2qqw Citations

Crystal structures of Arabidopsis thaliana cell-wall invertase mutants in complex with sucrose.

J Mol Biol 377 378-85 (2008)
Related entries: 2qqu, 2qqv

Cited: 44 times
EuropePMC logo PMID: 18258263

Abstract

In plants, cell-wall invertases fulfil important roles in carbohydrate partitioning, growth, development and crop yield. In this study, we report on different X-ray crystal structures of Arabidopsis thaliana cell-wall invertase 1 (AtcwINV1) mutants with sucrose. These structures reveal a detailed view of sucrose binding in the active site of the wild-type AtcwINV1. Compared to related enzyme-sucrose complexes, important differences in the orientation of the glucose subunit could be observed. The structure of the E203Q AtcwINV1 mutant showed a complete new binding modus, whereas the D23A, E203A and D239A structures most likely represent the productive binding modus. Together with a hydrophobic zone formed by the conserved W20, W47 and W82, the residues N22, D23, R148, E203, D149 and D239 are necessary to create the ideal sucrose-binding pocket. D239 can interact directly with the glucose moiety of sucrose, whereas K242 has an indirect role in substrate stabilization. Most probably, K242 keeps D239 in a favourable position upon substrate binding. Unravelling the exact position of sucrose in plant cell-wall invertases is a necessary step towards the rational design of superior invertases to further increase crop yield and biomass production.

Articles - 2qqw mentioned but not cited (3)

  1. Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. Hothorn M, Van den Ende W, Lammens W, Rybin V, Scheffzek K. Proc Natl Acad Sci U S A 107 17427-17432 (2010)
  2. Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis. Chuankhayan P, Hsieh CY, Huang YC, Hsieh YY, Guan HH, Hsieh YC, Tien YC, Chen CD, Chiang CM, Chen CJ. J Biol Chem 285 23251-23264 (2010)
  3. pKa modulation of the acid/base catalyst within GH32 and GH68: a role in substrate/inhibitor specificity? Yuan S, Le Roy K, Venken T, Lammens W, Van den Ende W, De Maeyer M. PLoS One 7 e37453 (2012)


Reviews citing this publication (3)

  1. Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. Lammens W, Le Roy K, Schroeven L, Van Laere A, Rabijns A, Van den Ende W. J Exp Bot 60 727-740 (2009)
  2. Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes. Van den Ende W, Lammens W, Van Laere A, Schroeven L, Le Roy K. FEBS J 276 5788-5798 (2009)
  3. Molecular Level Sucrose Quantification: A Critical Review. Lara-Cruz GA, Jaramillo-Botero A, Jaramillo-Botero A. Sensors (Basel) 22 9511 (2022)

Articles citing this publication (38)

  1. Multifunctional fructans and raffinose family oligosaccharides. Van den Ende W. Front Plant Sci 4 247 (2013)
  2. Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication. Wang E, Xu X, Zhang L, Zhang H, Lin L, Wang Q, Li Q, Ge S, Lu BR, Wang W, He Z. BMC Evol Biol 10 108 (2010)
  3. Transforming wheat vacuolar invertase into a high affinity sucrose:sucrose 1-fructosyltransferase. Schroeven L, Lammens W, Van Laere A, Van den Ende W. New Phytol 180 822-831 (2008)
  4. Crystal structures of the apo form of β-fructofuranosidase from Bifidobacterium longum and its complex with fructose. Bujacz A, Jedrzejczak-Krzepkowska M, Bielecki S, Redzynia I, Bujacz G. FEBS J 278 1728-1744 (2011)
  5. Transforming a fructan:fructan 6G-fructosyltransferase from perennial ryegrass into a sucrose:sucrose 1-fructosyltransferase. Lasseur B, Schroeven L, Lammens W, Le Roy K, Spangenberg G, Manduzio H, Vergauwen R, Lothier J, Prud'homme MP, Van den Ende W. Plant Physiol 149 327-339 (2009)
  6. Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. Lammens W, Le Roy K, Yuan S, Vergauwen R, Rabijns A, Van Laere A, Strelkov SV, Van den Ende W. Plant J 70 205-219 (2012)
  7. A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes. Mazola Y, Guirola O, Palomares S, Chinea G, Menéndez C, Hernández L, Musacchio A. J Mol Model 21 228 (2015)
  8. Partner manipulation stabilises a horizontally transmitted mutualism. Heil M, Barajas-Barron A, Orona-Tamayo D, Wielsch N, Svatos A. Ecol Lett 17 185-192 (2014)
  9. Genome-wide identification, 3D modeling, expression and enzymatic activity analysis of cell wall invertase gene family from cassava (Manihot esculenta Crantz). Yao Y, Geng MT, Wu XH, Liu J, Li RM, Hu XW, Guo JC. Int J Mol Sci 15 7313-7331 (2014)
  10. Kinetic 12C/13C isotope fractionation by invertase: evidence for a small in vitro isotope effect and comparison of two techniques for the isotopic analysis of carbohydrates. Mauve C, Bleton J, Bathellier C, Lelarge-Trouverie C, Guérard F, Ghashghaie J, Tchapla A, Tcherkez G. Rapid Commun Mass Spectrom 23 2499-2506 (2009)
  11. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Morkunas I, Woźniak A, Formela M, Mai VC, Marczak Ł, Narożna D, Borowiak-Sobkowiak B, Kühn C, Grimm B. Protoplasma 253 1063-1079 (2016)
  12. Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism. Kusch U, Harms K, Rausch T, Greiner S. New Phytol 181 601-612 (2009)
  13. Insights into the catalytic properties of bamboo vacuolar invertase through mutational analysis of active site residues. Chen TH, Huang YC, Yang CS, Yang CC, Wang AY, Sung HY. Phytochemistry 70 25-31 (2009)
  14. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress. Qian W, Yue C, Wang Y, Cao H, Li N, Wang L, Hao X, Wang X, Xiao B, Yang Y. Plant Cell Rep 35 2269-2283 (2016)
  15. Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity. Ramírez-Escudero M, Gimeno-Pérez M, González B, Linde D, Merdzo Z, Fernández-Lobato M, Sanz-Aparicio J. J Biol Chem 291 6843-6857 (2016)
  16. Genome-Wide Analysis of Invertase Gene Family, and Expression Profiling under Abiotic Stress Conditions in Potato. Abbas A, Shah AN, Shah AA, Nadeem MA, Alsaleh A, Javed T, Alotaibi SS, Abdelsalam NR. Biology (Basel) 11 539 (2022)
  17. Heterologous expression and functional characterization of two hybrid poplar cell-wall invertases. Canam T, Unda F, Mansfield SD. Planta 228 1011-1019 (2008)
  18. Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase. Xie J, Cai K, Hu HX, Jiang YL, Yang F, Hu PF, Cao DD, Li WF, Chen Y, Zhou CZ. J Biol Chem 291 25667-25677 (2016)
  19. Creating S-type characteristics in the F-type enzyme fructan:fructan 1-fructosyltransferase of Triticum aestivum L. Schroeven L, Lammens W, Kawakami A, Yoshida M, Van Laere A, Van den Ende W. J Exp Bot 60 3687-3696 (2009)
  20. Mutational analysis of conserved regions harboring catalytic triad residues of the levansucrase protein encoded by the lsc-3 gene (lsc3) of Pseudomonas syringae pv. tomato DC3000. Mardo K, Visnapuu T, Vija H, Elmi T, Alamäe T. Biotechnol Appl Biochem 61 11-22 (2014)
  21. Asparagine 42 of the conserved endo-inulinase INU2 motif WMNDPN from Aspergillus ficuum plays a role in activity specificity. Vandamme AM, Michaux C, Mayard A, Housen I. FEBS Open Bio 3 467-472 (2013)
  22. First crystal structure of an endo-levanase - the BT1760 from a human gut commensal Bacteroides thetaiotaomicron. Ernits K, Eek P, Lukk T, Visnapuu T, Alamäe T. Sci Rep 9 8443 (2019)
  23. It happened again: Convergent evolution of acylglucose specialized metabolism in black nightshade and wild tomato. Lou YR, Anthony TM, Fiesel PD, Arking RE, Christensen EM, Jones AD, Last RL. Sci Adv 7 eabj8726 (2021)
  24. Letter Structural and enzymatic analyses of Anabaena heterocyst-specific alkaline invertase InvB. Xie J, Hu HX, Cai K, Xia LY, Yang F, Jiang YL, Chen Y, Zhou CZ. FEBS Lett 592 1589-1601 (2018)
  25. Genome-Wide Analysis, Expression Profile, and Characterization of the Acid Invertase Gene Family in Pepper. Shen LB, Qin YL, Qi ZQ, Niu Y, Liu ZJ, Liu WX, He H, Cao ZM, Yang Y. Int J Mol Sci 20 E15 (2018)
  26. Tapping natural variation at functional level reveals allele specific molecular characteristics of potato invertase Pain-1. Draffehn AM, Durek P, Nunes-Nesi A, Stich B, Fernie AR, Gebhardt C. Plant Cell Environ 35 2143-2154 (2012)
  27. A 6&1-FEH Encodes an Enzyme for Fructan Degradation and Interact with Invertase Inhibitor Protein in Maize (Zea mays L.). Zhao H, Greiner S, Scheffzek K, Rausch T, Wang G. Int J Mol Sci 20 E3807 (2019)
  28. Cell Wall Invertase 3 Affects Cassava Productivity via Regulating Sugar Allocation From Source to Sink. Yan W, Wu X, Li Y, Liu G, Cui Z, Jiang T, Ma Q, Luo L, Zhang P. Front Plant Sci 10 541 (2019)
  29. GH32 family activity: a topological approach through protein contact networks. Cimini S, Di Paola L, Giuliani A, Ridolfi A, De Gara L. Plant Mol Biol 92 401-410 (2016)
  30. Heterologous expression and comparative characterization of vacuolar invertases from Cu-tolerant and non-tolerant populations of Elsholtzia haichowensis. Xu Z, Liu C, Cai S, Zhang L, Xiong Z. Plant Cell Rep 34 1781-1790 (2015)
  31. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon). Slugina MA, Shchennikova AV, Kochieva EZ. Mol Genet Genomics 292 1123-1138 (2017)
  32. Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from Xanthophyllomyces dendrorhous. Polo A, Linde D, Estévez M, Fernández-Lobato M, Sanz-Aparicio J. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 1441-1444 (2010)
  33. Does gibberellin biosynthesis play a critical role in the growth of Lolium perenne? Evidence from a transcriptional analysis of gibberellin and carbohydrate metabolic genes after defoliation. Liu Q, Jones CS, Parsons AJ, Xue H, Rasmussen S. Front Plant Sci 6 944 (2015)
  34. Insect derived extra oral GH32 plays a role in susceptibility of wheat to Hessian fly. Subramanyam S, Nemacheck JA, Bernal-Crespo V, Sardesai N. Sci Rep 11 2081 (2021)
  35. Cloning and characterization of acid invertase genes in the roots of the metallophyte Kummerowia stipulacea (Maxim.) Makino from two populations: Differential expression under copper stress. Zhang L, Xiong ZT, Xu ZR, Liu C, Cai SW. Ecotoxicol Environ Saf 104 87-95 (2014)
  36. Exploring natural genetic variation in tomato sucrose synthases on the basis of increased kinetic properties. Dinh QD, Finkers R, Westphal AH, van Dongen WMAM, Visser RGF, Trindade LM. PLoS One 13 e0206636 (2018)
  37. In silico analysis of the structural diversity and interactions between invertases and invertase inhibitors from potato (Solanum tuberosum L.). Datir S, Ghosh P. 3 Biotech 10 178 (2020)
  38. Insights into the Structure of the Highly Glycosylated Ffase from Rhodotorula dairenensis Enhance Its Biotechnological Potential. Jiménez-Ortega E, Narmontaite E, González-Pérez B, Plou FJ, Fernández-Lobato M, Sanz-Aparicio J. Int J Mol Sci 23 14981 (2022)