2vr3 Citations

A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics.

Abstract

The fibrinogen (Fg) binding MSCRAMM Clumping factor A (ClfA) from Staphylococcus aureus interacts with the C-terminal region of the fibrinogen (Fg) gamma-chain. ClfA is the major virulence factor responsible for the observed clumping of S. aureus in blood plasma and has been implicated as a virulence factor in a mouse model of septic arthritis and in rabbit and rat models of infective endocarditis. We report here a high-resolution crystal structure of the ClfA ligand binding segment in complex with a synthetic peptide mimicking the binding site in Fg. The residues in Fg required for binding to ClfA are identified from this structure and from complementing biochemical studies. Furthermore, the platelet integrin alpha(IIb)beta(3) and ClfA bind to the same segment in the Fg gamma-chain but the two cellular binding proteins recognize different residues in the common targeted Fg segment. Based on these differences, we have identified peptides that selectively antagonize the ClfA-Fg interaction. The ClfA-Fg binding mechanism is a variant of the "Dock, Lock and Latch" mechanism previously described for the Staphylococcus epidermidis SdrG-Fg interaction. The structural insights gained from analyzing the ClfANFg peptide complex and identifications of peptides that selectively recognize ClfA but not alpha(IIb)beta(3) may allow the design of novel anti-staphylococcal agents. Our results also suggest that different MSCRAMMs with similar structural organization may have originated from a common ancestor but have evolved to accommodate specific ligand structures.

Reviews - 2vr3 mentioned but not cited (2)

  1. Structural biology of Gram-positive bacterial adhesins. Vengadesan K, Narayana SV. Protein Sci 20 759-772 (2011)
  2. Interactions in bacterial biofilm development: a structural perspective. Garnett JA, Matthews S. Curr Protein Pept Sci 13 739-755 (2012)

Articles - 2vr3 mentioned but not cited (8)

  1. A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. Ganesh VK, Rivera JJ, Smeds E, Ko YP, Bowden MG, Wann ER, Gurusiddappa S, Fitzgerald JR, Höök M. PLoS Pathog 4 e1000226 (2008)
  2. Benchmarking of different molecular docking methods for protein-peptide docking. Agrawal P, Singh H, Srivastava HK, Singh S, Kishore G, Raghava GPS. BMC Bioinformatics 19 426 (2019)
  3. Evidence for steric regulation of fibrinogen binding to Staphylococcus aureus fibronectin-binding protein A (FnBPA). Stemberk V, Jones RP, Moroz O, Atkin KE, Edwards AM, Turkenburg JP, Leech AP, Massey RC, Potts JR. J Biol Chem 289 12842-12851 (2014)
  4. Lessons from the Crystal Structure of the S. aureus Surface Protein Clumping Factor A in Complex With Tefibazumab, an Inhibiting Monoclonal Antibody. Ganesh VK, Liang X, Geoghegan JA, Cohen ALV, Venugopalan N, Foster TJ, Hook M. EBioMedicine 13 328-338 (2016)
  5. Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins. Devaurs D, Antunes DA, Hall-Swan S, Mitchell N, Moll M, Lizée G, Kavraki LE. BMC Mol Cell Biol 20 42 (2019)
  6. Antagonistic control of Caenorhabditis elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2. Wang X, Ellenbecker M, Hickey B, Day NJ, Osterli E, Terzo M, Voronina E. Elife 9 e52788 (2020)
  7. Mechanical Stabilization of a Bacterial Adhesion Complex. Huang W, Le S, Sun Y, Lin DJ, Yao M, Shi Y, Yan J. J Am Chem Soc 144 16808-16818 (2022)
  8. Allantodapsone is a Pan-Inhibitor of Staphylococcus aureus Adhesion to Fibrinogen, Loricrin, and Cytokeratin 10. Prencipe F, Alsibaee A, Khaddem Z, Norton P, Towell AM, Ali AFM, Reid G, Fleury OM, Foster TJ, Geoghegan JA, Rozas I, Brennan MP. Microbiol Spectr 10 e0117521 (2022)


Reviews citing this publication (23)

  1. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Nat Rev Microbiol 12 49-62 (2014)
  2. Bacterial adhesins in host-microbe interactions. Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B. Cell Host Microbe 5 580-592 (2009)
  3. Staphylococcal manipulation of host immune responses. Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Nat Rev Microbiol 13 529-543 (2015)
  4. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. Paharik AE, Horswill AR. Microbiol Spectr 4 (2016)
  5. Pathogenesis of Staphylococcus aureus Bloodstream Infections. Thomer L, Schneewind O, Missiakas D. Annu Rev Pathol 11 343-364 (2016)
  6. Mouse models for infectious diseases caused by Staphylococcus aureus. Kim HK, Missiakas D, Schneewind O. J Immunol Methods 410 88-99 (2014)
  7. Structural and functional role of Staphylococcus aureus surface components recognizing adhesive matrix molecules of the host. Speziale P, Pietrocola G, Rindi S, Provenzano M, Provenza G, Di Poto A, Visai L, Arciola CR. Future Microbiol 4 1337-1352 (2009)
  8. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions. Crosby HA, Kwiecinski J, Horswill AR. Adv Appl Microbiol 96 1-41 (2016)
  9. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus. Foster TJ. Eur J Clin Microbiol Infect Dis 35 1923-1931 (2016)
  10. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Speziale P, Pietrocola G. Front Microbiol 11 2054 (2020)
  11. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Ko YP, Flick MJ. Semin Thromb Hemost 42 408-421 (2016)
  12. Adhesins of Yeasts: Protein Structure and Interactions. Willaert RG. J Fungi (Basel) 4 E119 (2018)
  13. Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee. Getzlaf MA, Lewallen EA, Kremers HM, Jones DL, Bonin CA, Dudakovic A, Thaler R, Cohen RC, Lewallen DG, van Wijnen AJ. J Orthop Res 34 177-186 (2016)
  14. Polyproline and triple helix motifs in host-pathogen recognition. Berisio R, Vitagliano L. Curr Protein Pept Sci 13 855-865 (2012)
  15. Exploring Staphylococcus aureus pathways to disease for vaccine development. DeDent A, Kim HK, Missiakas D, Schneewind O. Semin Immunopathol 34 317-333 (2012)
  16. Fatal attraction: how bacterial adhesins affect host signaling and what we can learn from them. Stones DH, Krachler AM. Int J Mol Sci 16 2626-2640 (2015)
  17. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Chahales P, Thanassi DG. Microbiol Spectr 3 (2015)
  18. Staphylococcal Biofilms in Atopic Dermatitis. Gonzalez T, Biagini Myers JM, Herr AB, Khurana Hershey GK. Curr Allergy Asthma Rep 17 81 (2017)
  19. Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Pietrocola G, Campoccia D, Motta C, Montanaro L, Arciola CR, Speziale P. Int J Mol Sci 23 5958 (2022)
  20. Targeting fundamental pathways to disrupt Staphylococcus aureus survival: clinical implications of recent discoveries. Thomsen IP, Liu GY. JCI Insight 3 98216 (2018)
  21. Staphylococcal Vaccine Antigens related to biofilm formation. Mirzaei B, Babaei R, Valinejad S. Hum Vaccin Immunother 17 293-303 (2021)
  22. Monoclonal Antibodies Targeting Surface-Exposed and Secreted Proteins from Staphylococci. Speziale P, Pietrocola G. Vaccines (Basel) 9 459 (2021)
  23. Bacteria in Fluid Flow. Padron GC, Shuppara AM, Palalay JS, Sharma A, Sanfilippo JE. J Bacteriol 205 e0040022 (2023)

Articles citing this publication (65)

  1. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. McAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM. PLoS Pathog 7 e1002307 (2011)
  2. Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. McCarthy AJ, Lindsay JA. BMC Microbiol 10 173 (2010)
  3. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Milles LF, Schulten K, Gaub HE, Bernardi RC. Science 359 1527-1533 (2018)
  4. Binding of glycoprotein Srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the development of meningitis. Seo HS, Mu R, Kim BJ, Doran KS, Sullam PM. PLoS Pathog 8 e1002947 (2012)
  5. A structural model for binding of the serine-rich repeat adhesin GspB to host carbohydrate receptors. Pyburn TM, Bensing BA, Xiong YQ, Melancon BJ, Tomasiak TM, Ward NJ, Yankovskaya V, Oliver KM, Cecchini G, Sulikowski GA, Tyska MJ, Sullam PM, Iverson TM. PLoS Pathog 7 e1002112 (2011)
  6. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. Sharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA, Foster TJ, Cunnion KM. PLoS One 7 e38407 (2012)
  7. Characterization of fibrinogen binding by glycoproteins Srr1 and Srr2 of Streptococcus agalactiae. Seo HS, Minasov G, Seepersaud R, Doran KS, Dubrovska I, Shuvalova L, Anderson WF, Iverson TM, Sullam PM. J Biol Chem 288 35982-35996 (2013)
  8. Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). Vazquez V, Liang X, Horndahl JK, Ganesh VK, Smeds E, Foster TJ, Hook M. J Biol Chem 286 29797-29805 (2011)
  9. An Essential Role for Coagulase in Staphylococcus aureus Biofilm Development Reveals New Therapeutic Possibilities for Device-Related Infections. Zapotoczna M, McCarthy H, Rudkin JK, O'Gara JP, O'Neill E. J Infect Dis 212 1883-1893 (2015)
  10. Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans. Salgado PS, Yan R, Taylor JD, Burchell L, Jones R, Hoyer LL, Matthews SJ, Simpson PJ, Cota E. Proc Natl Acad Sci U S A 108 15775-15779 (2011)
  11. Staphylococcus aureus clumping factor A is a force-sensitive molecular switch that activates bacterial adhesion. Herman-Bausier P, Labate C, Towell AM, Derclaye S, Geoghegan JA, Dufrêne YF. Proc Natl Acad Sci U S A 115 5564-5569 (2018)
  12. Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. Geoghegan JA, Monk IR, O'Gara JP, Foster TJ. J Bacteriol 195 2675-2683 (2013)
  13. Melittin, a honeybee venom‑derived antimicrobial peptide, may target methicillin‑resistant Staphylococcus aureus. Choi JH, Jang AY, Lin S, Lim S, Kim D, Park K, Han SM, Yeo JH, Seo HS. Mol Med Rep 12 6483-6490 (2015)
  14. Molecular characterization of the interaction of staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMM) ClfA and Fbl with fibrinogen. Geoghegan JA, Ganesh VK, Smeds E, Liang X, Höök M, Foster TJ. J Biol Chem 285 6208-6216 (2010)
  15. Genomic and surface proteomic analysis of the canine pathogen Staphylococcus pseudintermedius reveals proteins that mediate adherence to the extracellular matrix. Bannoehr J, Ben Zakour NL, Reglinski M, Inglis NF, Prabhakaran S, Fossum E, Smith DG, Wilson GJ, Cartwright RA, Haas J, Hook M, van den Broek AH, Thoday KL, Fitzgerald JR. Infect Immun 79 3074-3086 (2011)
  16. Structural and biochemical characterization of Staphylococcus aureus clumping factor B/ligand interactions. Ganesh VK, Barbu EM, Deivanayagam CC, Le B, Anderson AS, Matsuka YV, Lin SL, Foster TJ, Narayana SV, Höök M. J Biol Chem 286 25963-25972 (2011)
  17. Fibronectin-binding protein B variation in Staphylococcus aureus. Burke FM, McCormack N, Rindi S, Speziale P, Foster TJ. BMC Microbiol 10 160 (2010)
  18. A recombinant clumping factor A-containing vaccine induces functional antibodies to Staphylococcus aureus that are not observed after natural exposure. Hawkins J, Kodali S, Matsuka YV, McNeil LK, Mininni T, Scully IL, Vernachio JH, Severina E, Girgenti D, Jansen KU, Anderson AS, Donald RG. Clin Vaccine Immunol 19 1641-1650 (2012)
  19. Bacteriophage lysin mediates the binding of streptococcus mitis to human platelets through interaction with fibrinogen. Seo HS, Xiong YQ, Mitchell J, Seepersaud R, Bayer AS, Sullam PM. PLoS Pathog 6 e1001047 (2010)
  20. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans. Choy HA, Kelley MM, Croda J, Matsunaga J, Babbitt JT, Ko AI, Picardeau M, Haake DA. PLoS One 6 e16879 (2011)
  21. Structural insights into serine-rich fimbriae from Gram-positive bacteria. Ramboarina S, Garnett JA, Zhou M, Li Y, Peng Z, Taylor JD, Lee WC, Bodey A, Murray JW, Alguel Y, Bergeron J, Bardiaux B, Sawyer E, Isaacson R, Tagliaferri C, Cota E, Nilges M, Simpson P, Ruiz T, Wu H, Matthews S. J Biol Chem 285 32446-32457 (2010)
  22. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) Genes among Clinical Isolates of Staphylococcus aureus from Hospitalized Children. Ghasemian A, Najar Peerayeh S, Bakhshi B, Mirzaee M. Iran J Pathol 10 258-264 (2015)
  23. X-ray structural studies of the entire extracellular region of the serine/threonine kinase PrkC from Staphylococcus aureus. Ruggiero A, Squeglia F, Marasco D, Marchetti R, Molinaro A, Berisio R. Biochem J 435 33-41 (2011)
  24. beta-Neurexin is a ligand for the Staphylococcus aureus MSCRAMM SdrC. Barbu EM, Ganesh VK, Gurusiddappa S, Mackenzie RC, Foster TJ, Sudhof TC, Höök M. PLoS Pathog 6 e1000726 (2010)
  25. Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB. Xiang H, Feng Y, Wang J, Liu B, Chen Y, Liu L, Deng X, Yang M. PLoS Pathog 8 e1002751 (2012)
  26. The A domain of fibronectin-binding protein B of Staphylococcus aureus contains a novel fibronectin binding site. Burke FM, Di Poto A, Speziale P, Foster TJ. FEBS J 278 2359-2371 (2011)
  27. An internal thioester in a pathogen surface protein mediates covalent host binding. Walden M, Edwards JM, Dziewulska AM, Bergmann R, Saalbach G, Kan SY, Miller OK, Weckener M, Jackson RJ, Shirran SL, Botting CH, Florence GJ, Rohde M, Banfield MJ, Schwarz-Linek U. Elife 4 (2015)
  28. Sortases, Surface Proteins, and Their Roles in Staphylococcus aureus Disease and Vaccine Development. Schneewind O, Missiakas D. Microbiol Spectr 7 (2019)
  29. Structures of SdrD from Staphylococcus aureus reveal the molecular mechanism of how the cell surface receptors recognize their ligands. Wang X, Ge J, Liu B, Hu Y, Yang M. Protein Cell 4 277-285 (2013)
  30. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel 'close, dock, lock and latch' mechanism for complement evasion. Zhang Y, Wu M, Hang T, Wang C, Yang Y, Pan W, Zang J, Zhang M, Zhang X. Biochem J 474 1619-1631 (2017)
  31. The Complex Fibrinogen Interactions of the Staphylococcus aureus Coagulases. Thomas S, Liu W, Arora S, Ganesh V, Ko YP, Höök M. Front Cell Infect Microbiol 9 106 (2019)
  32. Targeted interplay between bacterial pathogens and host autophagy. Sudhakar P, Jacomin AC, Hautefort I, Samavedam S, Fatemian K, Ari E, Gul L, Demeter A, Jones E, Korcsmaros T, Nezis IP. Autophagy 15 1620-1633 (2019)
  33. Apo, Zn2+-bound and Mn2+-bound structures reveal ligand-binding properties of SitA from the pathogen Staphylococcus pseudintermedius. Abate F, Malito E, Cozzi R, Lo Surdo P, Maione D, Bottomley MJ. Biosci Rep 34 e00154 (2014)
  34. Host-specialized fibrinogen-binding by a bacterial surface protein promotes biofilm formation and innate immune evasion. Pickering AC, Vitry P, Prystopiuk V, Garcia B, Höök M, Schoenebeck J, Geoghegan JA, Dufrêne YF, Fitzgerald JR. PLoS Pathog 15 e1007816 (2019)
  35. Vaccine protection of leukopenic mice against Staphylococcus aureus bloodstream infection. Rauch S, Gough P, Kim HK, Schneewind O, Missiakas D. Infect Immun 82 4889-4898 (2014)
  36. Coagulase and Efb of Staphylococcus aureus Have a Common Fibrinogen Binding Motif. Ko YP, Kang M, Ganesh VK, Ravirajan D, Li B, Höök M. mBio 7 e01885-15 (2016)
  37. In silico analysis for identifying potential vaccine candidates against Staphylococcus aureus. Delfani S, Imani Fooladi AA, Mobarez AM, Emaneini M, Amani J, Sedighian H. Clin Exp Vaccine Res 4 99-106 (2015)
  38. N-acetylglucosaminylation of serine-aspartate repeat proteins promotes Staphylococcus aureus bloodstream infection. Thomer L, Becker S, Emolo C, Quach A, Kim HK, Rauch S, Anderson M, Leblanc JF, Schneewind O, Faull KF, Missiakas D. J Biol Chem 289 3478-3486 (2014)
  39. Force-clamp spectroscopy identifies a catch bond mechanism in a Gram-positive pathogen. Mathelié-Guinlet M, Viela F, Pietrocola G, Speziale P, Alsteens D, Dufrêne YF. Nat Commun 11 5431 (2020)
  40. A short sequence within subdomain N1 of region A of the Staphylococcus aureus MSCRAMM clumping factor A is required for export and surface display. McCormack N, Foster TJ, Geoghegan JA. Microbiology (Reading) 160 659-670 (2014)
  41. Binding of Human Fibrinogen to MRP Enhances Streptococcus suis Survival in Host Blood in a αXβ2 Integrin-dependent Manner. Pian Y, Li X, Zheng Y, Wu X, Yuan Y, Jiang Y. Sci Rep 6 26966 (2016)
  42. Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with Fibrinogen α. Zhang X, Wu M, Zhuo W, Gu J, Zhang S, Ge J, Yang M. Protein Cell 6 757-766 (2015)
  43. Characterization of the fibrinogen binding domain of bacteriophage lysin from Streptococcus mitis. Seo HS, Sullam PM. Infect Immun 79 3518-3526 (2011)
  44. Crystal structure of the functional region of Uro-adherence factor A from Staphylococcus saprophyticus reveals participation of the B domain in ligand binding. Matsuoka E, Tanaka Y, Kuroda M, Shouji Y, Ohta T, Tanaka I, Yao M. Protein Sci 20 406-416 (2011)
  45. Fibrinogen binding is affected by amino acid substitutions in C-terminal repeat region of fibronectin binding protein A. Casillas-Ituarte NN, DiBartola AC, Broughton MJ, Pérez-Guzmán L, Wheeler RM, Ibaraki M, Lower BA, Dunn JA, Lower BH, Fowler VG, Hӧӧk M, McIntyre LM, Lower SK, Sharma-Kuinkel BK. Sci Rep 9 11619 (2019)
  46. Molecular Characterization of the Multiple Interactions of SpsD, a Surface Protein from Staphylococcus pseudintermedius, with Host Extracellular Matrix Proteins. Pietrocola G, Geoghegan JA, Rindi S, Di Poto A, Missineo A, Consalvi V, Foster TJ, Speziale P. PLoS One 8 e66901 (2013)
  47. The iron-regulated surface determinant B (IsdB) protein from Staphylococcus aureus acts as a receptor for the host protein vitronectin. Pietrocola G, Pellegrini A, Alfeo MJ, Marchese L, Foster TJ, Speziale P. J Biol Chem 295 10008-10022 (2020)
  48. Fibrin(ogen) engagement of S. aureus promotes the host antimicrobial response and suppression of microbe dissemination following peritoneal infection. Negrón O, Hur WS, Prasad J, Paul DS, Rowe SE, Degen JL, Abrahams SR, Antoniak S, Conlon BP, Bergmeier W, Hӧӧk M, Flick MJ. PLoS Pathog 18 e1010227 (2022)
  49. Staphylococcus aureus vWF-binding protein triggers a strong interaction between clumping factor A and host vWF. Viljoen A, Viela F, Mathelié-Guinlet M, Missiakas D, Pietrocola G, Speziale P, Dufrêne YF. Commun Biol 4 453 (2021)
  50. Immunogenicity analysis of Staphylococcus aureus clumping factor A genetic variants. Brady RA, Mocca CP, Burns DL. Clin Vaccine Immunol 20 1338-1340 (2013)
  51. Experimental endocarditis model of methicillin resistant Staphylococcus aureus (MRSA) in rat. Hady WA, Bayer AS, Xiong YQ. J Vis Exp e3863 (2012)
  52. Genome-Wide Analysis of Staphylococcus aureus Sequence Type 72 Isolates Provides Insights Into Resistance Against Antimicrobial Agents and Virulence Potential. Batool N, Shamim A, Chaurasia AK, Kim KK. Front Microbiol 11 613800 (2020)
  53. Adherence of Staphylococcus epidermidis to human endothelial cells is associated with a polysaccharidic component of its extracellular mucous layer. Krevvata MI, Spiliopoulou A, Anastassiou ED, Karamanos N, Kolonitsiou F. Connect Tissue Res 52 183-189 (2011)
  54. Bacillus thuringiensis CbpA is a collagen binding cell surface protein under c-di-GMP control. Finke S, Fagerlund A, Smith V, Krogstad V, Zhang MJ, Saragliadis A, Linke D, Nielsen-LeRoux C, Økstad OA. Cell Surf 5 100032 (2019)
  55. Pathogenesis gene families in the common minimal genome of Staphylococcus aureus are hypervariable. Sivaraman K, Cole AM. FEBS Lett 583 1304-1308 (2009)
  56. Prevalence and distribution of adhesins and the expression of fibronectin-binding protein (FnbA and FnbB) among Staphylococcus aureus isolates from Shahrekord Hospitals. Soltani E, Farrokhi E, Zamanzad B, Shahini Shams Abadi M, Deris F, Soltani A, Gholipour A. BMC Res Notes 12 49 (2019)
  57. Structural insights into the intermolecular interaction of the adhesin SdrC in the pathogenicity of Staphylococcus aureus. Wang J, Zhang M, Wang M, Zang J, Zhang X, Hang T. Acta Crystallogr F Struct Biol Commun 77 47-53 (2021)
  58. Host blood proteins as bridging ligand in bacterial aggregation as well as anchor point for adhesion in the molecular pathogenesis of Staphylococcus aureus infections. Casillas-Ituarte NN, Staats AM, Lower BH, Stoodley P, Lower SK. Micron 150 103137 (2021)
  59. Structure-Function Characterization of Streptococcus intermedius Surface Antigen Pas. Mieher JL, Schormann N, Wu R, Patel M, Purushotham S, Wu H, Scoffield J, Deivanayagam C. J Bacteriol 203 e0017521 (2021)
  60. The Recombinant Expression Proteins FnBP and ClfA From Staphylococcus aureus in Addition to GapC and Sip From Streptococcus agalactiae Can Protect BALB/c Mice From Bacterial Infection. Ma Z, Yin X, Wu P, Hu R, Wang Y, Yi J, Wang Z, Chen C. Front Vet Sci 8 666098 (2021)
  61. Interaction of the Staphylococcus aureus Surface Protein FnBPB with Corneodesmosin Involves Two Distinct, Extremely Strong Bonds. Paiva TO, Viljoen A, da Costa TM, Geoghegan JA, Dufrêne YF. ACS Nanosci Au 3 58-66 (2023)
  62. Adhesive Virulence Factors of Staphylococcus aureus Resist Digestion by Coagulation Proteases Thrombin and Plasmin. Risser F, López-Morales J, Nash MA. ACS Bio Med Chem Au 2 586-599 (2022)
  63. Detection of Genes Encoding Microbial Surface Component Recognizing Adhesive Matrix Molecules in Methicillin-Resistant Staphylococcus aureus Isolated from Pyoderma Patients. Alorabi M, Ejaz U, Khoso BK, Uddin F, Mahmoud SF, Sohail M, Youssef M. Genes (Basel) 14 783 (2023)
  64. The crystal structure of the ligand-binding region of serine-glutamate repeat containing protein A (SgrA) of Enterococcus faecium reveals a new protein fold: functional characterization and insights into its adhesion function. Nagarajan R, Hendrickx AP, Ponnuraj K. FEBS J 283 3039-3055 (2016)
  65. von Willebrand factor-binding protein (vWbp)-activated factor XIII and transglutaminase 2 (TG2) promote cross-linking between FnBPA from Staphylococcus aureus and fibrinogen. Motta C, Pellegrini A, Camaione S, Geoghegan J, Speziale P, Barbieri G, Pietrocola G. Sci Rep 13 11683 (2023)