2ozb Citations

Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP.

Science 316 115-20 (2007)
Cited: 104 times
EuropePMC logo PMID: 17412961

Abstract

Although highly homologous, the spliceosomal hPrp31 and the nucleolar Nop56 and Nop58 (Nop56/58) proteins recognize different ribonucleoprotein (RNP) particles. hPrp31 interacts with complexes containing the 15.5K protein and U4 or U4atac small nuclear RNA (snRNA), whereas Nop56/58 associate with 15.5K-box C/D small nucleolar RNA complexes. We present structural and biochemical analyses of hPrp31-15.5K-U4 snRNA complexes that show how the conserved Nop domain in hPrp31 maintains high RNP binding selectivity despite relaxed RNA sequence requirements. The Nop domain is a genuine RNP binding module, exhibiting RNA and protein binding surfaces. Yeast two-hybrid analyses suggest a link between retinitis pigmentosa and an aberrant hPrp31-hPrp6 interaction that blocks U4/U6-U5 tri-snRNP formation.

Reviews - 2ozb mentioned but not cited (2)

  1. Computational approaches to 3D modeling of RNA. Laing C, Schlick T. J Phys Condens Matter 22 283101 (2010)
  2. The GA-minor submotif as a case study of RNA modularity, prediction, and design. Grabow WW, Zhuang Z, Shea JE, Jaeger L. Wiley Interdiscip Rev RNA 4 181-203 (2013)

Articles - 2ozb mentioned but not cited (13)

  1. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nguyen TH, Galej WP, Bai XC, Savva CG, Newman AJ, Scheres SH, Nagai K. Nature 523 47-52 (2015)
  2. Structure of the K-turn U4 RNA: a combined NMR and SANS study. Falb M, Amata I, Gabel F, Simon B, Carlomagno T. Nucleic Acids Res 38 6274-6285 (2010)
  3. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly. Jain S, Schlick T. J Mol Biol 429 3587-3605 (2017)
  4. Prediction of interacting single-stranded RNA bases by protein-binding patterns. Shulman-Peleg A, Shatsky M, Nussinov R, Wolfson HJ. J Mol Biol 379 299-316 (2008)
  5. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction. Bayrak CS, Kim N, Schlick T. Nucleic Acids Res 45 5414-5422 (2017)
  6. Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps. Kailasam S, Bhattacharyya D, Bansal M. BMC Res Notes 7 83 (2014)
  7. Structural basis for the dual U4 and U4atac snRNA-binding specificity of spliceosomal protein hPrp31. Liu S, Ghalei H, Lührmann R, Wahl MC. RNA 17 1655-1663 (2011)
  8. RNA-binding residues prediction using structural features. Ren H, Shen Y. BMC Bioinformatics 16 249 (2015)
  9. Automated identification of RNA 3D modules with discriminative power in RNA structural alignments. Theis C, Höner Zu Siederdissen C, Hofacker IL, Gorodkin J. Nucleic Acids Res 41 9999-10009 (2013)
  10. Analysis of a critical interaction within the archaeal box C/D small ribonucleoprotein complex. Hardin JW, Reyes FE, Batey RT. J Biol Chem 284 15317-15324 (2009)
  11. Conserved structure of Snu13 from the highly reduced spliceosome of Cyanidioschyzon merolae. Black CS, Garside EL, MacMillan AM, Rader SD. Protein Sci 25 911-916 (2016)
  12. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  13. A comparative analysis of machine learning classifiers for predicting protein-binding nucleotides in RNA sequences. Agarwal A, Singh K, Kant S, Bahadur RP. Comput Struct Biotechnol J 20 3195-3207 (2022)


Reviews citing this publication (21)

  1. The spliceosome: design principles of a dynamic RNP machine. Wahl MC, Will CL, Lührmann R. Cell 136 701-718 (2009)
  2. Spliceosome structure and function. Will CL, Lührmann R. Cold Spring Harb Perspect Biol 3 a003707 (2011)
  3. Alternative splicing and disease. Tazi J, Bakkour N, Stamm S. Biochim Biophys Acta 1792 14-26 (2009)
  4. The small subunit processome in ribosome biogenesis—progress and prospects. Phipps KR, Charette J, Baserga SJ. Wiley Interdiscip Rev RNA 2 1-21 (2011)
  5. New connections between splicing and human disease. Padgett RA. Trends Genet 28 147-154 (2012)
  6. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Staley JP, Woolford JL. Curr Opin Cell Biol 21 109-118 (2009)
  7. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Fica SM, Nagai K. Nat Struct Mol Biol 24 791-799 (2017)
  8. RNA splicing: disease and therapy. Douglas AG, Wood MJ. Brief Funct Genomics 10 151-164 (2011)
  9. Ski2-like RNA helicase structures: common themes and complex assemblies. Johnson SJ, Jackson RN. RNA Biol 10 33-43 (2013)
  10. Variant haploinsufficiency and phenotypic non-penetrance in PRPF31-associated retinitis pigmentosa. Rose AM, Bhattacharya SS. Clin Genet 90 118-126 (2016)
  11. CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Nguyen TH, Galej WP, Fica SM, Lin PC, Newman AJ, Nagai K. Curr Opin Struct Biol 36 48-57 (2016)
  12. Cajal bodies and snRNPs - friends with benefits. Staněk D. RNA Biol 14 671-679 (2017)
  13. Functions and regulation of the Brr2 RNA helicase during splicing. Absmeier E, Santos KF, Wahl MC. Cell Cycle 15 3362-3377 (2016)
  14. Mutation spectrum of PRPF31, genotype-phenotype correlation in retinitis pigmentosa, and opportunities for therapy. Wheway G, Douglas A, Baralle D, Guillot E. Exp Eye Res 192 107950 (2020)
  15. The multistructural forms of box C/D ribonucleoprotein particles. Yu G, Zhao Y, Li H. RNA 24 1625-1633 (2018)
  16. Detailed close-ups and the big picture of spliceosomes. Jurica MS. Curr Opin Struct Biol 18 315-320 (2008)
  17. The kink-turn in the structural biology of RNA. Huang L, Lilley DMJ. Q Rev Biophys 51 e5 (2018)
  18. Ribonucleoprotein multimers and their functions. Bleichert F, Baserga SJ. Crit Rev Biochem Mol Biol 45 331-350 (2010)
  19. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Yang C, Georgiou M, Atkinson R, Collin J, Al-Aama J, Nagaraja-Grellscheid S, Johnson C, Ali R, Armstrong L, Mozaffari-Jovin S, Lako M. Front Cell Dev Biol 9 700276 (2021)
  20. Gene of the month: PRPF31. Rose AM, Luo R, Radia UK, Bhattacharya SS. J Clin Pathol 70 729-732 (2017)
  21. The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Lynham J, Houry WA. Biomolecules 12 1045 (2022)

Articles citing this publication (68)

  1. Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. He H, Liyanarachchi S, Akagi K, Nagy R, Li J, Dietrich RC, Li W, Sebastian N, Wen B, Xin B, Singh J, Yan P, Alder H, Haan E, Wieczorek D, Albrecht B, Puffenberger E, Wang H, Westman JA, Padgett RA, Symer DE, de la Chapelle A. Science 332 238-240 (2011)
  2. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jády BE, Rothé B, Pescia C, Robert MC, Kiss T, Bardoni B, Krol A, Branlant C, Allmang C, Bertrand E, Charpentier B. J Cell Biol 180 579-595 (2008)
  3. Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Edery P, Marcaillou C, Sahbatou M, Labalme A, Chastang J, Touraine R, Tubacher E, Senni F, Bober MB, Nampoothiri S, Jouk PS, Steichen E, Berland S, Toutain A, Wise CA, Sanlaville D, Rousseau F, Clerget-Darpoux F, Leutenegger AL. Science 332 240-243 (2011)
  4. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution. Nguyen THD, Galej WP, Bai XC, Oubridge C, Newman AJ, Scheres SHW, Nagai K. Nature 530 298-302 (2016)
  5. Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Bertram K, Agafonov DE, Dybkov O, Haselbach D, Leelaram MN, Will CL, Urlaub H, Kastner B, Lührmann R, Stark H. Cell 170 701-713.e11 (2017)
  6. Molecular architecture of the human U4/U6.U5 tri-snRNP. Agafonov DE, Kastner B, Dybkov O, Hofele RV, Liu WT, Urlaub H, Lührmann R, Stark H. Science 351 1416-1420 (2016)
  7. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis. Wan R, Yan C, Bai R, Wang L, Huang M, Wong CC, Shi Y. Science 351 466-475 (2016)
  8. The structure of the box C/D enzyme reveals regulation of RNA methylation. Lapinaite A, Simon B, Skjaerven L, Rakwalska-Bange M, Gabel F, Carlomagno T. Nature 502 519-523 (2013)
  9. Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay. Rio Frio T, Wade NM, Ransijn A, Berson EL, Beckmann JS, Rivolta C. J Clin Invest 118 1519-1531 (2008)
  10. Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex. Luo X, Hsiao HH, Bubunenko M, Weber G, Court DL, Gottesman ME, Urlaub H, Wahl MC. Mol Cell 32 791-802 (2008)
  11. Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Lührmann R, Wahl MC. Mol Cell 35 454-466 (2009)
  12. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing. Merico D, Roifman M, Braunschweig U, Yuen RK, Alexandrova R, Bates A, Reid B, Nalpathamkalam T, Wang Z, Thiruvahindrapuram B, Gray P, Kakakios A, Peake J, Hogarth S, Manson D, Buncic R, Pereira SL, Herbrick JA, Blencowe BJ, Roifman CM, Scherer SW. Nat Commun 6 8718 (2015)
  13. Dynamic interactions of Ntr1-Ntr2 with Prp43 and with U5 govern the recruitment of Prp43 to mediate spliceosome disassembly. Tsai RT, Tseng CK, Lee PJ, Chen HC, Fu RH, Chang KJ, Yeh FL, Cheng SC. Mol Cell Biol 27 8027-8037 (2007)
  14. Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation. Schneider M, Hsiao HH, Will CL, Giet R, Urlaub H, Lührmann R. Nat Struct Mol Biol 17 216-221 (2010)
  15. Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP by electron microscopy. Häcker I, Sander B, Golas MM, Wolf E, Karagöz E, Kastner B, Stark H, Fabrizio P, Lührmann R. Nat Struct Mol Biol 15 1206-1212 (2008)
  16. Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Xue S, Wang R, Yang F, Terns RM, Terns MP, Zhang X, Maxwell ES, Li H. Mol Cell 39 939-949 (2010)
  17. Structural organization of box C/D RNA-guided RNA methyltransferase. Ye K, Jia R, Lin J, Ju M, Peng J, Xu A, Zhang L. Proc Natl Acad Sci U S A 106 13808-13813 (2009)
  18. Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. Bizarro J, Charron C, Boulon S, Westman B, Pradet-Balade B, Vandermoere F, Chagot ME, Hallais M, Ahmad Y, Leonhardt H, Lamond A, Manival X, Branlant C, Charpentier B, Verheggen C, Bertrand E. J Cell Biol 207 463-480 (2014)
  19. A dimeric structure for archaeal box C/D small ribonucleoproteins. Bleichert F, Gagnon KT, Brown BA, Maxwell ES, Leschziner AE, Unger VM, Baserga SJ. Science 325 1384-1387 (2009)
  20. NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Bizarro J, Dodré M, Huttin A, Charpentier B, Schlotter F, Branlant C, Verheggen C, Massenet S, Bertrand E. Nucleic Acids Res 43 8973-8989 (2015)
  21. The importance of G.A hydrogen bonding in the metal ion- and protein-induced folding of a kink turn RNA. Turner B, Lilley DM. J Mol Biol 381 431-442 (2008)
  22. Transcriptional regulation of PRPF31 gene expression by MSR1 repeat elements causes incomplete penetrance in retinitis pigmentosa. Rose AM, Shah AZ, Venturini G, Krishna A, Chakravarti A, Rivolta C, Bhattacharya SS. Sci Rep 6 19450 (2016)
  23. Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing. Nag A, Steitz JA. RNA Biol 9 334-342 (2012)
  24. Structural bioinformatics of the human spliceosomal proteome. Korneta I, Magnus M, Bujnicki JM. Nucleic Acids Res 40 7046-7065 (2012)
  25. Biochemical defects in minor spliceosome function in the developmental disorder MOPD I. Jafarifar F, Dietrich RC, Hiznay JM, Padgett RA. RNA 20 1078-1089 (2014)
  26. Characterization of the interaction between protein Snu13p/15.5K and the Rsa1p/NUFIP factor and demonstration of its functional importance for snoRNP assembly. Rothé B, Back R, Quinternet M, Bizarro J, Robert MC, Blaud M, Romier C, Manival X, Charpentier B, Bertrand E, Branlant C. Nucleic Acids Res 42 2015-2036 (2014)
  27. Dominant PRPF31 mutations are hypostatic to a recessive CNOT3 polymorphism in retinitis pigmentosa: a novel phenomenon of "linked trans-acting epistasis". Rose AM, Shah AZ, Venturini G, Rivolta C, Rose GE, Bhattacharya SS. Ann Hum Genet 78 62-71 (2014)
  28. Signature amino acids enable the archaeal L7Ae box C/D RNP core protein to recognize and bind the K-loop RNA motif. Gagnon KT, Zhang X, Qu G, Biswas S, Suryadi J, Brown BA, Maxwell ES. RNA 16 79-90 (2010)
  29. A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs. Huranová M, Hnilicová J, Fleischer B, Cvacková Z, Stanek D. Hum Mol Genet 18 2014-2023 (2009)
  30. A composite double-/single-stranded RNA-binding region in protein Prp3 supports tri-snRNP stability and splicing. Liu S, Mozaffari-Jovin S, Wollenhaupt J, Santos KF, Theuser M, Dunin-Horkawicz S, Fabrizio P, Bujnicki JM, Lührmann R, Wahl MC. Elife 4 e07320 (2015)
  31. Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET. Hardin JW, Warnasooriya C, Kondo Y, Nagai K, Rueda D. Nucleic Acids Res 43 10963-10974 (2015)
  32. The Splicing Factor PRP31 Is Involved in Transcriptional Gene Silencing and Stress Response in Arabidopsis. Du JL, Zhang SW, Huang HW, Cai T, Li L, Chen S, He XJ. Mol Plant 8 1053-1068 (2015)
  33. Analysis of Expression Pattern of snoRNAs in Different Cancer Types with Machine Learning Algorithms. Pan X, Chen L, Feng KY, Hu XH, Zhang YH, Kong XY, Huang T, Cai YD. Int J Mol Sci 20 E2185 (2019)
  34. FgPrp4 Kinase Is Important for Spliceosome B-Complex Activation and Splicing Efficiency in Fusarium graminearum. Gao X, Jin Q, Jiang C, Li Y, Li C, Liu H, Kang Z, Xu JR. PLoS Genet 12 e1005973 (2016)
  35. Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. Trowitzsch S, Weber G, Lührmann R, Wahl MC. J Mol Biol 385 531-541 (2009)
  36. Substrate-assisted mechanism of RNP disruption by the spliceosomal Brr2 RNA helicase. Theuser M, Höbartner C, Wahl MC, Santos KF. Proc Natl Acad Sci U S A 113 7798-7803 (2016)
  37. Expression of PRPF31 and TFPT: regulation in health and retinal disease. Rose AM, Shah AZ, Waseem NH, Chakarova CF, Alfano G, Coussa RG, Ajlan R, Koenekoop RK, Bhattacharya SS. Hum Mol Genet 21 4126-4137 (2012)
  38. Identification of Novel and Recurrent Disease-Causing Mutations in Retinal Dystrophies Using Whole Exome Sequencing (WES): Benefits and Limitations. Tiwari A, Lemke J, Altmueller J, Thiele H, Glaus E, Fleischhauer J, Nürnberg P, Neidhardt J, Berger W. PLoS One 11 e0158692 (2016)
  39. A novel mutation in the PRPF31 in a North Indian adRP family with incomplete penetrance. Bhatia S, Goyal S, Singh IR, Singh D, Vanita V. Doc Ophthalmol 137 103-119 (2018)
  40. Hypoxia-regulated components of the U4/U6.U5 tri-small nuclear riboprotein complex: possible role in autosomal dominant retinitis pigmentosa. Schmidt-Kastner R, Yamamoto H, Hamasaki D, Yamamoto H, Parel JM, Schmitz C, Dorey CK, Blanks JC, Preising MN. Mol Vis 14 125-135 (2008)
  41. Analysis of protein-DNA interactions in chromatin by UV induced cross-linking and mass spectrometry. Stützer A, Welp LM, Raabe M, Sachsenberg T, Kappert C, Wulf A, Lau AM, David SS, Chernev A, Kramer K, Politis A, Kohlbacher O, Fischle W, Urlaub H. Nat Commun 11 5250 (2020)
  42. Host factor PRPF31 is involved in cccDNA production in HBV-replicating cells. Kinoshita W, Ogura N, Watashi K, Wakita T. Biochem Biophys Res Commun 482 638-644 (2017)
  43. Improved identification of enriched peptide RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry. Kühn-Hölsken E, Dybkov O, Sander B, Lührmann R, Urlaub H. Nucleic Acids Res 35 e95 (2007)
  44. The N-terminus of Prp1 (Prp6/U5-102 K) is essential for spliceosome activation in vivo. Lützelberger M, Bottner CA, Schwelnus W, Zock-Emmenthal S, Razanau A, Käufer NF. Nucleic Acids Res 38 1610-1622 (2010)
  45. A novel Nop5-sRNA interaction that is required for efficient archaeal box C/D sRNP formation. Ghalei H, Hsiao HH, Urlaub H, Wahl MC, Watkins NJ. RNA 16 2341-2348 (2010)
  46. Noncanonical roles for Tropomyosin during myogenesis. Williams J, Boin NG, Valera JM, Johnson AN. Development 142 3440-3452 (2015)
  47. A novel PRPF31 mutation in a large Chinese family with autosomal dominant retinitis pigmentosa and macular degeneration. Lu F, Huang L, Lei C, Sha G, Zheng H, Liu X, Yang J, Shi Y, Lin Y, Gong B, Zhu X, Ma S, Qiao L, Lin H, Cheng J, Yang Z. PLoS One 8 e78274 (2013)
  48. Mapping the binding site of snurportin 1 on native U1 snRNP by cross-linking and mass spectrometry. Kühn-Hölsken E, Lenz C, Dickmanns A, Hsiao HH, Richter FM, Kastner B, Ficner R, Urlaub H. Nucleic Acids Res 38 5581-5593 (2010)
  49. Protein localisation by electron microscopy reveals the architecture of the yeast spliceosomal B complex. Rigo N, Sun C, Fabrizio P, Kastner B, Lührmann R. EMBO J 34 3059-3073 (2015)
  50. The guide sRNA sequence determines the activity level of box C/D RNPs. Graziadei A, Gabel F, Kirkpatrick J, Carlomagno T. Elife 9 e50027 (2020)
  51. Analysis of pre-mRNA and pre-rRNA processing factor Snu13p structure and mutants. Dobbyn HC, McEwan PA, Krause A, Novak-Frazer L, Bella J, O'Keefe RT. Biochem Biophys Res Commun 360 857-862 (2007)
  52. Identification of small molecules that mitigate vincristine-induced neurotoxicity while sensitizing leukemia cells to vincristine. Diouf B, Wing C, Panetta JC, Eddins D, Lin W, Yang W, Fan Y, Pei D, Cheng C, Delaney SM, Zhang W, Bonten EJ, Crews KR, Paugh SW, Li L, Freeman BB, Autry RJ, Beard JA, Ferguson DC, Janke LJ, Ness KK, Chen T, Zakharenko SS, Jeha S, Pui CH, Relling MV, Eileen Dolan M, Evans WE. Clin Transl Sci 14 1490-1504 (2021)
  53. A Combined in silico, in vitro and Clinical Approach to Characterize Novel Pathogenic Missense Variants in PRPF31 in Retinitis Pigmentosa. Wheway G, Nazlamova L, Meshad N, Hunt S, Jackson N, Churchill A. Front Genet 10 248 (2019)
  54. NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during box C/D snoRNP biogenesis. Abel Y, Paiva ACF, Bizarro J, Chagot ME, Santo PE, Robert MC, Quinternet M, Vandermoere F, Sousa PMF, Fort P, Charpentier B, Manival X, Bandeiras TM, Bertrand E, Verheggen C. Nucleic Acids Res 49 1094-1113 (2021)
  55. An efficient strategy for the determination of the three-dimensional architecture of ribonucleoprotein complexes by the combination of a few easily accessible NMR and biochemical data: intermolecular recognition in a U4 spliceosomal complex. Li P, Kirkpatrick J, Carlomagno T. J Mol Biol 388 283-298 (2009)
  56. Applying systems thinking to inform studies of wildlife trade in primates. Blair ME, Le MD, Thạch HM, Panariello A, Vũ NB, Birchette MG, Sethi G, Sterling EJ. Am J Primatol 79 (2017)
  57. Determinants of Disease Penetrance in PRPF31-Associated Retinopathy. McLenachan S, Zhang D, Grainok J, Zhang X, Huang Z, Chen SC, Zaw K, Lima A, Jennings L, Roshandel D, Moon SY, Heath Jeffery RC, Attia MS, Thompson JA, Lamey TM, McLaren TL, De Roach J, Fletcher S, Chen FK. Genes (Basel) 12 1542 (2021)
  58. Molecular principles underlying dual RNA specificity in the Drosophila SNF protein. Weber G, DeKoster GT, Holton N, Hall KB, Wahl MC. Nat Commun 9 2220 (2018)
  59. Phosphorylation by Prp4 kinase releases the self-inhibition of FgPrp31 in Fusarium graminearum. Gao X, Zhang J, Song C, Yuan K, Wang J, Jin Q, Xu JR. Curr Genet 64 1261-1274 (2018)
  60. Probing mutation-induced structural perturbations by refinement against residual dipolar couplings: application to the U4 spliceosomal RNP complex. Kirkpatrick JP, Li P, Carlomagno T. Chembiochem 10 1007-1014 (2009)
  61. Chemical approaches for structure and function of RNA in postgenomic era. Ro-Choi TS, Choi YC. J Nucleic Acids 2012 369058 (2012)
  62. Identification of a novel pathogenic missense mutation in PRPF31 using whole exome sequencing: a case report. Bryant L, Lozynska O, Marsh A, Papp TE, van Gorder L, Serrano LW, Gai X, Maguire AM, Aleman TS, Bennett J. Br J Ophthalmol 103 761-767 (2019)
  63. Mutations in the splicing regulator Prp31 lead to retinal degeneration in Drosophila. Hebbar S, Lehmann M, Behrens S, Hälsig C, Leng W, Yuan M, Winkler S, Knust E. Biol Open 10 bio052332 (2021)
  64. Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa. Xi Z, Vats A, Sahel JA, Chen Y, Byrne LC. Nat Commun 13 7695 (2022)
  65. News [Extreme microcephaly and growth retardation caused by mutations in a non-coding RNA component of the minor spliceosome]. Edery P, Alix E, Clerget-Darpoux F, Leutenegger AL. Med Sci (Paris) 28 130-133 (2012)
  66. Identification of two novel PRPF31 mutations in Chinese families with non-syndromic autosomal dominant retinitis pigmentosa. Cao L, Peng C, Yu J, Jiang W, Yang J. Mol Genet Genomic Med 8 e1537 (2020)
  67. Methylation guide RNAs without box C/D motifs. Wang J, Yang Z, Ye K. RNA 28 1597-1605 (2022)
  68. Pathogenic Variants in USH1G/SANS Alter Protein Interaction with Pre-RNA Processing Factors PRPF6 and PRPF31 of the Spliceosome. Fritze JS, Stiehler FF, Wolfrum U. Int J Mol Sci 24 17608 (2023)