edwards DP. Mol Cell Endocrinol 348 418-429 (2012)
  13. Tracking progesterone receptor-mediated actions in breast cancer. Knutson TP, Lange CA. Pharmacol Ther 142 114-125 (2014)
  14. Selective progesterone receptor modulators (SPRMs): progesterone receptor action, mode of action on the endometrium and treatment options in gynecological therapies. Wagenfeld A, Saunders PT, Whitaker L, Critchley HO. Expert Opin Ther Targets 20 1045-1054 (2016)
  15. New trends for the medical treatment of endometriosis. Rocha AL, Reis FM, Petraglia F. Expert Opin Investig Drugs 21 905-919 (2012)
  16. Selective Progesterone Receptor Modulators-Mechanisms and Therapeutic Utility. Islam MS, Afrin S, Jones SI, Segars J. Endocr Rev 41 bnaa012 (2020)
  17. Hormonal therapy for endometriosis: from molecular research to bedside. Tosti C, Biscione A, Morgante G, Bifulco G, Luisi S, Petraglia F. Eur J Obstet Gynecol Reprod Biol 209 61-66 (2017)
  18. Glucocorticoid receptor cofactors as therapeutic targets. Simons SS. Curr Opin Pharmacol 10 613-619 (2010)
  19. Investigational drugs for the treatment of endometriosis, an update on recent developments. Barra F, Scala C, Mais V, Guerriero S, Ferrero S. Expert Opin Investig Drugs 27 445-458 (2018)
  20. Stabilization of protein-protein interactions by small molecules. Giordanetto F, Schäfer A, Ottmann C. Drug Discov Today 19 1812-1821 (2014)
  21. Structure of the glucocorticoid receptor, a flexible protein that can adapt to different ligands. Veleiro AS, Alvarez LD, Eduardo SL, Burton G. ChemMedChem 5 649-659 (2010)
  22. Progesterone receptor action in leiomyoma and endometrial cancer. Kim JJ, Sefton EC, Bulun SE. Prog Mol Biol Transl Sci 87 53-85 (2009)
  23. Investigational developments for the treatment of progesterone-dependent diseases. Möller C, Hoffmann J, Kirkland TA, Schwede W. Expert Opin Investig Drugs 17 469-479 (2008)
  24. Progesterone receptor targeting with radiolabelled steroids: an approach in predicting breast cancer response to therapy. Cunha S, Gano L, Morais GR, Thiemann T, Oliveira MC. J Steroid Biochem Mol Biol 137 223-241 (2013)
  25. Progestin therapy to prevent preterm birth: History and effectiveness of current strategies and development of novel approaches. Mesiano SA, Peters GA, Amini P, Wilson RA, Tochtrop GP, van Den Akker F. Placenta 79 46-52 (2019)
  26. Recent advances in structure of progestins and their binding to progesterone receptors. Cabeza M, Heuze Y, Sánchez A, Garrido M, Bratoeff E. J Enzyme Inhib Med Chem 30 152-159 (2015)
  27. An overview of early drug development for endometriosis. Leone Roberti Maggiore U, Ferrero S. Expert Opin Investig Drugs 25 227-247 (2016)
  28. Effects of antiprogestins on the uterus. Ouzounian S, Bouchard P, Chabbert-Buffet N. Womens Health (Lond) 4 269-280 (2008)
  29. Genomic and Nongenomic Effects of Mifepristone at the Cardiovascular Level: A Review. Feiteiro J, Mariana M, Verde I, Cairrão E. Reprod Sci 24 976-988 (2017)
  30. Experimental treatments of endometriosis. Attar R, Attar E. Womens Health (Lond) 11 653-664 (2015)
  31. Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction. Rui H, Ashton KS, Min J, Wang C, Potts PR. RSC Chem Biol 4 192-215 (2023)
  32. Recent patent trends in the field of progesterone receptor agonists and modulators. Schmees N, Weinmann H. Expert Opin Ther Pat 19 1521-1534 (2009)

Articles citing this publication (44)

  1. A number of marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor antagonist activity. Dietz JD, Du S, Bolten CW, Payne MA, Xia C, Blinn JR, Funder JW, Hu X. Hypertension 51 742-748 (2008)
  2. A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. le Maire A, Teyssier C, Erb C, Grimaldi M, Alvarez S, de Lera AR, Balaguer P, Gronemeyer H, Royer CA, Germain P, Bourguet W. Nat Struct Mol Biol 17 801-807 (2010)
  3. Molecular switch in the glucocorticoid receptor: active and passive antagonist conformations. Schoch GA, D'Arcy B, Stihle M, Burger D, Bär D, Benz J, Thoma R, Ruf A. J Mol Biol 395 568-577 (2010)
  4. Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction. Phelan CA, Gampe RT, Lambert MH, Parks DJ, Montana V, Bynum J, Broderick TM, Hu X, Williams SP, Nolte RT, Lazar MA. Nat Struct Mol Biol 17 808-814 (2010)
  5. Selective progesterone receptor modulator asoprisnil down-regulates collagen synthesis in cultured human uterine leiomyoma cells through up-regulating extracellular matrix metalloproteinase inducer. Morikawa A, Ohara N, Xu Q, Nakabayashi K, DeManno DA, Chwalisz K, Yoshida S, Maruo T. Hum Reprod 23 944-951 (2008)
  6. Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. Hodgson MC, Shen HC, Hollenberg AN, Balk SP. Mol Cancer Ther 7 3187-3194 (2008)
  7. Mechanisms underlying the control of progesterone receptor transcriptional activity by SUMOylation. Abdel-Hafiz H, Dudevoir ML, Horwitz KB. J Biol Chem 284 9099-9108 (2009)
  8. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters. Wargon V, Riggio M, Giulianelli S, Sequeira GR, Rojas P, May M, Polo ML, Gorostiaga MA, Jacobsen B, Molinolo A, Novaro V, Lanari C. Int J Cancer 136 2680-2692 (2015)
  9. Global gene expression profiling of progesterone receptor modulators in T47D cells provides a new classification system. Afhüppe W, Sommer A, Müller J, Schwede W, Fuhrmann U, Möller C. J Steroid Biochem Mol Biol 113 105-115 (2009)
  10. Kaempferol Exhibits Progestogenic Effects in Ovariectomized Rats. Toh MF, Mendonca E, Eddie SL, Endsley MP, Lantvit DD, Petukhov PA, Burdette JE. J Steroids Horm Sci 5 136 (2014)
  11. A molecular switch regulating transcriptional repression and activation of PPARγ. Shang J, Mosure SA, Zheng J, Brust R, Bass J, Nichols A, Solt LA, Griffin PR, Kojetin DJ. Nat Commun 11 956 (2020)
  12. Influence of domain interactions on conformational mobility of the progesterone receptor detected by hydrogen/deuterium exchange mass spectrometry. Goswami D, Callaway C, Pascal BD, Kumar R, Edwards DP, Griffin PR. Structure 22 961-973 (2014)
  13. Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators. Lusher SJ, Raaijmakers HC, Vu-Pham D, Dechering K, Lam TW, Brown AR, Hamilton NM, Nimz O, Bosch R, McGuire R, Oubrie A, de Vlieg J. J Biol Chem 286 35079-35086 (2011)
  14. Novel, orally active selective progesterone receptor modulator CP8947 inhibits leiomyoma cell proliferation without adversely affecting endometrium or myometrium. Catherino WH, Malik M, Driggers P, Chappel S, Segars J, Davis J. J Steroid Biochem Mol Biol 122 279-286 (2010)
  15. Control of progesterone receptor transcriptional synergy by SUMOylation and deSUMOylation. Abdel-Hafiz HA, Horwitz KB. BMC Mol Biol 13 10 (2012)
  16. Hormone binding and co-regulator binding to the glucocorticoid receptor are allosterically coupled. Pfaff SJ, Fletterick RJ. J Biol Chem 285 15256-15267 (2010)
  17. In silico discovery of androgen receptor antagonists with activity in castration resistant prostate cancer. Shen HC, Shanmugasundaram K, Simon NI, Cai C, Wang H, Chen S, Balk SP, Rigby AC. Mol Endocrinol 26 1836-1846 (2012)
  18. Design and synthesis of novel bicalutamide and enzalutamide derivatives as antiproliferative agents for the treatment of prostate cancer. Bassetto M, Ferla S, Pertusati F, Kandil S, Westwell AD, Brancale A, McGuigan C. Eur J Med Chem 118 230-243 (2016)
  19. Molecular determinants of the recognition of ulipristal acetate by oxo-steroid receptors. Petit-Topin I, Fay M, Resche-Rigon M, Ulmann A, Gainer E, Rafestin-Oblin ME, Fagart J. J Steroid Biochem Mol Biol 144 Pt B 427-435 (2014)
  20. Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR. Westermaier Y, Ruiz-Carmona S, Theret I, Perron-Sierra F, Poissonnet G, Dacquet C, Boutin JA, Ducrot P, Barril X. J Comput Aided Mol Des 31 755-775 (2017)
  21. Definition of functionally and structurally distinct repressive states in the nuclear receptor PPARγ. Heidari Z, Chrisman IM, Nemetchek MD, Novick SJ, Blayo AL, Patton T, Mendes DE, Diaz P, Kamenecka TM, Griffin PR, Hughes TS. Nat Commun 10 5825 (2019)
  22. In vitro characterization of ZK 230211--A type III progesterone receptor antagonist with enhanced antiproliferative properties. Afhüppe W, Beekman JM, Otto C, Korr D, Hoffmann J, Fuhrmann U, Möller C. J Steroid Biochem Mol Biol 119 45-55 (2010)
  23. Lysine methylation of progesterone receptor at activation function 1 regulates both ligand-independent activity and ligand sensitivity of the receptor. Chung HH, Sze SK, Woo AR, Sun Y, Sim KH, Dong XM, Lin VC. J Biol Chem 289 5704-5722 (2014)
  24. The discovery of novel human androgen receptor antagonist chemotypes using a combined pharmacophore screening procedure. Voet A, Helsen C, Zhang KY, Claessens F. ChemMedChem 8 644-651 (2013)
  25. Anti-Tumoral Effects of Anti-Progestins in a Patient-Derived Breast Cancer Xenograft Model. Esber N, Cherbonnier C, Resche-Rigon M, Hamze A, Alami M, Fagart J, Loosfelt H, Lombès M, Chabbert-Buffet N. Horm Cancer 7 137-147 (2016)
  26. Synthesis and biological evaluation of partially fluorinated antiprogestins and mesoprogestins. Nickisch K, Elger W, Cessac J, Kesavaram N, Das B, Garfield R, Shi SQ, Amelkina O, Meister R. Steroids 78 255-267 (2013)
  27. Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression. Esber N, Le Billan F, Resche-Rigon M, Loosfelt H, Lombès M, Chabbert-Buffet N. PLoS One 10 e0140795 (2015)
  28. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists. Thompson SK, Washburn DG, Frazee JS, Madauss KP, Hoang TH, Lapinski L, Grygielko ET, Glace LE, Trizna W, Williams SP, Duraiswami C, Bray JD, Laping NJ. Bioorg Med Chem Lett 19 4777-4780 (2009)
  29. 5-(3-Cyclopentyl-2-thioxo-2,3-dihydro-1H-benzimidazol-5-yl)-1-methyl-1H-pyrrole-2-carbonitrile: A novel, highly potent, selective, and orally active non-steroidal progesterone receptor agonist. Zhang P, Terefenko E, Kern J, Fensome A, Trybulski E, Unwalla R, Wrobel J, Lockhead S, Zhu Y, Cohen J, Lacava M, Winneker RC, Zhang Z. Bioorg Med Chem 15 6556-6564 (2007)
  30. Lessons learned from the preclinical drug discovery of asoprisnil and ulipristal for non-surgical treatment of uterine leiomyomas. Maruo T, Ohara N, Yoshida S, Nakabayashi K, Sasaki H, Xu Q, Matsuo H, Sitruk-Ware R, Yamada H. Expert Opin Drug Discov 6 897-911 (2011)
  31. Ternary crystal structure of human RORγ ligand-binding-domain, an inhibitor and corepressor peptide provides a new insight into corepressor interaction. Noguchi M, Nomura A, Doi S, Yamaguchi K, Hirata K, Shiozaki M, Maeda K, Hirashima S, Kotoku M, Yamaguchi T, Katsuda Y, Crowe P, Tao H, Thacher S, Adachi T. Sci Rep 8 17374 (2018)
  32. A new strategy for selective targeting of progesterone receptor with passive antagonists. Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G, Amazit L, Brion JD, Alami M, Lombès M, Loosfelt H, Rafestin-Oblin ME. Mol Endocrinol 27 909-924 (2013)
  33. Pathological Interactions Between Mutant Thyroid Hormone Receptors and Corepressors and Their Modulation by a Thyroid Hormone Analogue with Therapeutic Potential. Harrus D, Déméné H, Vasquez E, Boulahtouf A, Germain P, Figueira AC, Privalsky ML, Bourguet W, le Maire A. Thyroid 28 1708-1722 (2018)
  34. The potential of selective progesterone receptor modulators for the treatment of uterine fibroids. Bestel E, Donnez J. Expert Rev Endocrinol Metab 9 79-92 (2014)
  35. 2-Amino-9-aryl-3-cyano-4-methyl-7-oxo-6,7,8,9-tetrahydropyrido[2',3':4,5]thieno[2,3-b]pyridine derivatives as selective progesterone receptor agonists. Wang Y, Duraiswami C, Madauss KP, Tran TB, Williams SP, Deng SJ, Graybill TL, Hammond M, Jones DG, Grygielko ET, Bray JD, Thompson SK. Bioorg Med Chem Lett 19 4916-4919 (2009)
  36. Discovery of orally active, pyrrolidinone-based progesterone receptor partial agonists. Washburn DG, Hoang TH, Frazee JS, Johnson L, Hammond M, Manns S, Madauss KP, Williams SP, Duraiswami C, Tran TB, Stewart EL, Grygielko ET, Glace LE, Trizna W, Nagilla R, Bray JD, Thompson SK. Bioorg Med Chem Lett 19 4664-4668 (2009)
  37. Improving the developability profile of pyrrolidine progesterone receptor partial agonists. Kallander LS, Washburn DG, Hoang TH, Frazee JS, Stoy P, Johnson L, Lu Q, Hammond M, Barton LS, Patterson JR, Azzarano LM, Nagilla R, Madauss KP, Williams SP, Stewart EL, Duraiswami C, Grygielko ET, Xu X, Laping NJ, Bray JD, Thompson SK. Bioorg Med Chem Lett 20 371-374 (2010)
  38. Receptor-based QSAR study for a series of 3,3-disubstituted-5-aryl oxindoles and 6-aryl benzimidazol-2-ones derivatives as progesterone receptor inhibitors. Wang JH, Hou QQ, Tang K, Cheng XL, Dong LH, Liu YJ, Liu CB. SAR QSAR Environ Res 22 775-799 (2011)
  39. Detection and functional portrayal of a novel class of dihydrotestosterone derived selective progesterone receptor modulators (SPRM). Andrieu T, Mani O, Goepfert C, Bertolini R, Guettinger A, Setoud R, Uh KY, Baker ME, Frey FJ, Frey BM. J Steroid Biochem Mol Biol 147 111-123 (2015)
  40. Structural basis for computational screening of non-steroidal androgen receptor ligands. Nyrönen TH, Söderholm AA. Expert Opin Drug Discov 5 5-20 (2010)
  41. Paradoxical androgen receptor regulation by small molecule enantiomers. Patsch K, Liu C, Zapotoczny G, Sun Y, Sura H, Ung N, Sun RX, Haliday B, Yu C, Aljehani M, Lee JSH, Kashemirov BA, Agus DB, McKenna CE, Ruderman D. Proc Natl Acad Sci U S A 118 e2100918118 (2021)
  42. The Influence of Race/Ethnicity on the Transcriptomic Landscape of Uterine Fibroids. Chuang TD, Ton N, Rysling S, Quintanilla D, Boos D, Gao J, McSwiggin H, Yan W, Khorram O. Int J Mol Sci 24 13441 (2023)
  43. Development and validation of an improved inducer-regulator protein complex in the pBRES-regulated expression system. Levitsky K, Szymanski P, Jin F, Meurer-Ogden JA, Harkins RN. Hum Gene Ther 19 1273-1282 (2008)
  44. The translational efficacy of a nonsteroidal progesterone receptor antagonist, 4-[3-cyclopropyl-1-(mesylmethyl)-5-methyl-1H-pyrazol-4-yl]oxy,-2,6-dimethylbenzonitrile (PF-02413873), on endometrial growth in macaque and human. Howe DC, Mount NM, Bess K, Brown A, Bungay P, Gibson KR, Hawcock T, Richard J, Jones G, Walley R, McLeod A, Apfeldorfer C, Ramsey S, Tweedy S, Pullen N. J Pharmacol Exp Ther 339 642-653 (2011)