2ssp Citations

Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA.

EMBO J 17 5214-26 (1998)
Related entries: 1akz, 1ssp, 4skn

Cited: 251 times
EuropePMC logo PMID: 9724657

Abstract

Three high-resolution crystal structures of DNA complexes with wild-type and mutant human uracil-DNA glycosylase (UDG), coupled kinetic characterizations and comparisons with the refined unbound UDG structure help resolve fundamental issues in the initiation of DNA base excision repair (BER): damage detection, nucleotide flipping versus extrahelical nucleotide capture, avoidance of apurinic/apyrimidinic (AP) site toxicity and coupling of damage-specific and damage-general BER steps. Structural and kinetic results suggest that UDG binds, kinks and compresses the DNA backbone with a 'Ser-Pro pinch' and scans the minor groove for damage. Concerted shifts in UDG simultaneously form the catalytically competent active site and induce further compression and kinking of the double-stranded DNA backbone only at uracil and AP sites, where these nucleotides can flip at the phosphate-sugar junction into a complementary specificity pocket. Unexpectedly, UDG binds to AP sites more tightly and more rapidly than to uracil-containing DNA, and thus may protect cells sterically from AP site toxicity. Furthermore, AP-endonuclease, which catalyzes the first damage-general step of BER, enhances UDG activity, most likely by inducing UDG release via shared minor groove contacts and flipped AP site binding. Thus, AP site binding may couple damage-specific and damage-general steps of BER without requiring direct protein-protein interactions.

Reviews - 2ssp mentioned but not cited (2)

  1. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Cheng X, Roberts RJ. Nucleic Acids Res 29 3784-3795 (2001)
  2. Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Schormann N, Ricciardi R, Chattopadhyay D. Protein Sci 23 1667-1685 (2014)

Articles - 2ssp mentioned but not cited (6)

  1. Relating destabilizing regions to known functional sites in proteins. Dessailly BH, Lensink MF, Wodak SJ. BMC Bioinformatics 8 141 (2007)
  2. PRUNE and PROBE--two modular web services for protein-protein docking. Mitra P, Pal D. Nucleic Acids Res 39 W229-34 (2011)
  3. A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping. Earl C, Bagnéris C, Zeman K, Cole A, Barrett T, Savva R. Nucleic Acids Res 46 4286-4300 (2018)
  4. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA Glycosylase. Schormann N, Banerjee S, Ricciardi R, Chattopadhyay D. BMC Struct Biol 15 10 (2015)
  5. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  6. Crystal structure of mimivirus uracil-DNA glycosylase. Kwon E, Pathak D, Chang HW, Kim DY. PLoS One 12 e0182382 (2017)


Reviews citing this publication (54)

  1. Uracil in DNA--occurrence, consequences and repair. Krokan HE, Drabløs F, Slupphaug G. Oncogene 21 8935-8948 (2002)
  2. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Tell G, Damante G, Caldwell D, Kelley MR. Antioxid Redox Signal 7 367-384 (2005)
  3. Base excision repair of DNA in mammalian cells. Krokan HE, Nilsen H, Skorpen F, Otterlei M, Slupphaug G. FEBS Lett 476 73-77 (2000)
  4. Initiation of base excision repair: glycosylase mechanisms and structures. McCullough AK, Dodson ML, Lloyd RS. Annu Rev Biochem 68 255-285 (1999)
  5. DNA glycosylases: in DNA repair and beyond. Jacobs AL, Schär P. Chromosoma 121 1-20 (2012)
  6. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Fishel ML, Kelley MR. Mol Aspects Med 28 375-395 (2007)
  7. Overview of base excision repair biochemistry. Kim YJ, Wilson DM. Curr Mol Pharmacol 5 3-13 (2012)
  8. Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage. Izumi T, Wiederhold LR, Roy G, Roy R, Jaiswal A, Bhakat KK, Mitra S, Hazra TK. Toxicology 193 43-65 (2003)
  9. Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Sage E, Harrison L. Mutat Res 711 123-133 (2011)
  10. DNA base damage recognition and removal: new twists and grooves. Huffman JL, Sundheim O, Tainer JA. Mutat Res 577 55-76 (2005)
  11. A structural basis for processivity. Breyer WA, Matthews BW. Protein Sci 10 1699-1711 (2001)
  12. Emerging critical roles of Fe-S clusters in DNA replication and repair. Fuss JO, Tsai CL, Ishida JP, Tainer JA. Biochim Biophys Acta 1853 1253-1271 (2015)
  13. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Abbotts R, Madhusudan S. Cancer Treat Rev 36 425-435 (2010)
  14. Base excision repair in a network of defence and tolerance. Nilsen H, Krokan HE. Carcinogenesis 22 987-998 (2001)
  15. Recent advances in the structural mechanisms of DNA glycosylases. Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Biochim Biophys Acta 1834 247-271 (2013)
  16. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. Tubbs JL, Pegg AE, Tainer JA. DNA Repair (Amst) 6 1100-1115 (2007)
  17. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. Fuss JO, Tainer JA. DNA Repair (Amst) 10 697-713 (2011)
  18. DNA repair mechanisms for the recognition and removal of damaged DNA bases. Mol CD, Parikh SS, Putnam CD, Lo TP, Tainer JA. Annu Rev Biophys Biomol Struct 28 101-128 (1999)
  19. Structural characterization of the Fpg family of DNA glycosylases. Zharkov DO, Shoham G, Grollman AP. DNA Repair (Amst) 2 839-862 (2003)
  20. DNA base repair--recognition and initiation of catalysis. Dalhus B, Laerdahl JK, Backe PH, Bjørås M. FEMS Microbiol Rev 33 1044-1078 (2009)
  21. Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage. Mitra S, Boldogh I, Izumi T, Hazra TK. Environ Mol Mutagen 38 180-190 (2001)
  22. Immunity proteins: enzyme inhibitors that avoid the active site. Kleanthous C, Walker D. Trends Biochem Sci 26 624-631 (2001)
  23. Securing genome stability by orchestrating DNA repair: removal of radiation-induced clustered lesions in DNA. Dianov GL, O'Neill P, Goodhead DT. Bioessays 23 745-749 (2001)
  24. Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism. Beard WA, Horton JK, Prasad R, Wilson SH. Annu Rev Biochem 88 137-162 (2019)
  25. Envisioning the molecular choreography of DNA base excision repair. Parikh SS, Mol CD, Hosfield DJ, Tainer JA. Curr Opin Struct Biol 9 37-47 (1999)
  26. Biological properties of single chemical-DNA adducts: a twenty year perspective. Delaney JC, Essigmann JM. Chem Res Toxicol 21 232-252 (2008)
  27. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once. Tsutakawa SE, Lafrance-Vanasse J, Tainer JA. DNA Repair (Amst) 19 95-107 (2014)
  28. Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition. Zharkov DO, Mechetin GV, Nevinsky GA. Mutat Res 685 11-20 (2010)
  29. Rules of engagement for base excision repair in chromatin. Odell ID, Wallace SS, Pederson DS. J Cell Physiol 228 258-266 (2013)
  30. The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases. Zharkov DO, Grollman AP. Mutat Res 577 24-54 (2005)
  31. DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Genois MM, Paquet ER, Laffitte MC, Maity R, Rodrigue A, Ouellette M, Masson JY. Microbiol Mol Biol Rev 78 40-73 (2014)
  32. Protein mimicry of DNA and pathway regulation. Putnam CD, Tainer JA. DNA Repair (Amst) 4 1410-1420 (2005)
  33. Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, Zhang H, Zhang L, Xu Z. Curr Med Chem 17 4052-4071 (2010)
  34. DNA deamination in immunity. Petersen-Mahrt S. Immunol Rev 203 80-97 (2005)
  35. Exposing the MYtH about base excision repair and human inherited disease. Cheadle JP, Sampson JR. Hum Mol Genet 12 Spec No 2 R159-65 (2003)
  36. Regulation of DNA glycosylases and their role in limiting disease. Sampath H, McCullough AK, Lloyd RS. Free Radic Res 46 460-478 (2012)
  37. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. Limpose KL, Corbett AH, Doetsch PW. DNA Repair (Amst) 56 51-64 (2017)
  38. Uracil DNA glycosylase: insights from a master catalyst. Stivers JT, Drohat AC. Arch Biochem Biophys 396 1-9 (2001)
  39. Base excision repair in nucleosome substrates. Jagannathan I, Cole HA, Hayes JJ. Chromosome Res 14 27-37 (2006)
  40. Facilitation of base excision repair by chromatin remodeling. Hinz JM, Czaja W. DNA Repair (Amst) 36 91-97 (2015)
  41. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. Yonekura S, Nakamura N, Yonei S, Zhang-Akiyama QM. J Radiat Res 50 19-26 (2009)
  42. Base excision and nucleotide excision repair pathways in mycobacteria. Kurthkoti K, Varshney U. Tuberculosis (Edinb) 91 533-543 (2011)
  43. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases. Talhaoui I, Matkarimov BT, Tchenio T, Zharkov DO, Saparbaev MK. Free Radic Biol Med 107 266-277 (2017)
  44. Base excision repair in chromatin: Insights from reconstituted systems. Balliano AJ, Hayes JJ. DNA Repair (Amst) 36 77-85 (2015)
  45. New paradigm of functional regulation by DNA mimic proteins: Recent updates. Wang HC, Chou CC, Hsu KC, Lee CH, Wang AH. IUBMB Life 71 539-548 (2019)
  46. Combining structural and bioinformatics methods for the analysis of functionally important residues in DNA glycosylases. Zharkov DO, Grollman AP. Free Radic Biol Med 32 1254-1263 (2002)
  47. Initiating base excision repair in chromatin. Kennedy EE, Caffrey PJ, Delaney S. DNA Repair (Amst) 71 87-92 (2018)
  48. DNA replication to aid somatic hypermutation. Xu Z, Zan H, Pal Z, Casali P. Adv Exp Med Biol 596 111-127 (2007)
  49. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Int J Mol Sci 20 E3279 (2019)
  50. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases. Schormann N, Zhukovskaya N, Bedwell G, Nuth M, Gillilan R, Prevelige PE, Ricciardi RP, Banerjee S, Chattopadhyay D. Protein Sci 25 2113-2131 (2016)
  51. DNA repair: how MutM finds the needle in a haystack. Jiricny J. Curr Biol 20 R145-7 (2010)
  52. Conformational dynamics and pre-steady-state kinetics of DNA glycosylases. Fedorova OS, Kuznetsov NA, Koval VV, Knorre DG. Biochemistry (Mosc) 75 1225-1239 (2010)
  53. The Essential Co-Option of Uracil-DNA Glycosylases by Herpesviruses Invites Novel Antiviral Design. Savva R. Microorganisms 8 E461 (2020)
  54. The Design and Application of DNA-Editing Enzymes as Base Editors. Rallapalli KL, Komor AC. Annu Rev Biochem 92 43-79 (2023)

Articles citing this publication (189)

  1. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Bruner SD, Norman DP, Verdine GL. Nature 403 859-866 (2000)
  2. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected]. Mol CD, Izumi T, Mitra S, Tainer JA. Nature 403 451-456 (2000)
  3. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Hill JW, Hazra TK, Izumi T, Mitra S. Nucleic Acids Res 29 430-438 (2001)
  4. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. Hardeland U, Steinacher R, Jiricny J, Schär P. EMBO J 21 1456-1464 (2002)
  5. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Zhang L, Lu X, Lu J, Liang H, Dai Q, Xu GL, Luo C, Jiang H, He C. Nat Chem Biol 8 328-330 (2012)
  6. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Guan Y, Manuel RC, Arvai AS, Parikh SS, Mol CD, Miller JH, Lloyd S, Tainer JA. Nat Struct Biol 5 1058-1064 (1998)
  7. DNA binding and nucleotide flipping by the human DNA repair protein AGT. Daniels DS, Woo TT, Luu KX, Noll DM, Clarke ND, Pegg AE, Tainer JA. Nat Struct Mol Biol 11 714-720 (2004)
  8. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Vidal AE, Hickson ID, Boiteux S, Radicella JP. Nucleic Acids Res 29 1285-1292 (2001)
  9. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA. Cell 98 397-408 (1999)
  10. Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL. J Biol Chem 276 5547-5555 (2001)
  11. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Lau AY, Wyatt MD, Glassner BJ, Samson LD, Ellenberger T. Proc Natl Acad Sci U S A 97 13573-13578 (2000)
  12. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Parikh SS, Walcher G, Jones GD, Slupphaug G, Krokan HE, Blackburn GM, Tainer JA. Proc Natl Acad Sci U S A 97 5083-5088 (2000)
  13. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. Hollis T, Ichikawa Y, Ellenberger T. EMBO J 19 758-766 (2000)
  14. Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. Daniels DS, Mol CD, Arvai AS, Kanugula S, Pegg AE, Tainer JA. EMBO J 19 1719-1730 (2000)
  15. Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nakatani K, Sando S, Saito I. Nat Biotechnol 19 51-55 (2001)
  16. Structural analysis of an Escherichia coli endonuclease VIII covalent reaction intermediate. Zharkov DO, Golan G, Gilboa R, Fernandes AS, Gerchman SE, Kycia JH, Rieger RA, Grollman AP, Shoham G. EMBO J 21 789-800 (2002)
  17. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. Sundheim O, Vågbø CB, Bjørås M, Sousa MM, Talstad V, Aas PA, Drabløs F, Krokan HE, Tainer JA, Slupphaug G. EMBO J 25 3389-3397 (2006)
  18. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Steinacher R, Schär P. Curr Biol 15 616-623 (2005)
  19. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Hashimoto H, Hong S, Bhagwat AS, Zhang X, Cheng X. Nucleic Acids Res 40 10203-10214 (2012)
  20. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Matthews MM, Thomas JM, Zheng Y, Tran K, Phelps KJ, Scott AI, Havel J, Fisher AJ, Beal PA. Nat Struct Mol Biol 23 426-433 (2016)
  21. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Wibley JE, Waters TR, Haushalter K, Verdine GL, Pearl LH. Mol Cell 11 1647-1659 (2003)
  22. Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme thermophile, Thermus thermophilus HB8. Sugahara M, Mikawa T, Kumasaka T, Yamamoto M, Kato R, Fukuyama K, Inoue Y, Kuramitsu S. EMBO J 19 3857-3869 (2000)
  23. Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. Maiti A, Morgan MT, Pozharski E, Drohat AC. Proc Natl Acad Sci U S A 105 8890-8895 (2008)
  24. Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. Putnam CD, Shroyer MJ, Lundquist AJ, Mol CD, Arvai AS, Mosbaugh DW, Tainer JA. J Mol Biol 287 331-346 (1999)
  25. Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex. Fitzgerald ME, Drohat AC. J Biol Chem 283 32680-32690 (2008)
  26. Dynamic opening of DNA during the enzymatic search for a damaged base. Cao C, Jiang YL, Stivers JT, Song F. Nat Struct Mol Biol 11 1230-1236 (2004)
  27. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. Serre L, Pereira de Jésus K, Boiteux S, Zelwer C, Castaing B. EMBO J 21 2854-2865 (2002)
  28. Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Yang H, Clendenin WM, Wong D, Demple B, Slupska MM, Chiang JH, Miller JH. Nucleic Acids Res 29 743-752 (2001)
  29. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Pettersen HS, Sundheim O, Gilljam KM, Slupphaug G, Krokan HE, Kavli B. Nucleic Acids Res 35 3879-3892 (2007)
  30. Recognition of a TG mismatch: the crystal structure of very short patch repair endonuclease in complex with a DNA duplex. Tsutakawa SE, Jingami H, Morikawa K. Cell 99 615-623 (1999)
  31. Aprataxin, poly-ADP ribose polymerase 1 (PARP-1) and apurinic endonuclease 1 (APE1) function together to protect the genome against oxidative damage. Harris JL, Jakob B, Taucher-Scholz G, Dianov GL, Becherel OJ, Lavin MF. Hum Mol Genet 18 4102-4117 (2009)
  32. A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. Sartori AA, Fitz-Gibbon S, Yang H, Miller JH, Jiricny J. EMBO J 21 3182-3191 (2002)
  33. Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme. Hinz JM, Rodriguez Y, Smerdon MJ. Proc Natl Acad Sci U S A 107 4646-4651 (2010)
  34. Human 3-methyladenine-DNA glycosylase: effect of sequence context on excision, association with PCNA, and stimulation by AP endonuclease. Xia L, Zheng L, Lee HW, Bates SE, Federico L, Shen B, O'Connor TR. J Mol Biol 346 1259-1274 (2005)
  35. The structure of the human AGT protein bound to DNA and its implications for damage detection. Duguid EM, Rice PA, He C. J Mol Biol 350 657-666 (2005)
  36. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Hashimoto H, Zhang X, Cheng X. Nucleic Acids Res 40 8276-8284 (2012)
  37. The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. Rodriguez Y, Smerdon MJ. J Biol Chem 288 13863-13875 (2013)
  38. Repair of chromosomal abasic sites in vivo involves at least three different repair pathways. Otterlei M, Kavli B, Standal R, Skjelbred C, Bharati S, Krokan HE. EMBO J 19 5542-5551 (2000)
  39. Dependence of antibody gene diversification on uracil excision. Di Noia JM, Williams GT, Chan DT, Buerstedde JM, Baldwin GS, Neuberger MS. J Exp Med 204 3209-3219 (2007)
  40. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication. Chapados BR, Chai Q, Hosfield DJ, Qiu J, Shen B, Tainer JA. J Mol Biol 307 541-556 (2001)
  41. Bibliography Survey of the 1998 optical biosensor literature. Myszka DG. J Mol Recognit 12 390-408 (1999)
  42. The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. Aravind L, Koonin EV. Genome Biol 1 RESEARCH0007 (2000)
  43. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Lee S, Verdine GL. Proc Natl Acad Sci U S A 106 18497-18502 (2009)
  44. Crystal structure of Escherichia coli uracil DNA glycosylase and its complexes with uracil and glycerol: structure and glycosylase mechanism revisited. Xiao G, Tordova M, Jagadeesh J, Drohat AC, Stivers JT, Gilliland GL. Proteins 35 13-24 (1999)
  45. A quantitative model of human DNA base excision repair. I. Mechanistic insights. Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM. Nucleic Acids Res 30 1817-1825 (2002)
  46. Highly efficient base excision repair (BER) in human and rat male germ cells. Olsen AK, Bjørtuft H, Wiger R, Holme J, Seeberg E, Bjørås M, Brunborg G. Nucleic Acids Res 29 1781-1790 (2001)
  47. Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. Posnick LM, Samson LD. J Bacteriol 181 6763-6771 (1999)
  48. DNA oligonucleotides with A, T, G or C opposite an abasic site: structure and dynamics. Chen J, Dupradeau FY, Case DA, Turner CJ, Stubbe J. Nucleic Acids Res 36 253-262 (2008)
  49. Poly(ADP-ribosyl)ation acts in the DNA demethylation of mouse primordial germ cells also with DNA damage-independent roles. Ciccarone F, Klinger FG, Catizone A, Calabrese R, Zampieri M, Bacalini MG, De Felici M, Caiafa P. PLoS One 7 e46927 (2012)
  50. Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA. Liu M, Imamura K, Averill AM, Wallace SS, Doublié S. Structure 21 247-256 (2013)
  51. Insight into the functional consequences of hMYH variants associated with colorectal cancer: distinct differences in the adenine glycosylase activity and the response to AP endonucleases of Y150C and G365D murine MYH. Pope MA, Chmiel NH, David SS. DNA Repair (Amst) 4 315-325 (2005)
  52. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases. Mol CD, Arvai AS, Begley TJ, Cunningham RP, Tainer JA. J Mol Biol 315 373-384 (2002)
  53. Removal of uracil by uracil DNA glycosylase limits pemetrexed cytotoxicity: overriding the limit with methoxyamine to inhibit base excision repair. Bulgar AD, Weeks LD, Miao Y, Yang S, Xu Y, Guo C, Markowitz S, Oleinick N, Gerson SL, Liu L. Cell Death Dis 3 e252 (2012)
  54. Role of base flipping in specific recognition of damaged DNA by repair enzymes. Fuxreiter M, Luo N, Jedlovszky P, Simon I, Osman R. J Mol Biol 323 823-834 (2002)
  55. Specificity of protein interactions mediated by BRCT domains of the XRCC1 DNA repair protein. Beernink PT, Hwang M, Ramirez M, Murphy MB, Doyle SA, Thelen MP. J Biol Chem 280 30206-30213 (2005)
  56. Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase. Koval VV, Kuznetsov NA, Zharkov DO, Ishchenko AA, Douglas KT, Nevinsky GA, Fedorova OS. Nucleic Acids Res 32 926-935 (2004)
  57. DNA damage recognition and repair by the murine MutY homologue. Pope MA, David SS. DNA Repair (Amst) 4 91-102 (2005)
  58. Escherichia coli apurinic-apyrimidinic endonucleases enhance the turnover of the adenine glycosylase MutY with G:A substrates. Pope MA, Porello SL, David SS. J Biol Chem 277 22605-22615 (2002)
  59. DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG). Metz AH, Hollis T, Eichman BF. EMBO J 26 2411-2420 (2007)
  60. Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea. Shuttleworth G, Fogg MJ, Kurpiewski MR, Jen-Jacobson L, Connolly BA. J Mol Biol 337 621-634 (2004)
  61. Differential DNA recognition and glycosylase activity of the native human MutY homolog (hMYH) and recombinant hMYH expressed in bacteria. Gu Y, Lu AL. Nucleic Acids Res 29 2666-2674 (2001)
  62. Product inhibition and magnesium modulate the dual reaction mode of hOgg1. Morland I, Luna L, Gustad E, Seeberg E, Bjørås M. DNA Repair (Amst) 4 381-387 (2005)
  63. Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8. Hoseki J, Okamoto A, Masui R, Shibata T, Inoue Y, Yokoyama S, Kuramitsu S. J Mol Biol 333 515-526 (2003)
  64. New family of deamination repair enzymes in uracil-DNA glycosylase superfamily. Lee HW, Dominy BN, Cao W. J Biol Chem 286 31282-31287 (2011)
  65. A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus. Starkuviene V, Fritz HJ. Nucleic Acids Res 30 2097-2102 (2002)
  66. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages. Cannan WJ, Tsang BP, Wallace SS, Pederson DS. J Biol Chem 289 19881-19893 (2014)
  67. Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly. Schormann N, Grigorian A, Samal A, Krishnan R, DeLucas L, Chattopadhyay D. BMC Struct Biol 7 45 (2007)
  68. Catalytic mechanism of Escherichia coli endonuclease VIII: roles of the intercalation loop and the zinc finger. Kropachev KY, Zharkov DO, Grollman AP. Biochemistry 45 12039-12049 (2006)
  69. Characterisation of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase. Scaramozzino N, Sanz G, Crance JM, Saparbaev M, Drillien R, Laval J, Kavli B, Garin D. Nucleic Acids Res 31 4950-4957 (2003)
  70. DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge. Schonhoft JD, Kosowicz JG, Stivers JT. Biochemistry 52 2526-2535 (2013)
  71. Evaluation of the role of the vaccinia virus uracil DNA glycosylase and A20 proteins as intrinsic components of the DNA polymerase holoenzyme. Boyle KA, Stanitsa ES, Greseth MD, Lindgren JK, Traktman P. J Biol Chem 286 24702-24713 (2011)
  72. Orchestration of base excision repair by controlling the rates of enzymatic activities. Allinson SL, Sleeth KM, Matthewman GE, Dianov GL. DNA Repair (Amst) 3 23-31 (2004)
  73. The role of leucine 191 of Escherichia coli uracil DNA glycosylase in the formation of a highly stable complex with the substrate mimic, ugi, and in uracil excision from the synthetic substrates. Handa P, Roy S, Varshney U. J Biol Chem 276 17324-17331 (2001)
  74. Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase. Roberts VA, Pique ME, Hsu S, Li S, Slupphaug G, Rambo RP, Jamison JW, Liu T, Lee JH, Tainer JA, Ten Eyck LF, Woods VL. Nucleic Acids Res 40 6070-6081 (2012)
  75. Dynamics of Methylated Cytosine Flipping by UHRF1. Kilin V, Gavvala K, Barthes NP, Michel BY, Shin D, Boudier C, Mauffret O, Yashchuk V, Mousli M, Ruff M, Granger F, Eiler S, Bronner C, Tor Y, Burger A, Mély Y. J Am Chem Soc 139 2520-2528 (2017)
  76. Strikingly different properties of uracil-DNA glycosylases UNG2 and SMUG1 may explain divergent roles in processing of genomic uracil. Doseth B, Ekre C, Slupphaug G, Krokan HE, Kavli B. DNA Repair (Amst) 11 587-593 (2012)
  77. Differential role of base excision repair proteins in mediating cisplatin cytotoxicity. Sawant A, Floyd AM, Dangeti M, Lei W, Sobol RW, Patrick SM. DNA Repair (Amst) 51 46-59 (2017)
  78. Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Wang HC, Hsu KC, Yang JM, Wu ML, Ko TP, Lin SR, Wang AH. Nucleic Acids Res 42 1354-1364 (2014)
  79. Strandwise translocation of a DNA glycosylase on undamaged DNA. Qi Y, Nam K, Spong MC, Banerjee A, Banerjee A, Sung RJ, Zhang M, Karplus M, Verdine GL. Proc Natl Acad Sci U S A 109 1086-1091 (2012)
  80. A kinetic analysis of substrate recognition by uracil-DNA glycosylase from herpes simplex virus type 1. Bellamy SR, Baldwin GS. Nucleic Acids Res 29 3857-3863 (2001)
  81. Low-resolution structure of vaccinia virus DNA replication machinery. Sèle C, Gabel F, Gutsche I, Ivanov I, Burmeister WP, Iseni F, Tarbouriech N. J Virol 87 1679-1689 (2013)
  82. Reduced Nuclease Activity of Apurinic/Apyrimidinic Endonuclease (APE1) Variants on Nucleosomes: IDENTIFICATION OF ACCESS RESIDUES. Hinz JM, Mao P, McNeill DR, Wilson DM. J Biol Chem 290 21067-21075 (2015)
  83. Solution structure of a DNA duplex containing an alpha-anomeric adenosine: insights into substrate recognition by endonuclease IV. Aramini JM, Cleaver SH, Pon RT, Cunningham RP, Germann MW. J Mol Biol 338 77-91 (2004)
  84. A rapid reaction analysis of uracil DNA glycosylase indicates an active mechanism of base flipping. Bellamy SR, Krusong K, Baldwin GS. Nucleic Acids Res 35 1478-1487 (2007)
  85. Embryonic extracts derived from the nematode Caenorhabditis elegans remove uracil from DNA by the sequential action of uracil-DNA glycosylase and AP (apurinic/apyrimidinic) endonuclease. Shatilla A, Ramotar D. Biochem J 365 547-553 (2002)
  86. Investigation of N-Terminal Phospho-Regulation of Uracil DNA Glycosylase Using Protein Semisynthesis. Weiser BP, Stivers JT, Cole PA. Biophys J 113 393-401 (2017)
  87. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Malik SS, Coey CT, Varney KM, Pozharski E, Drohat AC. Nucleic Acids Res 43 9541-9552 (2015)
  88. Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans. Nakamura N, Morinaga H, Kikuchi M, Yonekura S, Ishii N, Yamamoto K, Yonei S, Zhang QM. Mutagenesis 23 407-413 (2008)
  89. Solution structure of an oligonucleotide containing an abasic site: evidence for an unusual deoxyribose conformation. Hoehn ST, Turner CJ, Stubbe J. Nucleic Acids Res 29 3413-3423 (2001)
  90. AP endonuclease deficiency results in extreme sensitivity to thymidine deprivation. Dornfeld K, Johnson M. Nucleic Acids Res 33 6644-6653 (2005)
  91. Characterization of uracil-DNA glycosylase activity from Trypanosoma cruzi and its stimulation by AP endonuclease. Fárez-Vidal ME, Gallego C, Ruiz-Pérez LM, González-Pacanowska D. Nucleic Acids Res 29 1549-1555 (2001)
  92. DNA repair of clustered uracils in HeLa cells. Malyarchuk S, Harrison L. J Mol Biol 345 731-743 (2005)
  93. Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria. Purnapatre K, Handa P, Venkatesh J, Varshney U. Nucleic Acids Res 27 3487-3492 (1999)
  94. Proteomic approach to identification of proteins reactive for abasic sites in DNA. Rieger RA, Zaika EI, Xie W, Johnson F, Grollman AP, Iden CR, Zharkov DO. Mol Cell Proteomics 5 858-867 (2006)
  95. AP endonuclease 1 prevents trinucleotide repeat expansion via a novel mechanism during base excision repair. Beaver JM, Lai Y, Xu M, Casin AH, Laverde EE, Liu Y. Nucleic Acids Res 43 5948-5960 (2015)
  96. Insights from xanthine and uracil DNA glycosylase activities of bacterial and human SMUG1: switching SMUG1 to UDG. Mi R, Dong L, Kaulgud T, Hackett KW, Dominy BN, Cao W. J Mol Biol 385 761-778 (2009)
  97. New insights on the role of the gamma-herpesvirus uracil-DNA glycosylase leucine loop revealed by the structure of the Epstein-Barr virus enzyme in complex with an inhibitor protein. Géoui T, Buisson M, Tarbouriech N, Burmeister WP. J Mol Biol 366 117-131 (2007)
  98. Rational engineering of a DNA glycosylase specific for an unnatural cytosine:pyrene base pair. Kwon K, Jiang YL, Stivers JT. Chem Biol 10 351-359 (2003)
  99. Effects of mutations at tyrosine 66 and asparagine 123 in the active site pocket of Escherichia coli uracil DNA glycosylase on uracil excision from synthetic DNA oligomers: evidence for the occurrence of long-range interactions between the enzyme and substrate. Handa P, Acharya N, Varshney U. Nucleic Acids Res 30 3086-3095 (2002)
  100. Optimisation of the surface electrostatics as a strategy for cold adaptation of uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). Moe E, Leiros I, Riise EK, Olufsen M, Lanes O, Smalås A, Willassen NP. J Mol Biol 343 1221-1230 (2004)
  101. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1. Kuznetsova AA, Kuznetsov NA, Ishchenko AA, Saparbaev MK, Fedorova OS. Biochim Biophys Acta 1840 3042-3051 (2014)
  102. Methanobacterium thermoformicicum thymine DNA mismatch glycosylase: conversion of an N-glycosylase to an AP lyase. Begley TJ, Cunningham RP. Protein Eng 12 333-340 (1999)
  103. Uracil-DNA glycosylase is involved in DNA demethylation and required for embryonic development in the zebrafish embryo. Wu D, Chen L, Sun Q, Wu X, Jia S, Meng A. J Biol Chem 289 15463-15473 (2014)
  104. A base-flipping mechanism for the T4 phage beta-glucosyltransferase and identification of a transition-state analog. Larivière L, Moréra S. J Mol Biol 324 483-490 (2002)
  105. A fission yeast homologue of the human uracil-DNA-glycosylase and their roles in causing DNA damage after overexpression. Elder RT, Zhu X, Priet S, Chen M, Yu M, Navarro JM, Sire J, Zhao Y. Biochem Biophys Res Commun 306 693-700 (2003)
  106. Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition. Biswas T, Clos LJ, SantaLucia J, Mitra S, Roy R. J Mol Biol 320 503-513 (2002)
  107. Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminal domain. Contesto-Richefeu C, Tarbouriech N, Brazzolotto X, Betzi S, Morelli X, Burmeister WP, Iseni F. PLoS Pathog 10 e1003978 (2014)
  108. Electrostatic properties of complexes along a DNA glycosylase damage search pathway. Cravens SL, Hobson M, Stivers JT. Biochemistry 53 7680-7692 (2014)
  109. Functional interactions between the MutL and Vsr proteins of Escherichia coli are dependent on the N-terminus of Vsr. Monastiriakos SK, Doiron KM, Siponen MI, Cupples CG. DNA Repair (Amst) 3 639-647 (2004)
  110. Solution structure of the highly acidic protein HI1450 from Haemophilus influenzae, a putative double-stranded DNA mimic. Parsons LM, Yeh DC, Orban J. Proteins 54 375-383 (2004)
  111. Letter Targeting base excision repair suggests a new therapeutic strategy of fludarabine for the treatment of chronic lymphocytic leukemia. Bulgar AD, Snell M, Donze JR, Kirkland EB, Li L, Yang S, Xu Y, Gerson SL, Liu L. Leukemia 24 1795-1799 (2010)
  112. The crystal structure of mismatch-specific uracil-DNA glycosylase (MUG) from Deinococcus radiodurans reveals a novel catalytic residue and broad substrate specificity. Moe E, Leiros I, Smalås AO, McSweeney S. J Biol Chem 281 569-577 (2006)
  113. Total sequence decomposition distinguishes functional modules, "molegos" in apurinic/apyrimidinic endonucleases. Schein CH, Ozgün N, Izumi T, Braun W. BMC Bioinformatics 3 37 (2002)
  114. Uracil DNA N-glycosylase promotes assembly of human centromere protein A. Zeitlin SG, Chapados BR, Baker NM, Tai C, Slupphaug G, Wang JY. PLoS One 6 e17151 (2011)
  115. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis. Nagorska K, Silhan J, Li Y, Pelicic V, Freemont PS, Baldwin GS, Tang CM. Mol Microbiol 83 1064-1079 (2012)
  116. Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage Φ29 DNA mimic protein p56. Baños-Sanz JI, Mojardín L, Sanz-Aparicio J, Lázaro JM, Villar L, Serrano-Heras G, González B, Salas M. Nucleic Acids Res 41 6761-6773 (2013)
  117. Excision of uracil from DNA by hSMUG1 includes strand incision and processing. Alexeeva M, Moen MN, Grøsvik K, Tesfahun AN, Xu XM, Muruzábal-Lecumberri I, Olsen KM, Rasmussen A, Ruoff P, Kirpekar F, Klungland A, Bjelland S. Nucleic Acids Res 47 779-793 (2019)
  118. Trypanosomes lacking uracil-DNA glycosylase are hypersensitive to antifolates and present a mutator phenotype. Castillo-Acosta VM, Aguilar-Pereyra F, Vidal AE, Navarro M, Ruiz-Pérez LM, González-Pacanowska D. Int J Biochem Cell Biol 44 1555-1568 (2012)
  119. Can DNA repair cause enhanced cell killing following treatment with ionizing radiation? Harrison L, Malyarchuk S. Pathophysiology 8 149-159 (2002)
  120. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping. Hendershot JM, O'Brien PJ. Nucleic Acids Res 42 12681-12690 (2014)
  121. DNA-binding mechanism of the Escherichia coli Ada O(6)-alkylguanine-DNA alkyltransferase. Verdemato PE, Brannigan JA, Damblon C, Zuccotto F, Moody PC, Lian LY. Nucleic Acids Res 28 3710-3718 (2000)
  122. Effects of (5'S)-5',8-cyclo-2'-deoxyadenosine on the base excision repair of oxidatively generated clustered DNA damage. A biochemical and theoretical study. Karwowski BT, Bellon S, O'Neill P, Lomax ME, Cadet J. Org Biomol Chem 12 8671-8682 (2014)
  123. HMCES safeguards replication from oxidative stress and ensures error-free repair. Srivastava M, Su D, Zhang H, Chen Z, Tang M, Nie L, Chen J. EMBO Rep 21 e49123 (2020)
  124. Loss of Caenorhabditis elegans UNG-1 uracil-DNA glycosylase affects apoptosis in response to DNA damaging agents. Skjeldam HK, Kassahun H, Fensgård O, SenGupta T, Babaie E, Lindvall JM, Arczewska K, Nilsen H. DNA Repair (Amst) 9 861-870 (2010)
  125. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA. Burmeister WP, Tarbouriech N, Fender P, Contesto-Richefeu C, Peyrefitte CN, Iseni F. J Biol Chem 290 17923-17934 (2015)
  126. Uncovering universal rules governing the selectivity of the archetypal DNA glycosylase TDG. Dodd T, Yan C, Kossmann BR, Martin K, Ivanov I. Proc Natl Acad Sci U S A 115 5974-5979 (2018)
  127. Mutations at Arginine 276 transform human uracil-DNA glycosylase into a single-stranded DNA-specific uracil-DNA glycosylase. Chen CY, Mosbaugh DW, Bennett SE. DNA Repair (Amst) 4 793-805 (2005)
  128. Purification and characterization of a cold-adapted uracil-DNA glycosylase from Atlantic cod (Gadus morhua). Lanes O, Guddal PH, Gjellesvik DR, Willassen NP. Comp Biochem Physiol B Biochem Mol Biol 127 399-410 (2000)
  129. Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. Peña-Diaz J, Akbari M, Sundheim O, Farez-Vidal ME, Andersen S, Sneve R, Gonzalez-Pacanowska D, Krokan HE, Slupphaug G. J Mol Biol 342 787-799 (2004)
  130. Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56. Pérez-Lago L, Serrano-Heras G, Baños B, Lázaro JM, Alcorlo M, Villar L, Salas M. Mol Microbiol 80 1657-1666 (2011)
  131. Differential modes of DNA binding by mismatch uracil DNA glycosylase from Escherichia coli: implications for abasic lesion processing and enzyme communication in the base excision repair pathway. Grippon S, Zhao Q, Robinson T, Marshall JJ, O'Neill RJ, Manning H, Kennedy G, Dunsby C, Neil M, Halford SE, French PM, Baldwin GS. Nucleic Acids Res 39 2593-2603 (2011)
  132. Predicting protein-DNA interactions by full search computational docking. Roberts VA, Pique ME, Ten Eyck LF, Li S. Proteins 81 2106-2118 (2013)
  133. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans. Moe E, Hall DR, Leiros I, Monsen VT, Timmins J, McSweeney S. Acta Crystallogr D Biol Crystallogr 68 703-712 (2012)
  134. An iron-sulfur cluster loop motif in the Archaeoglobus fulgidus uracil-DNA glycosylase mediates efficient uracil recognition and removal. Engstrom LM, Partington OA, David SS. Biochemistry 51 5187-5197 (2012)
  135. Architecturally diverse proteins converge on an analogous mechanism to inactivate Uracil-DNA glycosylase. Cole AR, Ofer S, Ryzhenkova K, Baltulionis G, Hornyak P, Savva R. Nucleic Acids Res 41 8760-8775 (2013)
  136. Electrostatic interactions play an essential role in DNA repair and cold-adaptation of uracil DNA glycosylase. Olufsen M, Smalås AO, Brandsdal BO. J Mol Model 14 201-213 (2008)
  137. Identification of the Archaeoglobus fulgidus endonuclease III DNA interaction surface using heteronuclear NMR methods. Shekhtman A, McNaughton L, Cunningham RP, Baxter SM. Structure 7 919-930 (1999)
  138. Structural basis for uracil DNA glycosylase interaction with uracil: NMR study. Ghosh M, Vinay Kumar N, Varshney U, Chary KV. Nucleic Acids Res 28 1906-1912 (2000)
  139. An effective human uracil-DNA glycosylase inhibitor targets the open pre-catalytic active site conformation. Nguyen MT, Moiani D, Ahmed Z, Arvai AS, Namjoshi S, Shin DS, Fedorov Y, Selvik EJ, Jones DE, Pink J, Yan Y, Laverty DJ, Nagel ZD, Tainer JA, Gerson SL. Prog Biophys Mol Biol 163 143-159 (2021)
  140. Base excision repair initiated rolling circle amplification-based fluorescent assay for screening uracil-DNA glycosylase activity using Endo IV-assisted cleavage of AP probes. Wang J, Wang Y, Liu S, Wang H, Zhang X, Song X, Huang J. Analyst 143 3951-3958 (2018)
  141. Conserved residue lysine165 is essential for the ability of O6-alkylguanine-DNA alkyltransferase to react with O6-benzylguanine. Xu-Welliver M, Kanugula S, Loktionova NA, Crone TM, Pegg AE. Biochem J 347 527-534 (2000)
  142. Contribution of a conserved phenylalanine residue to the activity of Escherichia coli uracil DNA glycosylase. Shaw RW, Feller JA, Bloom LB. DNA Repair (Amst) 3 1273-1283 (2004)
  143. Damage recognition by UV damage endonuclease from Schizosaccharomyces pombe. Paspaleva K, Moolenaar GF, Goosen N. DNA Repair (Amst) 8 600-611 (2009)
  144. Specificity and Efficiency of the Uracil DNA Glycosylase-Mediated Strand Cleavage Surveyed on Large Sequence Libraries. Hölz K, Pavlic A, Lietard J, Somoza MM. Sci Rep 9 17822 (2019)
  145. Specificity of damage recognition and catalysis of DNA repair. Osman R, Fuxreiter M, Luo N. Comput Chem 24 331-339 (2000)
  146. The merits of bipartite transition-state mimics for inhibition of uracil DNA glycosylase. Jiang YL, Cao C, Stivers JT, Song F, Ichikawa Y. Bioorg Chem 32 244-262 (2004)
  147. Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase. Wang HC, Ho CH, Chou CC, Ko TP, Huang MF, Hsu KC, Wang AH. Nucleic Acids Res 44 4440-4449 (2016)
  148. Analysis of the impact of a uracil DNA glycosylase attenuated in AP-DNA binding in maintenance of the genomic integrity in Escherichia coli. Bharti SK, Varshney U. Nucleic Acids Res 38 2291-2301 (2010)
  149. Identification of SUMO modification sites in the base excision repair protein, Ntg1. Swartzlander DB, McPherson AJ, Powers HR, Limpose KL, Kuiper EG, Degtyareva NP, Corbett AH, Doetsch PW. DNA Repair (Amst) 48 51-62 (2016)
  150. Mutational analysis of arginine 276 in the leucine-loop of human uracil-DNA glycosylase. Chen CY, Mosbaugh DW, Bennett SE. J Biol Chem 279 48177-48188 (2004)
  151. N-glycosyl bond formation catalyzed by human alkyladenine DNA glycosylase. Admiraal SJ, O'Brien PJ. Biochemistry 49 9024-9026 (2010)
  152. Structural plasticity in Mycobacterium tuberculosis uracil-DNA glycosylase (MtUng) and its functional implications. Arif SM, Geethanandan K, Mishra P, Surolia A, Varshney U, Vijayan M. Acta Crystallogr D Biol Crystallogr 71 1514-1527 (2015)
  153. Cadmium(II) inhibition of human uracil-DNA glycosylase by catalytic water supplantation. Gokey T, Hang B, Guliaev AB. Sci Rep 6 39137 (2016)
  154. Kinetics and binding of the thymine-DNA mismatch glycosylase, Mig-Mth, with mismatch-containing DNA substrates. Begley TJ, Haas BJ, Morales JC, Kool ET, Cunningham RP. DNA Repair (Amst) 2 107-120 (2003)
  155. Uracil DNA glycosylase (UDG) activities in Bradyrhizobium diazoefficiens: characterization of a new class of UDG with broad substrate specificity. Chembazhi UV, Patil VV, Sah S, Reeve W, Tiwari RP, Woo E, Varshney U. Nucleic Acids Res 45 5863-5876 (2017)
  156. Caught in motion: human NTHL1 undergoes interdomain rearrangement necessary for catalysis. Carroll BL, Zahn KE, Hanley JP, Wallace SS, Dragon JA, Doublié S. Nucleic Acids Res 49 13165-13178 (2021)
  157. Computational Study on DNA Repair: The Roles of Electrostatic Interactions Between Uracil-DNA Glycosylase (UDG) and DNA. Xie Y, Karki CB, Chen J, Liu D, Li L. Front Mol Biosci 8 718587 (2021)
  158. HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Wu L, Shukla V, Yadavalli AD, Dinesh RK, Xu D, Rao A, Schatz DG. Genes Dev 36 433-450 (2022)
  159. Structural Insights into the Mechanism of Base Excision by MBD4. Pidugu LS, Bright H, Lin WJ, Majumdar C, Van Ostrand RP, David SS, Pozharski E, Drohat AC. J Mol Biol 433 167097 (2021)
  160. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA. Pedersen HL, Johnson KA, McVey CE, Leiros I, Moe E. Acta Crystallogr D Biol Crystallogr 71 2137-2149 (2015)
  161. Substitutions at tyrosine 66 of Escherichia coli uracil DNA glycosylase lead to characterization of an efficient enzyme that is recalcitrant to product inhibition. Acharya N, Talawar RK, Saikrishnan K, Vijayan M, Varshney U. Nucleic Acids Res 31 7216-7226 (2003)
  162. A New Class of Uracil-DNA Glycosylase Inhibitors Active against Human and Vaccinia Virus Enzyme. Grin IR, Mechetin GV, Kasymov RD, Diatlova EA, Yudkina AV, Shchelkunov SN, Gileva IP, Denisova AA, Stepanov GA, Chilov GG, Zharkov DO. Molecules 26 6668 (2021)
  163. Catalytic mechanism of the mismatch-specific DNA glycosylase methyl-CpG-binding domain 4. Ouzon-Shubeita H, Jung H, Lee MH, Koag MC, Lee S. Biochem J 477 1601-1612 (2020)
  164. Crystal structure of family 4 uracil-DNA glycosylase from Sulfolobus tokodaii and a function of tyrosine 170 in DNA binding. Kawai A, Higuchi S, Tsunoda M, Nakamura KT, Yamagata Y, Miyamoto S. FEBS Lett 589 2675-2682 (2015)
  165. Developing an in silico model of the modulation of base excision repair using methoxyamine for more targeted cancer therapeutics. Gurkan-Cavusoglu E, Avadhani S, Liu L, Kinsella TJ, Loparo KA. IET Syst Biol 7 27-37 (2013)
  166. Displacement of Slow-Turnover DNA Glycosylases by Molecular Traffic on DNA. Yudkina AV, Endutkin AV, Diatlova EA, Moor NA, Vokhtantsev IP, Grin IR, Zharkov DO. Genes (Basel) 11 E866 (2020)
  167. Identification of a Chemotherapeutic Lead Molecule for the Potential Disruption of the FAM72A-UNG2 Interaction to Interfere with Genome Stability, Centromere Formation, and Genome Editing. Renganathan S, Pramanik S, Ekambaram R, Kutzner A, Kim PS, Heese K. Cancers (Basel) 13 5870 (2021)
  168. Increased human AP endonuclease 1 level confers protection against the paternal age effect in mice. Sanchez JR, Reddick TL, Perez M, Centonze VE, Mitra S, Izumi T, McMahan CA, Walter CA. Mutat Res 779 124-133 (2015)
  169. Structural basis for poor uracil excision from hairpin DNA. An NMR study. Ghosh M, Rumpal N, Varshney U, Chary KV. Eur J Biochem 269 1886-1894 (2002)
  170. A mutant of uracil DNA glycosylase that distinguishes between cytosine and 5-methylcytosine. Kimber ST, Brown T, Fox KR. PLoS One 9 e95394 (2014)
  171. A novel assay to determine the sequence preference and affinity of DNA minor groove binding compounds. Thomas R, Gonzalez C, Roberts C, Botyanszki J, Lou L, Michelotti EF. Nucleic Acids Res 32 e8 (2004)
  172. Base excision repair in a glucocorticoid response element: effect of glucocorticoid receptor binding. Hinz AK, Wang Y, Smerdon MJ. J Biol Chem 285 28683-28690 (2010)
  173. Breaking the Rules: Protein Sculpting in NEIL2 Regulation. Tsutakawa SE, Sarker AH. Structure 29 1-2 (2021)
  174. Computational design of a thermolabile uracil-DNA glycosylase of Escherichia coli. Park S, Shin YK, Yoon JY, Nam KH, Munashingha PR, Park S, Park SY, Kim S, Lee J, Seo MJ, Yu W, Seo YS, Chang I. Biophys J 121 1276-1288 (2022)
  175. Divergent structures of Mammalian and gammaherpesvirus uracil DNA glycosylases confer distinct DNA binding and substrate activity. Mu Y, Zelazowska MA, Chen Z, Plummer JB, Dong Q, Krug LT, McBride KM. DNA Repair (Amst) 128 103515 (2023)
  176. Hypermutation of specific genomic loci of Pseudomonas putida for continuous evolution of target genes. Velázquez E, Álvarez B, Fernández LÁ, de Lorenzo V. Microb Biotechnol 15 2309-2323 (2022)
  177. Use of a molecular beacon based fluorescent method for assaying uracil DNA glycosylase (Ung) activity and inhibitor screening. Mehta A, Raj P, Sundriyal S, Gopal B, Varshney U. Biochem Biophys Rep 26 100954 (2021)
  178. Use of sequence microdivergence in mycobacterial ortholog to analyze contributions of the water-activating loop histidine of Escherichia coli uracil-DNA glycosylase in reactant binding and catalysis. Acharya N, Talawar RK, Purnapatre K, Varshney U. Biochem Biophys Res Commun 320 893-899 (2004)
  179. dCas9 binding inhibits the initiation of base excision repair in vitro. Antony JS, Roberts SA, Wyrick JJ, Hinz JM. DNA Repair (Amst) 109 103257 (2022)
  180. A Conserved Tripeptide Sequence at the C Terminus of the Poxvirus DNA Processivity Factor D4 Is Essential for Protein Integrity and Function. Nuth M, Guan H, Ricciardi RP. J Biol Chem 291 27087-27097 (2016)
  181. Intrinsic Strand-Incision Activity of Human UNG: Implications for Nick Generation in Immunoglobulin Gene Diversification. Alexeeva M, Moen MN, Xu XM, Rasmussen A, Leiros I, Kirpekar F, Klungland A, Alsøe L, Nilsen H, Bjelland S. Front Immunol 12 762032 (2021)
  182. Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins. Kladova OA, Alekseeva IV, Saparbaev M, Fedorova OS, Kuznetsov NA. Int J Mol Sci 21 E7147 (2020)
  183. Somatic Mutations in Oncogenes Are in Chronic Myeloid Leukemia Acquired De Novo via Deregulated Base-Excision Repair and Alternative Non-Homologous End Joining. Curik N, Polivkova V, Burda P, Koblihova J, Laznicka A, Kalina T, Kanderova V, Brezinova J, Ransdorfova S, Karasova D, Rejlova K, Bakardjieva M, Kuzilkova D, Kundrat D, Linhartova J, Klamova H, Salek C, Klener P, Hrusak O, Machova Polakova K. Front Oncol 11 744373 (2021)
  184. Structural explanation for the tunable substrate specificity of an E. coli nucleoside hydrolase: insights from molecular dynamics simulations. Lenz SAP, Wetmore SD. J Comput Aided Mol Des 32 1375-1388 (2018)
  185. Structural snapshots of base excision by the cancer-associated variant MutY N146S reveal a retaining mechanism. Demir M, Russelburg LP, Lin WJ, Trasviña-Arenas CH, Huang B, Yuen PK, Horvath MP, David SS. Nucleic Acids Res 51 1034-1049 (2023)
  186. Structure of uracil-DNA glycosylase from Mycobacterium tuberculosis: insights into interactions with ligands. Kaushal PS, Talawar RK, Varshney U, Vijayan M. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 887-892 (2010)
  187. The effect of sequence context on the activity of cytosine DNA glycosylases. Kimber ST, Brown T, Fox KR. Mol Biosyst 11 3273-3278 (2015)
  188. Universally Accessible Structural Data on Macromolecular Conformation, Assembly, and Dynamics by Small Angle X-Ray Scattering for DNA Repair Insights. Chinnam NB, Syed A, Burnett KH, Hura GL, Tainer JA, Tsutakawa SE. Methods Mol Biol 2444 43-68 (2022)
  189. Uracil-DNA glycosylase efficiency is modulated by substrate rigidity. Orndorff PB, Poddar S, Owens AM, Kumari N, Ugaz BT, Amin S, Van Horn WD, van der Vaart A, Levitus M. Sci Rep 13 3915 (2023)


Related citations provided by authors (1)

  1. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA.. Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA Nature 384 87-92 (1996)