2rdd Citations

Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.

Abstract

Bacterial drug resistance is a serious concern for human health. Multidrug efflux pumps export a broad variety of substrates out of the cell and thereby convey resistance to the host. In Escherichia coli, the AcrB:AcrA:TolC efflux complex forms a principal transporter for which structures of the individual component proteins have been determined in isolation. Here, we present the X-ray structure of AcrB in complex with a single transmembrane protein, assigned by mass spectrometry as YajC. A specific rotation of the periplasmic porter domain of AcrB is also revealed, consistent with the hypothesized "twist-to-open" mechanism for TolC activation. Growth experiments with yajc-deleted E. coli reveal a modest increase in the organism's susceptibility to beta-lactam antibiotics, but this effect could not conclusively be attributed to the loss of interactions between YajC and AcrB.

Reviews - 2rdd mentioned but not cited (2)

  1. The Sec System: Protein Export in Escherichia coli. Crane JM, Randall LL. EcoSal Plus 7 (2017)
  2. Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. Kim J, Cater RJ, Choy BC, Mancia F. J Mol Biol 433 167005 (2021)

Articles - 2rdd mentioned but not cited (4)

  1. Structure of the AcrAB-TolC multidrug efflux pump. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W, Luisi BF. Nature 509 512-515 (2014)
  2. There is a baby in the bath water: AcrB contamination is a major problem in membrane-protein crystallization. Veesler D, Blangy S, Cambillau C, Sciara G. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 880-885 (2008)
  3. Burkholderia collagen-like protein 8, Bucl8, is a unique outer membrane component of a putative tetrapartite efflux pump in Burkholderia pseudomallei and Burkholderia mallei. Grund ME, Choi SJ, McNitt DH, Barbier M, Hu G, LaSala PR, Cote CK, Berisio R, Lukomski S. PLoS One 15 e0242593 (2020)
  4. Driving forces for transmembrane alpha-helix oligomerization. Sodt AJ, Head-Gordon T. Biophys J 99 227-237 (2010)


Reviews citing this publication (23)

  1. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Li XZ, Plésiat P, Nikaido H. Clin Microbiol Rev 28 337-418 (2015)
  2. Efflux-mediated drug resistance in bacteria: an update. Li XZ, Nikaido H. Drugs 69 1555-1623 (2009)
  3. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. Nikaido H, Pagès JM. FEMS Microbiol Rev 36 340-363 (2012)
  4. Mechanisms of RND multidrug efflux pumps. Nikaido H, Takatsuka Y. Biochim Biophys Acta 1794 769-781 (2009)
  5. Small proteins can no longer be ignored. Storz G, Wolf YI, Ramamurthi KS. Annu Rev Biochem 83 753-777 (2014)
  6. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C. Microbiol Mol Biol Rev 73 155-177 (2009)
  7. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Blair JM, Piddock LJ. Curr Opin Microbiol 12 512-519 (2009)
  8. Structure and mechanism of RND-type multidrug efflux pumps. Nikaido H. Adv Enzymol Relat Areas Mol Biol 77 1-60 (2011)
  9. The bacterial Sec-translocase: structure and mechanism. Lycklama A Nijeholt JA, Driessen AJ. Philos Trans R Soc Lond B Biol Sci 367 1016-1028 (2012)
  10. Assembly and transport mechanism of tripartite drug efflux systems. Misra R, Bavro VN. Biochim Biophys Acta 1794 817-825 (2009)
  11. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Chem Rev 121 5479-5596 (2021)
  12. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A. FEMS Microbiol Rev 39 555-566 (2015)
  13. Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex. Long F, Su CC, Lei HT, Bolla JR, Do SV, Yu EW. Philos Trans R Soc Lond B Biol Sci 367 1047-1058 (2012)
  14. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Symmons MF, Marshall RL, Bavro VN. Front Microbiol 6 513 (2015)
  15. Assembly and operation of bacterial tripartite multidrug efflux pumps. Du D, van Veen HW, Luisi BF. Trends Microbiol 23 311-319 (2015)
  16. The Cus efflux system removes toxic ions via a methionine shuttle. Su CC, Long F, Yu EW. Protein Sci 20 6-18 (2011)
  17. Structural and functional aspects of the multidrug efflux pump AcrB. Eicher T, Brandstätter L, Pos KM. Biol Chem 390 693-699 (2009)
  18. Biogenesis of bacterial inner-membrane proteins. Facey SJ, Kuhn A. Cell Mol Life Sci 67 2343-2362 (2010)
  19. Structure-based working model of SecDF, a proton-driven bacterial protein translocation factor. Tsukazaki T. FEMS Microbiol Lett 365 (2018)
  20. Crystal structures of all-alpha type membrane proteins. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Eur Biophys J 39 723-755 (2010)
  21. From the Sec complex to the membrane insertase YidC. Kuhn A. Biol Chem 390 701-706 (2009)
  22. Drug Efflux Pump Inhibitors: A Promising Approach to Counter Multidrug Resistance in Gram-Negative Pathogens by Targeting AcrB Protein from AcrAB-TolC Multidrug Efflux Pump from Escherichia coli. Alenazy R. Biology (Basel) 11 1328 (2022)
  23. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. Elston R, Mulligan C, Thomas GH. Microbiology (Reading) 169 (2023)

Articles citing this publication (28)

  1. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A. Nature 480 565-569 (2011)
  2. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Eicher T, Cha HJ, Seeger MA, Brandstätter L, El-Delik J, Bohnert JA, Kern WV, Verrey F, Grütter MG, Diederichs K, Pos KM. Proc Natl Acad Sci U S A 109 5687-5692 (2012)
  3. Assembly and channel opening in a bacterial drug efflux machine. Bavro VN, Pietras Z, Furnham N, Pérez-Cano L, Fernández-Recio J, Pei XY, Misra R, Luisi B. Mol Cell 30 114-121 (2008)
  4. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Hobbs EC, Yin X, Paul BJ, Astarita JL, Storz G. Proc Natl Acad Sci U S A 109 16696-16701 (2012)
  5. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes. Banerjee R, Gretes M, Harlem C, Basuino L, Chambers HF. Antimicrob Agents Chemother 54 4900-4902 (2010)
  6. The structure of the efflux pump AcrB in complex with bile acid. Drew D, Klepsch MM, Newstead S, Flaig R, De Gier JW, Iwata S, Beis K. Mol Membr Biol 25 677-682 (2008)
  7. Cryo-Electron Microscopy Structure of an Acinetobacter baumannii Multidrug Efflux Pump. Su CC, Morgan CE, Kambakam S, Rajavel M, Scott H, Huang W, Emerson CC, Taylor DJ, Stewart PL, Bonomo RA, Yu EW. mBio 10 e01295-19 (2019)
  8. Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel. Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, Picard M, Ducruix A, Etchebest C, Broutin I. Structure 18 507-517 (2010)
  9. Gating at both ends and breathing in the middle: conformational dynamics of TolC. Vaccaro L, Scott KA, Sansom MS. Biophys J 95 5681-5691 (2008)
  10. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB. Oswald C, Tam HK, Pos KM. Nat Commun 7 13819 (2016)
  11. Effects of zinc on particulate methane monooxygenase activity and structure. Sirajuddin S, Barupala D, Helling S, Marcus K, Stemmler TL, Rosenzweig AC. J Biol Chem 289 21782-21794 (2014)
  12. Evolution of amoxicillin resistance of Helicobacter pylori in vitro: characterization of resistance mechanisms. Qureshi NN, Gallaher B, Schiller NL. Microb Drug Resist 20 509-516 (2014)
  13. Three ways in, one way out: water dynamics in the trans-membrane domains of the inner membrane translocase AcrB. Fischer N, Kandt C. Proteins 79 2871-2885 (2011)
  14. Some ligands enhance the efflux of other ligands by the Escherichia coli multidrug pump AcrB. Kinana AD, Vargiu AV, Nikaido H. Biochemistry 52 8342-8351 (2013)
  15. Transitions between closed and open conformations of TolC: the effects of ions in simulations. Schulz R, Kleinekathöfer U. Biophys J 96 3116-3125 (2009)
  16. Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. Hung LW, Kim HB, Murakami S, Gupta G, Kim CY, Terwilliger TC. J Struct Funct Genomics 14 71-75 (2013)
  17. Structural mechanisms of heavy-metal extrusion by the Cus efflux system. Delmar JA, Su CC, Yu EW. Biometals 26 593-607 (2013)
  18. Characterization of the RND family of multidrug efflux pumps: in silico to in vivo confirmation of four functionally distinct subgroups. Godoy P, Molina-Henares AJ, de la Torre J, Duque E, Ramos JL. Microb Biotechnol 3 691-700 (2010)
  19. Secretome analysis defines the major role of SecDF in Staphylococcus aureus virulence. Quiblier C, Seidl K, Roschitzki B, Zinkernagel AS, Berger-Bächi B, Senn MM. PLoS One 8 e63513 (2013)
  20. AcrB trimer stability and efflux activity, insight from mutagenesis studies. Yu L, Lu W, Wei Y. PLoS One 6 e28390 (2011)
  21. Escherichia coli as host for membrane protein structure determination: a global analysis. Hattab G, Warschawski DE, Moncoq K, Miroux B. Sci Rep 5 12097 (2015)
  22. Mapping the Dynamic Functions and Structural Features of AcrB Efflux Pump Transporter Using Accelerated Molecular Dynamics Simulations. Jamshidi S, Sutton JM, Rahman KM. Sci Rep 8 10470 (2018)
  23. Elastic network model-based normal mode analysis reveals the conformational couplings in the tripartite AcrAB-TolC multidrug efflux complex. Wang B, Weng J, Fan K, Wang W. Proteins 79 2936-2945 (2011)
  24. A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa. Rundell EA, Commodore N, Goodman AL, Kazmierczak BI. J Bacteriol 202 e00682-19 (2020)
  25. Dissecting the function of a protruding loop in AcrB trimerization. Fang J, Yu L, Wu M, Wei Y. J Biomol Struct Dyn 31 385-392 (2013)
  26. Functional relevance of AcrB Trimerization in pump assembly and substrate binding. Lu W, Zhong M, Chai Q, Wang Z, Yu L, Wei Y. PLoS One 9 e89143 (2014)
  27. Probing the Dynamics of AcrB Through Disulfide Bond Formation. Rajapaksha P, Pandeya A, Wei Y. ACS Omega 5 21844-21852 (2020)
  28. In Vitro Microevolution and Co-Selection Assessment of Florfenicol Impact on Escherichia coli Resistance Development. Kerek Á, Török B, Laczkó L, Kardos G, Bányai K, Somogyi Z, Kaszab E, Bali K, Jerzsele Á. Antibiotics (Basel) 12 1728 (2023)