2r0l Citations

Structural insight into distinct mechanisms of protease inhibition by antibodies.

Proc Natl Acad Sci U S A 104 19784-9 (2007)
Cited: 55 times
EuropePMC logo PMID: 18077410

Abstract

To better understand how the relatively flat antigen-combining sites of antibodies interact with the concave shaped substrate-binding clefts of proteases, we determined the structures of two antibodies in complex with the trypsin-like hepatocyte growth-factor activator (HGFA). The two inhibitory antibodies, Ab58 and Ab75, were generated from a human Fab phage display library with synthetic diversity in the three complementarity determining regions (H1, H2, and H3) of the heavy chain, mimicking the natural diversity of the human Ig repertoire. Biochemical studies and the structures of the Fab58:HGFA (3.5-A resolution) and the Fab75:HGFA (2.2-A resolution) complexes revealed that Ab58 obstructed substrate access to the active site, whereas Ab75 allosterically inhibited substrate hydrolysis. In both cases, the antibodies interacted with the same protruding element (99-loop), which forms part of the substrate-binding cleft. Ab58 inserted its H1 and H2 loops in the cleft to occupy important substrate interaction sites (S3 and S2). In contrast, Ab75 bound at the backside of the cleft to a region corresponding to thrombin exosite II, which is known to interact with allosteric effector molecules. In agreement with the structural analysis, binding assays with active site inhibitors and enzymatic assays showed that Ab58 is a competitive inhibitor, and Ab75 is a partial competitive inhibitor. These results provide structural insight into antibody-mediated protease inhibition. They suggest that unlike canonical inhibitors, antibodies may preferentially target protruding loops at the rim of the substrate-binding cleft to interfere with the catalytic machinery of proteases without requiring long insertion loops.

Reviews - 2r0l mentioned but not cited (1)

Articles - 2r0l mentioned but not cited (7)

  1. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Zhu K, Day T, Warshaviak D, Murrett C, Friesner R, Pearlman D. Proteins 82 1646-1655 (2014)
  2. Structural insight into distinct mechanisms of protease inhibition by antibodies. Wu Y, Eigenbrot C, Liang WC, Stawicki S, Shia S, Fan B, Ganesan R, Lipari MT, Kirchhofer D. Proc Natl Acad Sci U S A 104 19784-19789 (2007)
  3. Potential aggregation-prone regions in complementarity-determining regions of antibodies and their contribution towards antigen recognition: a computational analysis. Wang X, Singh SK, Kumar S. Pharm Res 27 1512-1529 (2010)
  4. A reverse binding motif that contributes to specific protease inhibition by antibodies. Schneider EL, Lee MS, Baharuddin A, Goetz DH, Farady CJ, Ward M, Wang CI, Craik CS. J Mol Biol 415 699-715 (2012)
  5. Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity. Shen Y, Zeng L, Zhu A, Blanc T, Patel D, Pennello A, Bari A, Ng S, Persaud K, Kang YK, Balderes P, Surguladze D, Hindi S, Zhou Q, Ludwig DL, Snavely M. MAbs 5 418-431 (2013)
  6. Interactions outside the proteinase-binding loop contribute significantly to the inhibition of activated coagulation factor XII by its canonical inhibitor from corn. Korneeva VA, Trubetskov MM, Korshunova AV, Lushchekina SV, Kolyadko VN, Sergienko OV, Lunin VG, Panteleev MA, Ataullakhanov FI. J Biol Chem 289 14109-14120 (2014)
  7. New Infestin-4 Mutants with Increased Selectivity against Factor XIIa. Kolyadko VN, Lushchekina SV, Vuimo TA, Surov SS, Ovsepyan RA, Korneeva VA, Vorobiev II, Orlova NA, Minakhin L, Kuznedelov K, Severinov KV, Ataullakhanov FI, Panteleev MA. PLoS One 10 e0144940 (2015)


Reviews citing this publication (11)

  1. Targeting MET in cancer: rationale and progress. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Nat Rev Cancer 12 89-103 (2012)
  2. Survey of the year 2007 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 21 355-400 (2008)
  3. Mechanisms of macromolecular protease inhibitors. Farady CJ, Craik CS. Chembiochem 11 2341-2346 (2010)
  4. Antigen recognition by single-domain antibodies: structural latitudes and constraints. Henry KA, MacKenzie CR. MAbs 10 815-826 (2018)
  5. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Cancers (Basel) 13 1441 (2021)
  6. Biologic protease inhibitors as novel therapeutic agents. Scott CJ, Taggart CC. Biochimie 92 1681-1688 (2010)
  7. Structural and mechanistic insight into how antibodies inhibit serine proteases. Ganesan R, Eigenbrot C, Kirchhofer D. Biochem J 430 179-189 (2010)
  8. Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Schoeder CT, Schmitz S, Adolf-Bryfogle J, Sevy AM, Finn JA, Sauer MF, Bozhanova NG, Mueller BK, Sangha AK, Bonet J, Sheehan JH, Kuenze G, Marlow B, Smith ST, Woods H, Bender BJ, Martina CE, Del Alamo D, Kodali P, Gulsevin A, Schief WR, Correia BE, Crowe JE, Meiler J, Moretti R. Biochemistry 60 825-846 (2021)
  9. Hepatocyte growth factor activator (HGFA): molecular structure and interactions with HGFA inhibitor-1 (HAI-1). Eigenbrot C, Ganesan R, Kirchhofer D. FEBS J 277 2215-2222 (2010)
  10. Peptide-Based Inhibitors of ADAM and ADAMTS Metalloproteinases. Pluda S, Mazzocato Y, Angelini A. Front Mol Biosci 8 703715 (2021)
  11. Antibodies: From novel repertoires to defining and refining the structure of biologically important targets. Conroy PJ, Law RH, Caradoc-Davies TT, Whisstock JC. Methods 116 12-22 (2017)

Articles citing this publication (36)

  1. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. Maun HR, Wen X, Lingel A, de Sauvage FJ, Lazarus RA, Scales SJ, Hymowitz SG. J Biol Chem 285 26570-26580 (2010)
  2. Inhibiting alternative pathway complement activation by targeting the factor D exosite. Katschke KJ, Wu P, Ganesan R, Kelley RF, Mathieu MA, Hass PE, Murray J, Kirchhofer D, Wiesmann C, van Lookeren Campagne M. J Biol Chem 287 12886-12892 (2012)
  3. A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region. Dong J, Thompson AA, Fan Y, Lou J, Conrad F, Ho M, Pires-Alves M, Wilson BA, Stevens RC, Marks JD. J Mol Biol 397 1106-1118 (2010)
  4. Allosteric inhibition of the NS2B-NS3 protease from dengue virus. Yildiz M, Ghosh S, Bell JA, Sherman W, Hardy JA. ACS Chem Biol 8 2744-2752 (2013)
  5. Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Nam DH, Rodriguez C, Remacle AG, Strongin AY, Ge X. Proc Natl Acad Sci U S A 113 14970-14975 (2016)
  6. Structural and functional analysis of a C3b-specific antibody that selectively inhibits the alternative pathway of complement. Katschke KJ, Stawicki S, Yin J, Steffek M, Xi H, Sturgeon L, Hass PE, Loyet KM, Deforge L, Wu Y, van Lookeren Campagne M, Wiesmann C. J Biol Chem 284 10473-10479 (2009)
  7. Unraveling the allosteric mechanism of serine protease inhibition by an antibody. Ganesan R, Eigenbrot C, Wu Y, Liang WC, Shia S, Lipari MT, Kirchhofer D. Structure 17 1614-1624 (2009)
  8. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Magar R, Yadav P, Barati Farimani A. Sci Rep 11 5261 (2021)
  9. Inhibition and Reversal of Microbial Attachment by an Antibody with Parasteric Activity against the FimH Adhesin of Uropathogenic E. coli. Kisiela DI, Avagyan H, Friend D, Jalan A, Gupta S, Interlandi G, Liu Y, Tchesnokova V, Rodriguez VB, Sumida JP, Strong RK, Wu XR, Thomas WE, Sokurenko EV. PLoS Pathog 11 e1004857 (2015)
  10. Selection of full-length IgGs by tandem display on filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening. Mazor Y, Van Blarcom T, Carroll S, Georgiou G. FEBS J 277 2291-2303 (2010)
  11. A novel approach for enhancing the catalytic efficiency of a protease at low temperature: reduction in substrate inhibition by chemical modification. Siddiqui KS, Parkin DM, Curmi PM, De Francisci D, Poljak A, Barrow K, Noble MH, Trewhella J, Cavicchioli R. Biotechnol Bioeng 103 676-686 (2009)
  12. Functional selection of protease inhibitory antibodies. Lopez T, Mustafa Z, Chen C, Lee KB, Ramirez A, Benitez C, Luo X, Ji RR, Ge X. Proc Natl Acad Sci U S A 116 16314-16319 (2019)
  13. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior. Kromann-Hansen T, Oldenburg E, Yung KW, Ghassabeh GH, Muyldermans S, Declerck PJ, Huang M, Andreasen PA, Ngo JC. J Biol Chem 291 15156-15168 (2016)
  14. Allosteric antibody inhibition of human hepsin protease. Koschubs T, Dengl S, Dürr H, Kaluza K, Georges G, Hartl C, Jennewein S, Lanzendörfer M, Auer J, Stern A, Huang KS, Packman K, Gubler U, Kostrewa D, Ries S, Hansen S, Kohnert U, Cramer P, Mundigl O. Biochem J 442 483-494 (2012)
  15. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer. Han Z, Harris PK, Karmakar P, Kim T, Owusu BY, Wildman SA, Klampfer L, Janetka JW. ChemMedChem 11 585-599 (2016)
  16. Bivalent antibody pliers inhibit β-tryptase by an allosteric mechanism dependent on the IgG hinge. Maun HR, Vij R, Walters BT, Morando A, Jackman JK, Wu P, Estevez A, Chen X, Franke Y, Lipari MT, Dennis MS, Kirchhofer D, Ciferri C, Loyet KM, Yi T, Eigenbrot C, Lazarus RA, Koerber JT. Nat Commun 11 6435 (2020)
  17. Human Antibody Domains and Fragments Targeting Neutrophil Elastase as Candidate Therapeutics for Cancer and Inflammation-Related Diseases. Chu X, Sun Z, Baek DS, Li W, Mellors JW, Shapiro SD, Dimitrov DS. Int J Mol Sci 22 11136 (2021)
  18. Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity. Fan Y, Geren IN, Dong J, Lou J, Wen W, Conrad F, Smith TJ, Smith LA, Ho M, Pires-Alves M, Wilson BA, Marks JD. PLoS One 10 e0135306 (2015)
  19. Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets. Franco FM, Jones DE, Harris PK, Han Z, Wildman SA, Jarvis CM, Janetka JW. Bioorg Med Chem 23 2328-2343 (2015)
  20. The structure of a furin-antibody complex explains non-competitive inhibition by steric exclusion of substrate conformers. Dahms SO, Creemers JW, Schaub Y, Bourenkov GP, Zögg T, Brandstetter H, Than ME. Sci Rep 6 34303 (2016)
  21. An allosteric anti-hepsin antibody derived from a constrained phage display library. Ganesan R, Zhang Y, Landgraf KE, Lin SJ, Moran P, Kirchhofer D. Protein Eng Des Sel 25 127-133 (2012)
  22. Generation of inhibitory monoclonal antibodies targeting matrix metalloproteinase-14 by motif grafting and CDR optimization. Nam DH, Fang K, Rodriguez C, Lopez T, Ge X. Protein Eng Des Sel 30 113-118 (2017)
  23. A protein scaffold, engineered SPINK2, for generation of inhibitors with high affinity and specificity against target proteases. Nishimiya D, Kawaguchi Y, Kodama S, Nasu H, Yano H, Yamaguchi A, Tamura M, Hashimoto R. Sci Rep 9 11436 (2019)
  24. Protease Inhibition Mechanism of Camelid-like Synthetic Human Antibodies. Nam DH, Lee KB, Kruchowy E, Pham H, Ge X. Biochemistry 59 3802-3812 (2020)
  25. An inhibitory antibody against dipeptidyl peptidase IV improves glucose tolerance in vivo. Tang J, Majeti J, Sudom A, Xiong Y, Lu M, Liu Q, Higbee J, Zhang Y, Wang Y, Wang W, Cao P, Xia Z, Johnstone S, Min X, Yang X, Shao H, Yu T, Sharkov N, Walker N, Tu H, Shen W, Wang Z. J Biol Chem 288 1307-1316 (2013)
  26. Epitope-specific affinity maturation improved stability of potent protease inhibitory antibodies. Lopez T, Chuan C, Ramirez A, Chen KE, Lorenson MY, Benitez C, Mustafa Z, Pham H, Sanchez R, Walker AM, Ge X. Biotechnol Bioeng 115 2673-2682 (2018)
  27. Inhibitory antibodies identify unique sites of therapeutic vulnerability in rhinovirus and other enteroviruses. Meng B, Lan K, Xie J, Lerner RA, Wilson IA, Yang B. Proc Natl Acad Sci U S A 117 13499-13508 (2020)
  28. Antibody-mediates inhibition of human C1s and the classical complement pathway. Carroll S, Georgiou G. Immunobiology 218 1041-1048 (2013)
  29. Engineering a potent inhibitor of matriptase from the natural hepatocyte growth factor activator inhibitor type-1 (HAI-1) protein. Mitchell AC, Kannan D, Hunter SA, Parra Sperberg RA, Chang CH, Cochran JR. J Biol Chem 293 4969-4980 (2018)
  30. Generation of highly selective monoclonal antibodies inhibiting a recalcitrant protease using decoy designs. Lee KB, Dunn ZS, Lopez T, Mustafa Z, Ge X. Biotechnol Bioeng 117 3664-3676 (2020)
  31. Structure of an affinity-matured inhibitory recombinant fab against urokinase plasminogen activator reveals basis of potency and specificity. Sevillano N, Bohn MF, Zimanyi M, Chen Y, Petzold C, Gupta S, Ralston CY, Craik CS. Biochim Biophys Acta Proteins Proteom 1869 140562 (2021)
  32. Use of protease substrate specificity screening in the rational design of selective protease inhibitors with unnatural amino acids: Application to HGFA, matriptase, and hepsin. Mahoney MW, Helander J, Kooner AS, Norman M, Damalanka VC, De Bona P, Kasperkiewicz P, Rut W, Poreba M, Kashipathy MM, Battaile KP, Lovell S, O'Donoghue AJ, Craik CS, Drag M, Janetka JW. Protein Sci 33 e5110 (2024)
  33. Importance of the Cysteine-Rich Domain of Snake Venom Prothrombin Activators: Insights Gained from Synthetic Neutralizing Antibodies. Misson Mindrebo LE, Mindrebo JT, Tran Q, Wilkinson MC, Smith JM, Verma M, Casewell NR, Lander GC, Jardine JG. Toxins (Basel) 16 361 (2024)
  34. Noncanonical antibody strategy for broad and potent neutralization of influenza virus. Dimitrov JD. Cell Mol Immunol 18 1615-1617 (2021)
  35. Prospection of Peptide Inhibitors of Thrombin from Diverse Origins Using a Machine Learning Pipeline. Balakrishnan N, Katkar R, Pham PV, Downey T, Kashyap P, Anastasiu DC, Ramasubramanian AK. Bioengineering (Basel) 10 1300 (2023)
  36. Selectivity Conversion of Protease Inhibitory Antibodies. Lopez T, Ramirez A, Benitez C, Mustafa Z, Pham H, Sanchez R, Ge X. Antib Ther 1 55-63 (2018)