2voh Citations

Structural plasticity underpins promiscuous binding of the prosurvival protein A1.

Structure 16 818-29 (2008)
Related entries: 2vof, 2vog, 2voi

Cited: 72 times
EuropePMC logo PMID: 18462686

Abstract

Apoptotic pathways are regulated by protein-protein interactions. Interaction of the BH3 domains of proapoptotic Bcl-2 family proteins with the hydrophobic groove of prosurvival proteins is critical. Whereas some BH3 domains bind in a promiscuous manner, others exhibit considerable selectivity and the sequence characteristics that distinguish these activities are unclear. In this study, crystal structures of complexes between the prosurvival protein A1 and the BH3 domains from Puma, Bmf, Bak, and Bid have been solved. The structure of A1 is similar to that of other prosurvival proteins, although features, such as an acidic patch in the binding groove, may allow specific therapeutic modulation of apoptosis. Significant conformational plasticity was observed in the intermolecular interactions and these differences explain some of the variation in affinity. This study, in combination with published data, suggests that interactions between conserved residues demarcate optimal binding.

Reviews - 2voh mentioned but not cited (2)

  1. The BCL-2 family reunion. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. Mol Cell 37 299-310 (2010)
  2. The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. Luna-Vargas MP, Chipuk JE. FEBS J 283 2676-2689 (2016)

Articles - 2voh mentioned but not cited (4)

  1. Epistatic mutations in PUMA BH3 drive an alternate binding mode to potently and selectively inhibit anti-apoptotic Bfl-1. Jenson JM, Ryan JA, Grant RA, Letai A, Keating AE. Elife 6 e25541 (2017)
  2. Locating Herpesvirus Bcl-2 Homologs in the Specificity Landscape of Anti-Apoptotic Bcl-2 Proteins. Foight GW, Keating AE. J Mol Biol 427 2468-2490 (2015)
  3. Characterizing the consensus residue specificity and surface of BCL-2 binding to BH3 ligands using the Knob-Socket model. Yi J, Kellner V, Joo H, Chien N, Patel S, Chaban Z, Tsai J. PLoS One 18 e0281463 (2023)
  4. Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide-Mcl1 Complexes. Marimuthu P, Razzokov J, Singaravelu K, Bogaerts A. Biomolecules 10 E1114 (2020)


Reviews citing this publication (20)

  1. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Czabotar PE, Lessene G, Strasser A, Adams JM. Nat Rev Mol Cell Biol 15 49-63 (2014)
  2. BCL-2 family antagonists for cancer therapy. Lessene G, Czabotar PE, Colman PM. Nat Rev Drug Discov 7 989-1000 (2008)
  3. PUMA, a potent killer with or without p53. Yu J, Zhang L. Oncogene 27 Suppl 1 S71-83 (2008)
  4. Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Westphal D, Kluck RM, Dewson G. Cell Death Differ 21 196-205 (2014)
  5. BH3-only proteins: Orchestrators of apoptosis. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. Biochim Biophys Acta 1813 508-520 (2011)
  6. BCL2A1: the underdog in the BCL2 family. Vogler M. Cell Death Differ 19 67-74 (2012)
  7. Bid: a Bax-like BH3 protein. Billen LP, Shamas-Din A, Andrews DW. Oncogene 27 Suppl 1 S93-104 (2008)
  8. Decoding and unlocking the BCL-2 dependency of cancer cells. Juin P, Geneste O, Gautier F, Depil S, Campone M. Nat Rev Cancer 13 455-465 (2013)
  9. Protein binding specificity versus promiscuity. Schreiber G, Keating AE. Curr Opin Struct Biol 21 50-61 (2011)
  10. Structural biology of the Bcl-2 family and its mimicry by viral proteins. Kvansakul M, Hinds MG. Cell Death Dis 4 e909 (2013)
  11. α-Helix mimetics: outwards and upwards. Jayatunga MK, Thompson S, Hamilton AD. Bioorg Med Chem Lett 24 717-724 (2014)
  12. The Bcl-2 Family in Host-Virus Interactions. Kvansakul M, Caria S, Hinds MG. Viruses 9 E290 (2017)
  13. Intrinsically disordered proteins in bcl-2 regulated apoptosis. Rautureau GJ, Day CL, Hinds MG. Int J Mol Sci 11 1808-1824 (2010)
  14. The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Banjara S, Suraweera CD, Hinds MG, Kvansakul M. Biomolecules 10 E128 (2020)
  15. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Fitzsimmons L, Kelly GL. Viruses 9 E339 (2017)
  16. A1/Bfl-1 in leukocyte development and cell death. Ottina E, Tischner D, Herold MJ, Villunger A. Exp Cell Res 318 1291-1303 (2012)
  17. Survey of the year 2008: applications of isothermal titration calorimetry. Falconer RJ, Penkova A, Jelesarov I, Collins BM. J Mol Recognit 23 395-413 (2010)
  18. Co-Operativity between MYC and BCL-2 Pro-Survival Proteins in Cancer. Fairlie WD, Lee EF. Int J Mol Sci 22 2841 (2021)
  19. Structural biology of the intrinsic cell death pathway: what do we know and what is missing? Lee EF, Fairlie WD. Comput Struct Biotechnol J 1 e201204007 (2012)
  20. Death on the slopes. Symposium on Cell Death Pathways. McPhee CK, Hill JH, Enoksson M. EMBO Rep 10 827-831 (2009)

Articles citing this publication (46)

  1. Structure-guided design of a selective BCL-X(L) inhibitor. Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, Baell JB, Colman PM, Deshayes K, Fairbrother WJ, Flygare JA, Gibbons P, Kersten WJ, Kulasegaram S, Moss RM, Parisot JP, Smith BJ, Street IP, Yang H, Huang DC, Watson KG. Nat Chem Biol 9 390-397 (2013)
  2. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Ku B, Liang C, Jung JU, Oh BH. Cell Res 21 627-641 (2011)
  3. Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG. J Mol Biol 380 958-971 (2008)
  4. Evaluation of diverse α/β-backbone patterns for functional α-helix mimicry: analogues of the Bim BH3 domain. Boersma MD, Haase HS, Peterson-Kaufman KJ, Lee EF, Clarke OB, Colman PM, Smith BJ, Horne WS, Fairlie WD, Gellman SH. J Am Chem Soc 134 315-323 (2012)
  5. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Follis AV, Chipuk JE, Fisher JC, Yun MK, Grace CR, Nourse A, Baran K, Ou L, Min L, White SW, Green DR, Kriwacki RW. Nat Chem Biol 9 163-168 (2013)
  6. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. Dutta S, Gullá S, Chen TS, Fire E, Grant RA, Keating AE. J Mol Biol 398 747-762 (2010)
  7. Inhibition of Bak activation by VDAC2 is dependent on the Bak transmembrane anchor. Lazarou M, Stojanovski D, Frazier AE, Kotevski A, Dewson G, Craigen WJ, Kluck RM, Vaux DL, Ryan MT. J Biol Chem 285 36876-36883 (2010)
  8. Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, Colman PM, Smith BJ, Fairlie WD. J Biol Chem 284 30508-30517 (2009)
  9. Mitogen-activated protein kinase inhibition induces translocation of Bmf to promote apoptosis in melanoma. VanBrocklin MW, Verhaegen M, Soengas MS, Holmen SL. Cancer Res 69 1985-1994 (2009)
  10. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells. Checco JW, Lee EF, Evangelista M, Sleebs NJ, Rogers K, Pettikiriarachchi A, Kershaw NJ, Eddinger GA, Belair DG, Wilson JL, Eller CH, Raines RT, Murphy WL, Smith BJ, Gellman SH, Fairlie WD. J Am Chem Soc 137 11365-11375 (2015)
  11. Multimodal interaction with BCL-2 family proteins underlies the proapoptotic activity of PUMA BH3. Edwards AL, Gavathiotis E, LaBelle JL, Braun CR, Opoku-Nsiah KA, Bird GH, Walensky LD. Chem Biol 20 888-902 (2013)
  12. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Fire E, Gullá SV, Grant RA, Keating AE. Protein Sci 19 507-519 (2010)
  13. Structural Insight into African Swine Fever Virus A179L-Mediated Inhibition of Apoptosis. Banjara S, Caria S, Dixon LK, Hinds MG, Kvansakul M. J Virol 91 e02228-16 (2017)
  14. Bcl-2 and Bax interact via the BH1-3 groove-BH3 motif interface and a novel interface involving the BH4 motif. Ding J, Zhang Z, Roberts GJ, Falcone M, Miao Y, Shao Y, Zhang XC, Andrews DW, Lin J. J Biol Chem 285 28749-28763 (2010)
  15. 3-Substituted-N-(4-hydroxynaphthalen-1-yl)arylsulfonamides as a novel class of selective Mcl-1 inhibitors: structure-based design, synthesis, SAR, and biological evaluation. Abulwerdi FA, Liao C, Mady AS, Gavin J, Shen C, Cierpicki T, Stuckey JA, Showalter HD, Nikolovska-Coleska Z. J Med Chem 57 4111-4133 (2014)
  16. Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes. Lee EF, Clarke OB, Evangelista M, Feng Z, Speed TP, Tchoubrieva EB, Strasser A, Kalinna BH, Colman PM, Fairlie WD. Proc Natl Acad Sci U S A 108 6999-7003 (2011)
  17. Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Mustata G, Li M, Zevola N, Bakan A, Zhang L, Epperly M, Greenberger JS, Yu J, Bahar I. Curr Top Med Chem 11 281-290 (2011)
  18. Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM. PLoS One 7 e31510 (2012)
  19. Predictive Bcl-2 family binding models rooted in experiment or structure. DeBartolo J, Dutta S, Reich L, Keating AE. J Mol Biol 422 124-144 (2012)
  20. Structural basis of Bcl-xL recognition by a BH3-mimetic α/β-peptide generated by sequence-based design. Lee EF, Smith BJ, Horne WS, Mayer KN, Evangelista M, Colman PM, Gellman SH, Fairlie WD. Chembiochem 12 2025-2032 (2011)
  21. Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization. Pang YP, Dai H, Smith A, Meng XW, Schneider PA, Kaufmann SH. Sci Rep 2 257 (2012)
  22. Peptide ligands for pro-survival protein Bfl-1 from computationally guided library screening. Dutta S, Chen TS, Keating AE. ACS Chem Biol 8 778-788 (2013)
  23. Molecular interactions of prodiginines with the BH3 domain of anti-apoptotic Bcl-2 family members. Hosseini A, Espona-Fiedler M, Soto-Cerrato V, Quesada R, Pérez-Tomás R, Guallar V. PLoS One 8 e57562 (2013)
  24. The functional differences between pro-survival and pro-apoptotic B cell lymphoma 2 (Bcl-2) proteins depend on structural differences in their Bcl-2 homology 3 (BH3) domains. Lee EF, Dewson G, Evangelista M, Pettikiriarachchi A, Gold GJ, Zhu H, Colman PM, Fairlie WD. J Biol Chem 289 36001-36017 (2014)
  25. The structure of Boo/Diva reveals a divergent Bcl-2 protein. Rautureau GJ, Day CL, Hinds MG. Proteins 78 2181-2186 (2010)
  26. FCA does not bind abscisic acid. Risk JM, Macknight RC, Day CL. Nature 456 E5-6 (2008)
  27. Folding and binding pathways of BH3-only proteins are encoded within their intrinsically disordered sequence, not templated by partner proteins. Crabtree MD, Mendonça CATF, Bubb QR, Clarke J. J Biol Chem 293 9718-9723 (2018)
  28. Structural basis of apoptosis inhibition by the fowlpox virus protein FPV039. Anasir MI, Caria S, Skinner MA, Kvansakul M. J Biol Chem 292 9010-9021 (2017)
  29. Bh3 induced conformational changes in Bcl-Xl revealed by crystal structure and comparative analysis. Rajan S, Choi M, Baek K, Yoon HS. Proteins 83 1262-1272 (2015)
  30. Regulation of antiapoptotic MCL-1 function by gossypol: mechanistic insights from in vitro reconstituted systems. Etxebarria A, Landeta O, Antonsson B, Basañez G. Biochem Pharmacol 76 1563-1576 (2008)
  31. Letter Characterisation of a novel A1-specific monoclonal antibody. Lang MJ, Brennan MS, O'Reilly LA, Ottina E, Czabotar PE, Whitlock E, Fairlie WD, Tai L, Strasser A, Herold MJ. Cell Death Dis 5 e1553 (2014)
  32. Structural and Functional Insight into Canarypox Virus CNP058 Mediated Regulation of Apoptosis. Anasir MI, Baxter AA, Poon IKH, Hulett MD, Kvansakul M. Viruses 9 E305 (2017)
  33. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent. Modi V, Lama D, Sankararamakrishnan R. J Biomol Struct Dyn 31 65-77 (2013)
  34. miR-29b affects neurocyte apoptosis by targeting MCL-1 during cerebral ischemia/reperfusion injury. Huang Z, Lu L, Jiang T, Zhang S, Shen Y, Zheng Z, Zhao A, Gao R, Li R, Zhou S, Liu J. Exp Ther Med 16 3399-3404 (2018)
  35. Bcl2-A1 interacts with pro-caspase-3: implications for amyotrophic lateral sclerosis. Iaccarino C, Mura ME, Esposito S, Carta F, Sanna G, Turrini F, Carrì MT, Crosio C. Neurobiol Dis 43 642-650 (2011)
  36. A structural investigation of NRZ mediated apoptosis regulation in zebrafish. Suraweera CD, Caria S, Järvå M, Hinds MG, Kvansakul M. Cell Death Dis 9 967 (2018)
  37. A study of the structural properties and thermal stability of human Bcl-2 by molecular dynamics simulations. Ilizaliturri-Flores I, Correa-Basurto J, Benítez-Cardoza CG, Zamorano-Carrillo A. J Biomol Struct Dyn 32 1707-1719 (2014)
  38. Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations. Lama D, Modi V, Sankararamakrishnan R. PLoS One 8 e54397 (2013)
  39. Antiapoptotic Bcl-2 homolog CED-9 in Caenorhabditis elegans: dynamics of BH3 and CED-4 binding regions and comparison with mammalian antiapoptotic Bcl-2 proteins. Modi V, Sankararamakrishnan R. Proteins 82 1035-1047 (2014)
  40. Nuclear magnetic resonance study of protein-protein interactions involving apoptosis regulator Diva (Boo) and the BH3 domain of proapoptotic Bcl-2 members. Santiveri CM, Sborgi L, de Alba E. J Mol Recognit 25 665-673 (2012)
  41. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold. Ivanov SM, Cawley A, Huber RG, Bond PJ, Warwicker J. PLoS One 12 e0185928 (2017)
  42. Binding affinity of pro-apoptotic BH3 peptides for the anti-apoptotic Mcl-1 and A1 proteins: Molecular dynamics simulations of Mcl-1 and A1 in complex with six different BH3 peptides. Modi V, Sankararamakrishnan R. J Mol Graph Model 73 115-128 (2017)
  43. Bcl-2 family interactome analysis using bacterial surface display. Zhang S, Link AJ. Integr Biol (Camb) 3 823-831 (2011)
  44. Binding modes of Bcl-2 homology 3 (BH3) peptides with anti-apoptotic protein A1 and redesign of peptide inhibitors: a computational study. Chen Y, Wang J, Zhang J, Wang W. J Biomol Struct Dyn 36 3967-3977 (2018)
  45. [Physiological Function and Structural Basis of Bcl-2 Family Proteins]. 健愉 冯, 玉山 朱, 陈 权, 凌 林, Jianyu F, Yushan Z, Quan C, Jialing L. Zhongguo Xi Bao Sheng Wu Xue Xue Bao 41 1477-1489 (2019)
  46. Structural basis for proapoptotic activation of Bak by the noncanonical BH3-only protein Pxt1. Lim D, Choe SH, Jin S, Lee S, Kim Y, Shin HC, Choi JS, Oh DB, Kim SJ, Seo J, Ku B. PLoS Biol 21 e3002156 (2023)