2tma Citations

Construction of an atomic model for tropomyosin and implications for interactions with actin.

J Mol Biol 192 128-31 (1986)
Cited: 35 times
EuropePMC logo PMID: 3820300

Reviews - 2tma mentioned but not cited (1)

Articles - 2tma mentioned but not cited (6)

  1. Protein structure prediction for the male-specific region of the human Y chromosome. Ginalski K, Rychlewski L, Baker D, Grishin NV. Proc Natl Acad Sci U S A 101 2305-2310 (2004)
  2. Persistence length of human cardiac α-tropomyosin measured by single molecule direct probe microscopy. Loong CK, Zhou HX, Chase PB. PLoS ONE 7 e39676 (2012)
  3. Mechanical response and conformational amplification in α-helical coiled coils. Yogurtcu ON, Wolgemuth CW, Sun SX. Biophys. J. 99 3895-3904 (2010)
  4. Major antigen and paramyosin proteins as candidate biomarkers for serodiagnosis of canine infection by zoonotic Onchocerca lupi. Latrofa MS, Palmisano G, Annoscia G, Pierri CL, Chandrashekar R, Otranto D. PLoS Negl Trop Dis 15 e0009027 (2021)
  5. Using the Predicted Structure of the Amot Coiled Coil Homology Domain to Understand Lipid Binding. Peck C, Virtanen P, Johnson D, Kimble-Hill AC. Indiana Univ J Undergrad Res 4 27-46 (2018)
  6. X-ray fiber diffraction modeling of structural changes of the thin filament upon activation of live vertebrate skeletal muscles. Matsuo T, Ueno Y, Takezawa Y, Sugimoto Y, Oda T, Wakabayashi K. Biophysics (Nagoya-shi) 6 13-26 (2010)


Reviews citing this publication (3)

  1. Tropomyosin: double helix from the protein world. Nevzorov IA, Levitsky DI. Biochemistry Mosc. 76 1507-1527 (2011)
  2. Periodicities designed in the tropomyosin sequence and structure define its functions. Barua B. Bioarchitecture 3 51-56 (2013)
  3. Functional outcomes of structural peculiarities of striated muscle tropomyosin. Kopylova GV, Matyushenko AM, Koubassova NA, Shchepkin DV, Bershitsky SY, Levitsky DI, Tsaturyan AK. J Muscle Res Cell Motil 41 55-70 (2020)

Articles citing this publication (25)

  1. The rat alpha-tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth, and nonmuscle isoforms by alternative splicing. Wieczorek DF, Smith CW, Nadal-Ginard B. Mol. Cell. Biol. 8 679-694 (1988)
  2. Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. Greenfield NJ, Huang YJ, Swapna GV, Bhattacharya A, Rapp B, Singh A, Montelione GT, Hitchcock-DeGregori SE. J. Mol. Biol. 364 80-96 (2006)
  3. Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin. Singh A, Hitchcock-DeGregori SE. Structure 14 43-50 (2006)
  4. Actin as the generator of tension during muscle contraction. Schutt CE, Lindberg U. Proc. Natl. Acad. Sci. U.S.A. 89 319-323 (1992)
  5. Structure and interactions of the carboxyl terminus of striated muscle alpha-tropomyosin: it is important to be flexible. Greenfield NJ, Palm T, Hitchcock-DeGregori SE. Biophys. J. 83 2754-2766 (2002)
  6. Criteria for confirming sequence periodicity identified by Fourier transform analysis: application to GCR2, a candidate plant GPCR? Illingworth CJ, Parkes KE, Snell CR, Mullineaux PM, Reynolds CA. Biophys. Chem. 133 28-35 (2008)
  7. Evolutionarily conserved surface residues constitute actin binding sites of tropomyosin. Barua B, Pamula MC, Hitchcock-DeGregori SE. Proc. Natl. Acad. Sci. U.S.A. 108 10150-10155 (2011)
  8. A periodic pattern of evolutionarily conserved basic and acidic residues constitutes the binding interface of actin-tropomyosin. Barua B, Fagnant PM, Winkelmann DA, Trybus KM, Hitchcock-DeGregori SE. J. Biol. Chem. 288 9602-9609 (2013)
  9. Phosphorylation of tropomyosin extends cooperative binding of myosin beyond a single regulatory unit. Rao VS, Marongelli EN, Guilford WH. Cell Motil. Cytoskeleton 66 10-23 (2009)
  10. Integral repeats and a continuous coiled coil are required for binding of striated muscle tropomyosin to the regulated actin filament. Hitchcock-DeGregori SE, An Y. J. Biol. Chem. 271 3600-3603 (1996)
  11. What makes tropomyosin an actin binding protein? A perspective. Hitchcock-DeGregori SE, Singh A. J. Struct. Biol. 170 319-324 (2010)
  12. A peek into tropomyosin binding and unfolding on the actin filament. Singh A, Hitchcock-Degregori SE. PLoS ONE 4 e6336 (2009)
  13. Internal and external paralogy in the evolution of tropomyosin genes in metazoans. Irimia M, Maeso I, Gunning PW, Garcia-Fernàndez J, Roy SW. Mol. Biol. Evol. 27 1504-1517 (2010)
  14. Structure of the N terminus of a nonmuscle alpha-tropomyosin in complex with the C terminus: implications for actin binding. Greenfield NJ, Kotlyanskaya L, Hitchcock-DeGregori SE. Biochemistry 48 1272-1283 (2009)
  15. The role of tropomyosin domains in cooperative activation of the actin-myosin interaction. Oguchi Y, Ishizuka J, Hitchcock-DeGregori SE, Ishiwata S, Kawai M. J. Mol. Biol. 414 667-680 (2011)
  16. Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation. Zheng W, Hitchcock-DeGregori SE, Barua B. J. Muscle Res. Cell. Motil. 37 131-147 (2016)
  17. Cross-helix separation of tropomyosin molecules in acto-tropomyosin as determined by neutron scattering. Bivin DB, Stone DB, Schneider DK, Mendelson RA. Biophys. J. 59 880-888 (1991)
  18. Structural and protein interaction effects of hypertrophic and dilated cardiomyopathic mutations in alpha-tropomyosin. Chang AN, Greenfield NJ, Singh A, Potter JD, Pinto JR. Front Physiol 5 460 (2014)
  19. Tropomyosin period 3 is essential for enhancement of isometric tension in thin filament-reconstituted bovine myocardium. Kawai M, Lu X, Hitchcock-Degregori SE, Stanton KJ, Wandling MW. J Biophys 2009 380967 (2009)
  20. Fluorescence properties of recombinant tropomyosin containing tryptophan, 5-hydroxytryptophan and 7-azatryptophan. Das K, Ashby KD, Smirnov AV, Reinach FC, Petrich JW, Farah CS. Photochem. Photobiol. 70 719-730 (1999)
  21. Different positions of tropomyosin isoforms on actin filament are determined by specific sequences of end-to-end overlaps. Sliwińska M, Zukowska M, Borys D, Moraczewska J. Cytoskeleton (Hoboken) 68 300-312 (2011)
  22. Instability in the central region of tropomyosin modulates the function of its overlapping ends. Mamidi R, Muthuchamy M, Chandra M. Biophys. J. 105 2104-2113 (2013)
  23. Predicting and validating a model of suppressor of IKKepsilon through biophysical characterization. Machek ML, Sonnenschein HA, Graham SI, Shikwana F, Kim SL, Garcia DuBar S, Minzer ID, Wey R, Bell JK. Protein Sci 28 1423-1436 (2019)
  24. Distinct sites in tropomyosin specify shared and isoform-specific regulation of myosins II and V. Barua B, Sckolnick M, White HD, Trybus KM, Hitchcock-DeGregori SE. Cytoskeleton (Hoboken) 75 150-163 (2018)
  25. High-resolution cryo-EM structure of the junction region of the native cardiac thin filament in relaxed state. Risi CM, Belknap B, White HD, Dryden K, Pinto JR, Chase PB, Galkin VE. PNAS Nexus 2 pgac298 (2023)


Related citations provided by authors (2)

  1. Tropomyosin Crystal Structure and Muscle Regulation. Phillipsjunior GN, Fillers JP, Cohen C J. Mol. Biol. 192 111- (1986)
  2. Crystal Structure and Molecular Interactions of Tropomyosin. Phillipsjunior GN, Lattman EE, Cummins P, Lee KY, Cohen C Nature 278 413- (1979)