2trs Citations

Crystal structures of a mutant (betaK87T) tryptophan synthase alpha2beta2 complex with ligands bound to the active sites of the alpha- and beta-subunits reveal ligand-induced conformational changes.

Biochemistry 36 7664-80 (1997)
Related entries: 1ubs, 2tsy, 2tys

Cited: 64 times
EuropePMC logo PMID: 9201907

Abstract

Three-dimensional structures are reported for a mutant (betaK87T) tryptophan synthase alpha2beta2 complex with either the substrate L-serine (betaK87T-Ser) or product L-tryptophan (betaK87T-Trp) at the active site of the beta-subunit, in which both amino acids form external aldimines with the coenzyme, pyridoxal phosphate. We also present structures with L-serine bound to the beta site and either alpha-glycerol 3-phosphate (betaK87T-Ser-GP) or indole-3-propanol phosphate (betaK87T-Ser-IPP) bound to the active site of the alpha-subunit. The results further identify the substrate and product binding sites in each subunit and provide insight into conformational changes that occur upon formation of these complexes. The two structures having ligands at the active sites of both alpha- and beta-subunits reveal an important new feature, the ordering of alpha-subunit loop 6 (residues 179-187). Closure of loop 6 isolates the active site of the alpha-subunit from solvent and results in interaction between alphaThr183 and the catalytic residue alphaAsp60. Other conformational differences between the wild type and these two mutant structures include a rigid-body rotation of the alpha-subunit of approximately 5 degrees relative to the beta-subunit and large movements of part of the beta-subunit (residues 93-189) toward the rest of the beta-subunit. Much smaller differences are observed in the betaK87T-Ser structure. Remarkably, binding of tryptophan to the beta active site results in conformational changes very similar to those observed in the betaK87T-Ser-GP and betaK87T-Ser-IPP structures, with exception of the disordered alpha-subunit loop 6. These large-scale changes, the closure of loop 6, and the movements of a small number of side chains in the alpha-beta interaction site provide a structural base for interpreting the allosteric properties of tryptophan synthase.

Articles - 2trs mentioned but not cited (1)

  1. Tryptophan synthase: structure and function of the monovalent cation site. Dierkers AT, Niks D, Schlichting I, Dunn MF. Biochemistry 48 10997-11010 (2009)


Reviews citing this publication (12)

  1. Structure, evolution and action of vitamin B6-dependent enzymes. Jansonius JN. Curr Opin Struct Biol 8 759-769 (1998)
  2. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Huang X, Holden HM, Raushel FM. Annu Rev Biochem 70 149-180 (2001)
  3. The manifold of vitamin B6 dependent enzymes. Schneider G, Käck H, Lindqvist Y. Structure 8 R1-6 (2000)
  4. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. Microbiol Mol Biol Rev 71 576-599 (2007)
  5. Tryptophan synthase: the workings of a channeling nanomachine. Dunn MF, Niks D, Ngo H, Barends TR, Schlichting I. Trends Biochem Sci 33 254-264 (2008)
  6. Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex. Dunn MF. Arch Biochem Biophys 519 154-166 (2012)
  7. Materials-based strategies for multi-enzyme immobilization and co-localization: A review. Jia F, Narasimhan B, Mallapragada S. Biotechnol Bioeng 111 209-222 (2014)
  8. Tryptophan synthase: a mine for enzymologists. Raboni S, Bettati S, Mozzarelli A. Cell Mol Life Sci 66 2391-2403 (2009)
  9. Tryptophan synthase: a multienzyme complex with an intramolecular tunnel. Miles EW. Chem Rec 1 140-151 (2001)
  10. Glutamine PRPP amidotransferase: snapshots of an enzyme in action. Smith JL. Curr Opin Struct Biol 8 686-694 (1998)
  11. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Ghosh RK, Hilario E, Chang CA, Mueller LJ, Dunn MF. Front Mol Biosci 9 923042 (2022)
  12. Metabolic channeling: predictions, deductions, and evidence. Pareek V, Sha Z, He J, Wingreen NS, Benkovic SJ. Mol Cell 81 3775-3785 (2021)

Articles citing this publication (51)

  1. Homology among (betaalpha)(8) barrels: implications for the evolution of metabolic pathways. Copley RR, Bork P. J Mol Biol 303 627-641 (2000)
  2. Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Gallagher DT, Gilliland GL, Xiao G, Zondlo J, Fisher KE, Chinchilla D, Eisenstein E. Structure 6 465-475 (1998)
  3. Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. Burkhard P, Rao GS, Hohenester E, Schnackerz KD, Cook PF, Jansonius JN. J Mol Biol 283 121-133 (1998)
  4. Ligand binding induces a large conformational change in O-acetylserine sulfhydrylase from Salmonella typhimurium. Burkhard P, Tai CH, Ristroph CM, Cook PF, Jansonius JN. J Mol Biol 291 941-953 (1999)
  5. The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications. Knöchel T, Ivens A, Hester G, Gonzalez A, Bauerle R, Wilmanns M, Kirschner K, Jansonius JN. Proc Natl Acad Sci U S A 96 9479-9484 (1999)
  6. Crystal structure of D-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate D-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes. Kim K, Kim HJ, Oh DK, Cha SS, Rhee S. J Mol Biol 361 920-931 (2006)
  7. Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe. Goto M, Yamauchi T, Kamiya N, Miyahara I, Yoshimura T, Mihara H, Kurihara T, Hirotsu K, Esaki N. J Biol Chem 284 25944-25952 (2009)
  8. Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein. Wu Y, Kondrashkina E, Kayatekin C, Matthews CR, Bilsel O. Proc Natl Acad Sci U S A 105 13367-13372 (2008)
  9. Crystal structure of human ornithine aminotransferase complexed with the highly specific and potent inhibitor 5-fluoromethylornithine. Storici P, Capitani G, Müller R, Schirmer T, Jansonius JN. J Mol Biol 285 297-309 (1999)
  10. On the role of alphaThr183 in the allosteric regulation and catalytic mechanism of tryptophan synthase. Kulik V, Weyand M, Seidel R, Niks D, Arac D, Dunn MF, Schlichting I. J Mol Biol 324 677-690 (2002)
  11. Structure and mechanistic implications of a tryptophan synthase quinonoid intermediate. Barends TR, Domratcheva T, Kulik V, Blumenstein L, Niks D, Dunn MF, Schlichting I. Chembiochem 9 1024-1028 (2008)
  12. Exploring the pyridoxal 5'-phosphate-dependent enzymes. Mozzarelli A, Bettati S. Chem Rec 6 275-287 (2006)
  13. Induced fit in arginine kinase. Zhou G, Ellington WR, Chapman MS. Biophys J 78 1541-1550 (2000)
  14. Allostery and substrate channeling in the tryptophan synthase bienzyme complex: evidence for two subunit conformations and four quaternary states. Niks D, Hilario E, Dierkers A, Ngo H, Borchardt D, Neubauer TJ, Fan L, Mueller LJ, Dunn MF. Biochemistry 52 6396-6411 (2013)
  15. On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes. Kulik V, Hartmann E, Weyand M, Frey M, Gierl A, Niks D, Dunn MF, Schlichting I. J Mol Biol 352 608-620 (2005)
  16. Tryptophan synthase, an allosteric molecular factory. Barends TR, Dunn MF, Schlichting I. Curr Opin Chem Biol 12 593-600 (2008)
  17. Directed Evolution Mimics Allosteric Activation by Stepwise Tuning of the Conformational Ensemble. Buller AR, van Roye P, Cahn JKB, Scheele RA, Herger M, Arnold FH. J Am Chem Soc 140 7256-7266 (2018)
  18. Long-range interactions in the α subunit of tryptophan synthase help to coordinate ligand binding, catalysis, and substrate channeling. Axe JM, Boehr DD. J Mol Biol 425 1527-1545 (2013)
  19. The importance of hinge sequence for loop function and catalytic activity in the reaction catalyzed by triosephosphate isomerase. Xiang J, Sun J, Sampson NS. J Mol Biol 307 1103-1112 (2001)
  20. Structure and function of threonine synthase from yeast. Garrido-Franco M, Ehlert S, Messerschmidt A, Marinkovic' S, Huber R, Laber B, Bourenkov GP, Clausen T. J Biol Chem 277 12396-12405 (2002)
  21. Allosteric communication of tryptophan synthase. Functional and regulatory properties of the beta S178P mutant. Marabotti A, De Biase D, Tramonti A, Bettati S, Mozzarelli A. J Biol Chem 276 17747-17753 (2001)
  22. Confinement and crowding effects on tryptophan synthase alpha2beta2 complex. Pioselli B, Bettati S, Mozzarelli A. FEBS Lett 579 2197-2202 (2005)
  23. Conformational selection in silico: loop latching motions and ligand binding in enzymes. Wong S, Jacobson MP. Proteins 71 153-164 (2008)
  24. Identification of the geometric requirements for allosteric communication between the alpha- and beta-subunits of tryptophan synthase. Raboni S, Bettati S, Mozzarelli A. J Biol Chem 280 13450-13456 (2005)
  25. Significance of two distinct types of tryptophan synthase beta chain in Bacteria, Archaea and higher plants. Xie G, Forst C, Bonner C, Jensen RA. Genome Biol 3 RESEARCH0004 (2002)
  26. Reaction intermediate structures of 1-aminocyclopropane-1-carboxylate deaminase: insight into PLP-dependent cyclopropane ring-opening reaction. Ose T, Fujino A, Yao M, Watanabe N, Honma M, Tanaka I. J Biol Chem 278 41069-41076 (2003)
  27. The structure of lombricine kinase: implications for phosphagen kinase conformational changes. Bush DJ, Kirillova O, Clark SA, Davulcu O, Fabiola F, Xie Q, Somasundaram T, Ellington WR, Chapman MS. J Biol Chem 286 9338-9350 (2011)
  28. Mechanism of substrate recognition and PLP-induced conformational changes in LL-diaminopimelate aminotransferase from Arabidopsis thaliana. Watanabe N, Clay MD, van Belkum MJ, Cherney MM, Vederas JC, James MN. J Mol Biol 384 1314-1329 (2008)
  29. Detection of open and closed conformations of tryptophan synthase by 15N-heteronuclear single-quantum coherence nuclear magnetic resonance of bound 1-15N-L-tryptophan. Osborne A, Teng Q, Miles EW, Phillips RS. J Biol Chem 278 44083-44090 (2003)
  30. Structural analysis of ligand binding and catalysis in chorismate lyase. Smith N, Roitberg AE, Rivera E, Howard A, Holden MJ, Mayhew M, Kaistha S, Gallagher DT. Arch Biochem Biophys 445 72-80 (2006)
  31. Characterization of the putative tryptophan synthase beta-subunit from Mycobacterium tuberculosis. Shen H, Yang Y, Wang F, Zhang Y, Ye N, Xu S, Wang H. Acta Biochim Biophys Sin (Shanghai) 41 379-388 (2009)
  32. The tryptophan synthase α2β2 complex: a model for substrate channeling, allosteric communication, and pyridoxal phosphate catalysis. Miles EW. J Biol Chem 288 10084-10091 (2013)
  33. Catalytic competence of O-acetylserine sulfhydrylase in the crystal probed by polarized absorption microspectrophotometry. Mozzarelli A, Bettati S, Pucci AM, Burkhard P, Cook PF. J Mol Biol 283 135-146 (1998)
  34. Quantitative effects of allosteric ligands and mutations on conformational equilibria in Salmonella typhimurium tryptophan synthase. Phillips RS, McPhie P, Miles EW, Marchal S, Lange R. Arch Biochem Biophys 470 8-19 (2008)
  35. Structural, biochemical, and in vivo investigations of the threonine synthase from Mycobacterium tuberculosis. Covarrubias AS, Högbom M, Bergfors T, Carroll P, Mannerstedt K, Oscarson S, Parish T, Jones TA, Mowbray SL. J Mol Biol 381 622-633 (2008)
  36. Switches of hydrogen bonds during ligand-protein association processes determine binding kinetics. Huang YM, Kang M, Chang CE. J Mol Recognit 27 537-548 (2014)
  37. The crystal structure of the tryptophan synthase beta subunit from the hyperthermophile Pyrococcus furiosus. Investigation of stabilization factors. Hioki Y, Ogasahara K, Lee SJ, Ma J, Ishida M, Yamagata Y, Matsuura Y, Ota M, Ikeguchi M, Kuramitsu S, Yutani K. Eur J Biochem 271 2624-2635 (2004)
  38. Plasticity of the tryptophan synthase active site probed by 31P NMR spectroscopy. Schnackerz KD, Mozzarelli A. J Biol Chem 273 33247-33253 (1998)
  39. Large conformational changes in the Escherichia coli tryptophan synthase beta(2) subunit upon pyridoxal 5'-phosphate binding. Nishio K, Ogasahara K, Morimoto Y, Tsukihara T, Lee SJ, Yutani K. FEBS J 277 2157-2170 (2010)
  40. Catalytic roles of βLys87 in tryptophan synthase: (15)N solid state NMR studies. Caulkins BG, Yang C, Hilario E, Fan L, Dunn MF, Mueller LJ. Biochim Biophys Acta 1854 1194-1199 (2015)
  41. Protonation states and catalysis: Molecular dynamics studies of intermediates in tryptophan synthase. Huang YM, You W, Caulkins BG, Dunn MF, Mueller LJ, Chang CE. Protein Sci 25 166-183 (2016)
  42. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[(2)H]indole. Cash MT, Miles EW, Phillips RS. Arch Biochem Biophys 432 233-243 (2004)
  43. Holo- and apo-cystalysin from Treponema denticola: two different conformations. Cellini B, Montioli R, Bossi A, Bertoldi M, Laurents DV, Voltattorni CB. Arch Biochem Biophys 455 31-39 (2006)
  44. Mutational scanning of a hairpin loop in the tryptophan synthase beta-subunit implicated in allostery and substrate channeling. Rondard P, Bedouelle H. Biol Chem 381 1185-1193 (2000)
  45. Putative implication of alpha-amylase loop 7 in the mechanism of substrate binding and reaction products release. André G, Tran V. Biopolymers 75 95-108 (2004)
  46. Catalytically impaired TrpA subunit of tryptophan synthase from Chlamydia trachomatis is an allosteric regulator of TrpB. Michalska K, Wellington S, Maltseva N, Jedrzejczak R, Selem-Mojica N, Rosas-Becerra LR, Barona-Gómez F, Hung DT, Joachimiak A. Protein Sci 30 1904-1918 (2021)
  47. Effects of hydrostatic pressure on the conformational equilibrium of tryptophan synthase from Salmonella typhimurium. Phillips RS, Miles EW, McPhie P, Marchal S, Lange R, Holtermann G, Goody RS. Ann N Y Acad Sci 1189 95-103 (2010)
  48. Engineered Biocatalytic Synthesis of β-N-Substituted-α-Amino Acids. Villalona J, Higgins PM, Buller AR. Angew Chem Int Ed Engl 62 e202311189 (2023)
  49. Engineered Tryptophan Synthase Balances Equilibrium Effects and Fast Dynamic Effects. Schafer JW, Chen X, Schwartz SD. ACS Catal 12 913-922 (2022)
  50. PCR Mutagenesis, Cloning, Expression, Fast Protein Purification Protocols and Crystallization of the Wild Type and Mutant Forms of Tryptophan Synthase. Hilario E, Fan L, Mueller LJ, Dunn MF. J Vis Exp (2020)
  51. Towards Photochromic Azobenzene-Based Inhibitors for Tryptophan Synthase. Simeth NA, Kinateder T, Rajendran C, Nazet J, Merkl R, Sterner R, König B, Kneuttinger AC. Chemistry 27 2439-2451 (2021)


Related citations provided by authors (1)