2sqc Citations

The structure of the membrane protein squalene-hopene cyclase at 2.0 A resolution.

J Mol Biol 286 175-87 (1999)
Cited: 114 times
EuropePMC logo PMID: 9931258

Abstract

Squalene cyclases catalyze a cationic cyclization cascade, which is homologous to a key step in cholesterol biosynthesis. The structure of the enzyme from Alicyclobacillus acidocaldarius has been determined in a new crystal form at 2.0 A resolution (1 A=0.1 nm) and refined to an R-factor of 15.3 % (Rfree=18.7 %). The structure indicates how the initial protonation and the final deprotonation of squalene occur and how the transient carbocations are stabilized. The pathways of the flexible educt squalene from the membrane interior to the active center cavity and of the rigid fused-ring product hopene in the reverse direction are discussed. The enzyme contains eight so-called QW-sequence repeats that fortify the alpha/alpha-barrels by an intricate interaction network. They are unique to the known triterpene cyclases and are presumed to shield these enzymes against the released enthalpy of the highly exergonic catalyzed reaction. The enzyme is a monotopic membrane protein, the membrane-binding interactions of which are described and compared with those of two prostaglandin-H2 synthase isoenzymes, the only other structurally characterized proteins of this type. In the crystals the membrane-binding regions face each other, suggesting a micelle-type detergent structure between them.

Reviews - 2sqc mentioned but not cited (2)

  1. Monotopic Membrane Proteins Join the Fold. Allen KN, Entova S, Ray LC, Imperiali B. Trends Biochem Sci 44 7-20 (2019)
  2. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 2sqc mentioned but not cited (11)

  1. The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration. Marcia M, Ermler U, Peng G, Michel H. Proc Natl Acad Sci U S A 106 9625-9630 (2009)
  2. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. BMC Struct Biol 7 44 (2007)
  3. Production of squalene in Synechocystis sp. PCC 6803. Englund E, Pattanaik B, Ubhayasekera SJ, Stensjö K, Bergquist J, Lindberg P. PLoS One 9 e90270 (2014)
  4. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  5. Self-association of a highly charged arginine-rich cell-penetrating peptide. Tesei G, Vazdar M, Jensen MR, Cragnell C, Mason PE, Heyda J, Skepö M, Jungwirth P, Lund M. Proc Natl Acad Sci U S A 114 11428-11433 (2017)
  6. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene. Souza-Moreira TM, Alves TB, Pinheiro KA, Felippe LG, De Lima GM, Watanabe TF, Barbosa CC, Santos VA, Lopes NP, Valentini SR, Guido RV, Furlan M, Zanelli CF. Sci Rep 6 36858 (2016)
  7. A monodomain class II terpene cyclase assembles complex isoprenoid scaffolds. Moosmann P, Ecker F, Leopold-Messer S, Cahn JKB, Dieterich CL, Groll M, Piel J. Nat Chem 12 968-972 (2020)
  8. Stereoselective Directed Cationic Cascades Enabled by Molecular Anchoring in Terpene Cyclases. Schneider A, Jegl P, Hauer B. Angew Chem Int Ed Engl 60 13251-13256 (2021)
  9. Predicted antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir can potentially bind to neutralize SARS-CoV-2 conserved proteins. Halder UC. J Biol Res (Thessalon) 28 18 (2021)
  10. Crystal Structure and Mechanistic Molecular Modeling Studies of Mycobacterium tuberculosis Diterpene Cyclase Rv3377c. Zhang Y, Prach LM, O'Brien TE, DiMaio F, Prigozhin DM, Corn JE, Alber T, Siegel JB, Tantillo DJ. Biochemistry 59 4507-4515 (2020)
  11. MD Simulations Reveal Complex Water Paths in Squalene-Hopene Cyclase: Tunnel-Obstructing Mutations Increase the Flow of Water in the Active Site. Gustafsson C, Vassiliev S, Kürten C, Syrén PO, Brinck T. ACS Omega 2 8495-8506 (2017)


Reviews citing this publication (29)

  1. Cyclooxygenases: structural, cellular, and molecular biology. Smith WL, DeWitt DL, Garavito RM. Annu Rev Biochem 69 145-182 (2000)
  2. Helical membrane protein folding, stability, and evolution. Popot JL, Engelman DM. Annu Rev Biochem 69 881-922 (2000)
  3. Structural and Chemical Biology of Terpenoid Cyclases. Christianson DW. Chem Rev 117 11570-11648 (2017)
  4. Triterpene biosynthesis in plants. Thimmappa R, Geisler K, Louveau T, O'Maille P, Osbourn A. Annu Rev Plant Biol 65 225-257 (2014)
  5. On the origins of triterpenoid skeletal diversity. Xu R, Fazio GC, Matsuda SP. Phytochemistry 65 261-291 (2004)
  6. Biogenesis, molecular regulation and function of plant isoprenoids. Bouvier F, Rahier A, Camara B. Prog Lipid Res 44 357-429 (2005)
  7. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Gao Y, Honzatko RB, Peters RJ. Nat Prod Rep 29 1153-1175 (2012)
  8. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Yoder RA, Johnston JN. Chem Rev 105 4730-4756 (2005)
  9. Endogenous synthesis of coenzyme Q in eukaryotes. Tran UC, Clarke CF. Mitochondrion 7 Suppl S62-71 (2007)
  10. Terpene biosynthesis: modularity rules. Oldfield E, Lin FY. Angew Chem Int Ed Engl 51 1124-1137 (2012)
  11. New insight into the structure and function of the alternative oxidase. Berthold DA, Andersson ME, Nordlund P. Biochim Biophys Acta 1460 241-254 (2000)
  12. Enzymatic synthesis of cyclic triterpenes. Abe I. Nat Prod Rep 24 1311-1331 (2007)
  13. Protein prenyltransferases. Maurer-Stroh S, Washietl S, Eisenhaber F. Genome Biol 4 212 (2003)
  14. What can a chemist learn from nature's macrocycles?--a brief, conceptual view. Wessjohann LA, Ruijter E, Garcia-Rivera D, Brandt W. Mol Divers 9 171-186 (2005)
  15. Squalene-hopene cyclases. Siedenburg G, Jendrossek D. Appl Environ Microbiol 77 3905-3915 (2011)
  16. Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. Binda C, Hubálek F, Li M, Edmondson DE, Mattevi A. FEBS Lett 564 225-228 (2004)
  17. Comparison of the properties of prostaglandin H synthase-1 and -2. Kulmacz RJ, van der Donk WA, Tsai AL. Prog Lipid Res 42 377-404 (2003)
  18. Structure and regulation of mammalian squalene synthase. Tansey TR, Shechter I. Biochim Biophys Acta 1529 49-62 (2000)
  19. Membrane-binding and enzymatic properties of RPE65. Kiser PD, Palczewski K. Prog Retin Eye Res 29 428-442 (2010)
  20. Mutagenesis approaches to deduce structure-function relationships in terpene synthases. Segura MJ, Jackson BE, Matsuda SP. Nat Prod Rep 20 304-317 (2003)
  21. Enzyme mechanisms for triterpene cyclization: new pieces of the puzzle. Wendt KU. Angew Chem Int Ed Engl 44 3966-3971 (2005)
  22. Structural commonalities among integral membrane enzymes. Bracey MH, Cravatt BF, Stevens RC. FEBS Lett 567 159-165 (2004)
  23. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships. Wu TK, Chang CH, Liu YT, Wang TT. Chem Rec 8 302-325 (2008)
  24. Electrophilic and nucleophilic enzymatic cascade reactions in biosynthesis. Ueberbacher BT, Hall M, Faber K. Nat Prod Rep 29 337-350 (2012)
  25. Profound insights into squalene cyclization. Poralla K. Chem Biol 11 12-14 (2004)
  26. Decoding Catalysis by Terpene Synthases. Whitehead JN, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. ACS Catal 13 12774-12802 (2023)
  27. Class II terpene cyclases: structures, mechanisms, and engineering. Pan X, Rudolf JD, Dong LB. Nat Prod Rep 41 402-433 (2024)
  28. [Engineering of squalene cyclizing enzymes]. Abe I. Yakugaku Zasshi 128 1109-1118 (2008)
  29. Mining methods and typical structural mechanisms of terpene cyclases. Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Bioresour Bioprocess 8 66 (2021)

Articles citing this publication (72)

  1. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Thoma R, Schulz-Gasch T, D'Arcy B, Benz J, Aebi J, Dehmlow H, Hennig M, Stihle M, Ruf A. Nature 432 118-122 (2004)
  2. Enzyme Mechanisms for Polycyclic Triterpene Formation. Wendt KU, Schulz GE, Corey EJ, Liu DR. Angew Chem Int Ed Engl 39 2812-2833 (2000)
  3. Enantioselective thiourea-catalyzed cationic polycyclizations. Knowles RR, Lin S, Jacobsen EN. J Am Chem Soc 132 5030-5032 (2010)
  4. Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. Koch M, Breithaupt C, Kiefersauer R, Freigang J, Huber R, Messerschmidt A. EMBO J 23 1720-1728 (2004)
  5. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Zhang J, Frerman FE, Kim JJ. Proc Natl Acad Sci U S A 103 16212-16217 (2006)
  6. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Köksal M, Hu H, Coates RM, Peters RJ, Christianson DW. Nat Chem Biol 7 431-433 (2011)
  7. A study of the membrane-water interface region of membrane proteins. Granseth E, von Heijne G, Elofsson A. J Mol Biol 346 377-385 (2005)
  8. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants. He CH, Xie LX, Allan CM, Tran UC, Clarke CF. Biochim Biophys Acta 1841 630-644 (2014)
  9. Conversion of squalene to the pentacarbocyclic hopene. Reinert DJ, Balliano G, Schulz GE. Chem Biol 11 121-126 (2004)
  10. Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. Schmerk CL, Bernards MA, Valvano MA. J Bacteriol 193 6712-6723 (2011)
  11. Importance of membrane structural integrity for RPE65 retinoid isomerization activity. Golczak M, Kiser PD, Lodowski DT, Maeda A, Palczewski K. J Biol Chem 285 9667-9682 (2010)
  12. Mechanistic insights into triterpene synthesis from quantum mechanical calculations. Detection of systematic errors in B3LYP cyclization energies. Matsuda SP, Wilson WK, Xiong Q. Org Biomol Chem 4 530-543 (2006)
  13. Crystal structure of isopentenyl diphosphate:dimethylallyl diphosphate isomerase. Durbecq V, Sainz G, Oudjama Y, Clantin B, Bompard-Gilles C, Tricot C, Caillet J, Stalon V, Droogmans L, Villeret V. EMBO J 20 1530-1537 (2001)
  14. Functional analysis of the DXDDTA motif in squalene-hopene cyclase by site-directed mutagenesis experiments: initiation site of the polycyclization reaction and stabilization site of the carbocation intermediate of the initially cyclized A-ring. Sato T, Hoshino T. Biosci Biotechnol Biochem 63 2189-2198 (1999)
  15. 1.55Å-resolution structure of ent-copalyl diphosphate synthase and exploration of general acid function by site-directed mutagenesis. Köksal M, Potter K, Peters RJ, Christianson DW. Biochim Biophys Acta 1840 184-190 (2014)
  16. The carboxy-terminal sequence of the pestivirus glycoprotein E(rns) represents an unusual type of membrane anchor. Fetzer C, Tews BA, Meyers G. J Virol 79 11901-11913 (2005)
  17. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica. Brendolise C, Yauk YK, Eberhard ED, Wang M, Chagne D, Andre C, Greenwood DR, Beuning LL. FEBS J 278 2485-2499 (2011)
  18. Identification of PhIL1, a novel cytoskeletal protein of the Toxoplasma gondii pellicle, through photosensitized labeling with 5-[125I]iodonaphthalene-1-azide. Gilk SD, Raviv Y, Hu K, Murray JM, Beckers CJ, Ward GE. Eukaryot Cell 5 1622-1634 (2006)
  19. Crystal structure of protoporphyrinogen oxidase from Myxococcus xanthus and its complex with the inhibitor acifluorfen. Corradi HR, Corrigall AV, Boix E, Mohan CG, Sturrock ED, Meissner PN, Acharya KR. J Biol Chem 281 38625-38633 (2006)
  20. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase. Rudolf JD, Dong LB, Cao H, Hatzos-Skintges C, Osipiuk J, Endres M, Chang CY, Ma M, Babnigg G, Joachimiak A, Phillips GN, Shen B. J Am Chem Soc 138 10905-10915 (2016)
  21. New cyclization mechanism for squalene: a ring-expansion step for the five-membered C-ring intermediate in hopene biosynthesis. Hoshino T, Kouda M, Abe T, Ohashi S. Biosci Biotechnol Biochem 63 2038-2041 (1999)
  22. Subcellular localization of oxidosqualene cyclases from Arabidopsis thaliana, Trypanosoma cruzi, and Pneumocystis carinii expressed in yeast. Milla P, Viola F, Oliaro Bosso S, Rocco F, Cattel L, Joubert BM, LeClair RJ, Matsuda SP, Balliano G. Lipids 37 1171-1176 (2002)
  23. Novel methylated triterpenoids of the gammacerane series from the nitrogen-fixing bacterium Bradyrhizobium japonicum USDA 110. Bravo JM, Perzl M, Härtner T, Kannenberg EL, Rohmer M. Eur J Biochem 268 1323-1331 (2001)
  24. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution. Dang T, Prestwich GD. Chem Biol 7 643-649 (2000)
  25. Squalene-hopene cyclase: final deprotonation reaction, conformational analysis for the cyclization of (3R,S)-2,3-oxidosqualene and further evidence for the requirement of an isopropylidene moiety both for initiation of the polycyclization cascade and for the formation of the 5-membered E-ring. Hoshino T, Nakano S, Kondo T, Sato T, Miyoshi A. Org Biomol Chem 2 1456-1470 (2004)
  26. Structure of Phytoene Desaturase Provides Insights into Herbicide Binding and Reaction Mechanisms Involved in Carotene Desaturation. Brausemann A, Gemmecker S, Koschmieder J, Ghisla S, Beyer P, Einsle O. Structure 25 1222-1232.e3 (2017)
  27. Crystal structure of a squalene cyclase in complex with the potential anticholesteremic drug Ro48-8071. Lenhart A, Weihofen WA, Pleschke AE, Schulz GE. Chem Biol 9 639-645 (2002)
  28. Activation-independent cyclization of monoterpenoids. Siedenburg G, Jendrossek D, Breuer M, Juhl B, Pleiss J, Seitz M, Klebensberger J, Hauer B. Appl Environ Microbiol 78 1055-1062 (2012)
  29. Catalytic function of the residues of phenylalanine and tyrosine conserved in squalene-hopene cyclases. Sato T, Hoshino T. Biosci Biotechnol Biochem 65 2233-2242 (2001)
  30. Conserved tyr residues determine functions of Alicyclobacillus acidocaldarius squalene-hopene cyclase. Füll C, Poralla K. FEMS Microbiol Lett 183 221-224 (2000)
  31. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer. Frickey T, Kannenberg E. Environ Microbiol 11 1224-1241 (2009)
  32. Oxidosqualene cyclase second-sphere residues profoundly influence the product profile. Lodeiro S, Segura MJ, Stahl M, Schulz-Gasch T, Matsuda SP. Chembiochem 5 1581-1585 (2004)
  33. Sterol metabolism. Benveniste P. Arabidopsis Book 1 e0004 (2002)
  34. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene. Hoshino T, Shimizu K, Sato T. Angew Chem Int Ed Engl 43 6700-6703 (2004)
  35. Squalene-hopene cyclase: insight into the role of the methyl group on the squalene backbone upon the polycyclization cascade. Enzymatic cyclization products of squalene analogs lacking a 26-methyl group and possessing a methyl group at C7 or C11. Nakano S, Ohashi S, Hoshino T. Org Biomol Chem 2 2012-2022 (2004)
  36. Crystal structure of YihS in complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase. Itoh T, Mikami B, Hashimoto W, Murata K. J Mol Biol 377 1443-1459 (2008)
  37. Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography-mass spectrometry. Sessions AL, Zhang L, Welander PV, Doughty D, Summons RE, Newman DK. Org Geochem 56 120-130 (2013)
  38. Oxidosqualene Cyclase Residues that Promote Formation of Cycloartenol, Lanosterol, and Parkeol We are grateful to Bridget M. Joubert for advice regarding mutagenesis. We thank Elizabeth A. Hart for an authentic parkeol standard, and for chromatographic and spectroscopic information. This research was funded by the National Institutes of Health (grant no. AI 41598) and the Robert A. Welch Foundation (grant no. C-1323). M.M.M. was an American Society of Pharmacognosy Undergraduate Fellow. M.J.R.S. was a Robert A. Welch Fellow and was supported by an NIH Biotechnology Training Grant (grant no. T32 GM08362). Meyer MM, Segura MJ, Wilson WK, Matsuda SP. Angew Chem Int Ed Engl 39 4090-4092 (2000)
  39. Phytoene Desaturase from Oryza sativa: Oligomeric Assembly, Membrane Association and Preliminary 3D-Analysis. Gemmecker S, Schaub P, Koschmieder J, Brausemann A, Drepper F, Rodriguez-Franco M, Ghisla S, Warscheid B, Einsle O, Beyer P. PLoS One 10 e0131717 (2015)
  40. Cloning and characterization of the Dictyostelium discoideum cycloartenol synthase cDNA. Godzina SM, Lovato MA, Meyer MM, Foster KA, Wilson WK, Gu W, de Hostos EL, Matsuda SP. Lipids 35 249-255 (2000)
  41. Functional analyses of Tyr420 and Leu607 of Alicyclobacillus acidocaldarius squalene-hopene cyclase. Neoachillapentaene, a novel triterpene with the 1,5,6-trimethylcyclohexene moiety produced through folding of the constrained boat structure. Sato T, Sasahara S, Yamakami T, Hoshino T. Biosci Biotechnol Biochem 66 1660-1670 (2002)
  42. Prediction of membrane protein orientation in lipid bilayers: a theoretical approach. Basyn F, Charloteaux B, Thomas A, Brasseur R. J Mol Graph Model 20 235-244 (2001)
  43. Enzymatic cyclizations of squalene analogs with threo- and erythro-diols at the 6,7- or 10,11-positions by recombinant squalene cyclase. Trapping of carbocation intermediates and mechanistic insights into the product and substrate specificities. Abe T, Hoshino T. Org Biomol Chem 3 3127-3139 (2005)
  44. Entropy is key to the formation of pentacyclic terpenoids by enzyme-catalyzed polycyclization. Syrén PO, Hammer SC, Claasen B, Hauer B. Angew Chem Int Ed Engl 53 4845-4849 (2014)
  45. Farnesyloxycoumarins, a new class of squalene-hopene cyclase inhibitors. Cravotto G, Balliano G, Robaldo B, Oliaro-Bosso S, Chimichi S, Boccalini M. Bioorg Med Chem Lett 14 1931-1934 (2004)
  46. Predicting the functions and specificity of triterpenoid synthases: a mechanism-based multi-intermediate docking approach. Tian BX, Wallrapp FH, Holiday GL, Chow JY, Babbitt PC, Poulter CD, Jacobson MP. PLoS Comput Biol 10 e1003874 (2014)
  47. Umbelliferone aminoalkyl derivatives as inhibitors of oxidosqualene cyclases from Saccharomyces cerevisiae, Trypanosoma cruzi, and Pneumocystis carinii. Oliaro-Bosso S, Viola F, Matsuda S, Cravotto G, Tagliapietra S, Balliano G. Lipids 39 1007-1012 (2004)
  48. Bicyclic triterpenes as new main products of squalene-hopene cyclase by mutation at conserved tyrosine residues. Füll C. FEBS Lett 509 361-364 (2001)
  49. Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange. Siedenburg G, Breuer M, Jendrossek D. Appl Microbiol Biotechnol 97 1571-1580 (2013)
  50. The binding site for an inhibitor of squalene:hopene cyclase determined using photoaffinity labeling and molecular modeling. Dang T, Abe I, Zheng YF, Prestwich GD. Chem Biol 6 333-341 (1999)
  51. Reviewing the polyolefin cyclization reaction of the c(35) polyprene catalyzed by squalene-hopene cyclase. Hoshino T, Kumai Y, Sato T. Chemistry 15 2091-2100 (2009)
  52. Catalytic asymmetric C-H insertion reactions of vinyl carbocations. Nistanaki SK, Williams CG, Wigman B, Wong JJ, Haas BC, Popov S, Werth J, Sigman MS, Houk KN, Nelson HM. Science 378 1085-1091 (2022)
  53. Functional characterization and localization of Pneumocystis carinii lanosterol synthase. Joffrion TM, Collins MS, Sesterhenn T, Cushion MT. Eukaryot Cell 9 107-115 (2010)
  54. Transcriptomic Comparison Reveals Candidate Genes for Triterpenoid Biosynthesis in Two Closely Related Ilex Species. Wen L, Yun X, Zheng X, Xu H, Zhan R, Chen W, Xu Y, Chen Y, Zhang J. Front Plant Sci 8 634 (2017)
  55. A new classification of membrane protein crystals. Schulz GE. J Mol Biol 407 640-646 (2011)
  56. Access of the substrate to the active site of yeast oxidosqualene cyclase: an inhibition and site-directed mutagenesis approach. Oliaro-Bosso S, Schulz-Gasch T, Balliano G, Viola F. Chembiochem 6 2221-2228 (2005)
  57. Alicyclobacillus acidocaldarius Squalene-Hopene Cyclase: The Critical Role of Steric Bulk at Ala306 and the First Enzymatic Synthesis of Epoxydammarane from 2,3-Oxidosqualene. Ideno N, Umeyama S, Watanabe T, Nakajima M, Sato T, Hoshino T. Chembiochem 19 1873-1886 (2018)
  58. Purification, tandem mass characterization, and inhibition studies of oxidosqualene-lanosterol cyclase enzyme from bovine liver. Wu TK, Huang CY, Ko CY, Chang CH, Chen YJ, Liao HK. Arch Biochem Biophys 421 42-53 (2004)
  59. Structure activity relationships of new inhibitors of mammalian 2,3-oxidosqualene cyclase designed from isoquinoline derivatives. Binet J, Thomas D, Benmbarek A, de FD, Renaut P. Chem Pharm Bull (Tokyo) 50 316-329 (2002)
  60. A class of 4-aza-lithocholic acid-derived haptens for the generation of catalytic antibodies with steroid synthase capabilities. Hasserodt J, Janda KD, Lerner RA. Bioorg Med Chem 8 995-1003 (2000)
  61. β-Amyrin Biosynthesis: The Methyl-30 Group of (3S)-2,3-Oxidosqualene Is More Critical to Its Correct Folding To Generate the Pentacyclic Scaffold than the Methyl-24 Group. Hoshino T, Miyahara Y, Hanaoka M, Takahashi K, Kaneko I. Chemistry 21 15769-15784 (2015)
  62. Comment A monotopic membrane protein goes solo. Mattevi A. Structure 14 628-629 (2006)
  63. Novel squalene-hopene cyclase inhibitors derived from hydroxycoumarins and hydroxyacetophenones. Cravotto G, Balliano G, Tagliapietra S, Oliaro-Bosso S, Nano GM. Chem Pharm Bull (Tokyo) 52 1171-1174 (2004)
  64. Structure of the monotopic membrane protein (S)-mandelate dehydrogenase at 2.2 Å resolution. Sukumar N, Liu S, Li W, Mathews FS, Mitra B, Kandavelu P. Biochimie 154 45-54 (2018)
  65. Structure-guided product determination of the bacterial type II diterpene synthase Tpn2. Stowell EA, Ehrenberger MA, Lin YL, Chang CY, Rudolf JD. Commun Chem 5 146 (2022)
  66. A Novel Soluble Squalene-Hopene Cyclase and Its Application in Efficient Synthesis of Hopene. Liu Z, Zhang Y, Sun J, Huang WC, Xue C, Mao X. Front Bioeng Biotechnol 8 426 (2020)
  67. Conjugated methyl sulfide and phenyl sulfide derivatives of oxidosqualene as inhibitors of oxidosqualene and squalene-hopene cyclases. Rocco F, Bosso SO, Viola F, Milla P, Roma G, Grossi G, Ceruti M. Lipids 38 201-207 (2003)
  68. Mutated variants of squalene-hopene cyclase: enzymatic syntheses of triterpenes bearing oxygen-bridged monocycles and a new 6,6,6,6,6-fusded pentacyclic scaffold, named neogammacerane, from 2,3-oxidosqualene. Fukuda Y, Watanabe T, Hoshino T. Org Biomol Chem 16 8365-8378 (2018)
  69. Plant cyclopropylsterol-cycloisomerase: key amino acids affecting activity and substrate specificity. Rahier A, Karst F. Biochem J 459 289-299 (2014)
  70. Protonation-Initiated Cyclization by a Class II Terpene Cyclase Assisted by Tunneling. Eriksson A, Kürten C, Syrén PO. Chembiochem 18 2301-2305 (2017)
  71. A Model for the Nonenzymatic BCD Cyclization of Squalene This research was supported by FWO-Vlaanderen. We thank Dr. Davide Proserpio (Università di Milano) and Dr. Annalisa Guerri (Università di Firenze) for the allowance to use the CCD diffractometers. Zhou SZ, Sey M, De Clercq PJ, Milanesio M, Viterbo D. Angew Chem Int Ed Engl 39 2861-2863 (2000)
  72. Tryptophan Stabilization of a Biochemical Carbocation Evaluated by Analysis of π Complexes of 3-Ethylindole with the t-Butyl Cation. Spencer TA, Ditchfield R. ACS Omega 8 26497-26507 (2023)


Related citations provided by authors (2)

  1. Structure and Function of a Squalene Cyclase. Wendt KU, Poralla K, Schulz GE Science 277 1811- (1997)
  2. Crystallization and Preliminary X-Ray Crystallographic Analysis of Squalene-Hopene Cyclase from Alicyclobacillus Acidocaldarius. Wendt KU, Feil C, Lenhart A, Poralla K, Schulz GE Protein Sci. 6 722- (1997)