2wv9 Citations

Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication.

Abstract

The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.

Reviews - 2wv9 mentioned but not cited (2)

  1. Molecular Insights into the Flavivirus Replication Complex. van den Elsen K, Quek JP, Luo D. Viruses 13 956 (2021)
  2. Unzippers, resolvers and sensors: a structural and functional biochemistry tale of RNA helicases. Leitão AL, Costa MC, Enguita FJ. Int J Mol Sci 16 2269-2293 (2015)

Articles - 2wv9 mentioned but not cited (17)

  1. Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication. Assenberg R, Mastrangelo E, Walter TS, Verma A, Milani M, Owens RJ, Stuart DI, Grimes JM, Mancini EJ. J Virol 83 12895-12906 (2009)
  2. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Mirza MU, Rafique S, Ali A, Munir M, Ikram N, Manan A, Salo-Ahen OM, Idrees M. Sci Rep 6 37313 (2016)
  3. In-silico screening for anti-Zika virus phytochemicals. Byler KG, Ogungbe IV, Setzer WN. J Mol Graph Model 69 78-91 (2016)
  4. Predicting Zika virus structural biology: Challenges and opportunities for intervention. Cox BD, Stanton RA, Schinazi RF. Antivir Chem Chemother 24 118-126 (2015)
  5. Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies. Wu M, Park YJ, Pardon E, Turley S, Hayhurst A, Deng J, Steyaert J, Hol WG. J Struct Biol 174 124-136 (2011)
  6. Molecular mechanism of divalent-metal-induced activation of NS3 helicase and insights into Zika virus inhibitor design. Cao X, Li Y, Jin X, Li Y, Guo F, Jin T. Nucleic Acids Res 44 10505-10514 (2016)
  7. Unmasking the active helicase conformation of nonstructural protein 3 from hepatitis C virus. Ding SC, Kohlway AS, Pyle AM. J Virol 85 4343-4353 (2011)
  8. In Vivo Dynamics of Reporter Flaviviridae Viruses. Tamura T, Igarashi M, Enkhbold B, Suzuki T, Okamatsu M, Ono C, Mori H, Izumi T, Sato A, Fauzyah Y, Okamoto T, Sakoda Y, Fukuhara T, Matsuura Y. J Virol 93 e01191-19 (2019)
  9. NS2B/NS3 mutations enhance the infectivity of genotype I Japanese encephalitis virus in amplifying hosts. Fan YC, Liang JJ, Chen JM, Lin JW, Chen YY, Su KH, Lin CC, Tu WC, Chiou MT, Ou SC, Chang GJ, Lin YL, Chiou SS. PLoS Pathog 15 e1007992 (2019)
  10. Structural and functional parameters of the flaviviral protease: a promising antiviral drug target. Shiryaev SA, Strongin AY. Future Virol 5 593-606 (2010)
  11. Pharmacophore anchor models of flaviviral NS3 proteases lead to drug repurposing for DENV infection. Pathak N, Lai ML, Chen WY, Hsieh BW, Yu GY, Yang JM. BMC Bioinformatics 18 548 (2017)
  12. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3. Zheng F, Lu G, Li L, Gong P, Pan Z. J Virol 91 e01094-17 (2017)
  13. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Pan A, Saw WG, Subramanian Manimekalai MS, Grüber A, Joon S, Matsui T, Weiss TM, Grüber G. Acta Crystallogr D Struct Biol 73 402-419 (2017)
  14. The acidic sequence of the NS4A cofactor regulates ATP hydrolysis by the HCV NS3 helicase. Shiryaev SA, Chernov AV, Shiryaeva TN, Aleshin AE, Strongin AY. Arch Virol 156 313-318 (2011)
  15. Structure based drug designing of a novel antiflaviviral inhibitor for nonstructural 3 protein. Jitendra S, Vinay R. Bioinformation 6 57-60 (2011)
  16. Crystal structure of the Ilheus virus helicase: implications for enzyme function and drug design. Wang DP, Wang MY, Li YM, Shu W, Cui W, Jiang FY, Zhou X, Wang WM, Cao JM. Cell Biosci 12 44 (2022)
  17. Dual function of Zika virus NS2B-NS3 protease. Shiryaev SA, Cieplak P, Cheltsov A, Liddington RC, Terskikh AV. PLoS Pathog 19 e1011795 (2023)


Reviews citing this publication (21)

  1. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Luo D, Vasudevan SG, Lescar J. Antiviral Res 118 148-158 (2015)
  2. Replication cycle and molecular biology of the West Nile virus. Brinton MA. Viruses 6 13-53 (2013)
  3. Molecular mechanisms involved in the early steps of flavivirus cell entry. Kaufmann B, Rossmann MG. Microbes Infect 13 1-9 (2011)
  4. RNA helicases in infection and disease. Steimer L, Klostermeier D. RNA Biol 9 751-771 (2012)
  5. Discovering new medicines targeting helicases: challenges and recent progress. Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. J Biomol Screen 18 761-781 (2013)
  6. Structural biology of dengue virus enzymes: towards rational design of therapeutics. Noble CG, Shi PY. Antiviral Res 96 115-126 (2012)
  7. Zika virus: An emerging flavivirus. Yun SI, Lee YM. J Microbiol 55 204-219 (2017)
  8. The role of viral persistence in flavivirus biology. Mlera L, Melik W, Bloom ME. Pathog Dis 71 137-163 (2014)
  9. The flavivirus protease as a target for drug discovery. Brecher M, Zhang J, Li H. Virol Sin 28 326-336 (2013)
  10. Organization of the Flavivirus RNA replicase complex. Brand C, Bisaillon M, Geiss BJ. Wiley Interdiscip Rev RNA 8 (2017)
  11. RNA helicases and remodeling proteins. Pyle AM. Curr Opin Chem Biol 15 636-642 (2011)
  12. West Nile virus drug discovery. Lim SP, Shi PY. Viruses 5 2977-3006 (2013)
  13. Functional interplay among the flavivirus NS3 protease, helicase, and cofactors. Li K, Phoo WW, Luo D. Virol Sin 29 74-85 (2014)
  14. Role of Endoplasmic Reticulum-Associated Proteins in Flavivirus Replication and Assembly Complexes. Rothan HA, Kumar M. Pathogens 8 E148 (2019)
  15. Zika virus proteins at an atomic scale: how does structural biology help us to understand and develop vaccines and drugs against Zika virus infection? Valente AP, Moraes AH. J Venom Anim Toxins Incl Trop Dis 25 e20190013 (2019)
  16. Antiviral Agents against Flavivirus Protease: Prospect and Future Direction. Samrat SK, Xu J, Li Z, Zhou J, Li H. Pathogens 11 293 (2022)
  17. Advances in Computational Methods to Discover New NS2B-NS3 Inhibitors Useful Against Dengue and Zika Viruses. Dos Santos Nascimento IJ, da Silva Rodrigues ÉE, da Silva MF, de Araújo-Júnior JX, de Moura RO. Curr Top Med Chem 22 2435-2462 (2022)
  18. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors. Wichit S, Gumpangseth N, Hamel R, Yainoy S, Arikit S, Punsawad C, Missé D. Pathogens 10 448 (2021)
  19. Flavivirus proteases: The viral Achilles heel to prevent future pandemics. Teramoto T, Choi KH, Padmanabhan R. Antiviral Res 210 105516 (2023)
  20. Dual-Role Ubiquitination Regulation Shuttling the Entire Life Cycle of the Flaviviridae. Cai D, Liu L, Tian B, Fu X, Yang Q, Chen J, Zhang Y, Fang J, Shen L, Wang Y, Gou L, Zuo Z. Front Microbiol 13 835344 (2022)
  21. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Frank JC, Song BH, Lee YM. Pathogens 12 715 (2023)

Articles citing this publication (51)

  1. Ligand-bound structures of the dengue virus protease reveal the active conformation. Noble CG, Seh CC, Chao AT, Shi PY. J Virol 86 438-446 (2012)
  2. A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. Zhao Y, Soh TS, Zheng J, Chan KW, Phoo WW, Lee CC, Tay MY, Swaminathan K, Cornvik TC, Lim SP, Shi PY, Lescar J, Vasudevan SG, Luo D. PLoS Pathog 11 e1004682 (2015)
  3. Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. Luo D, Wei N, Doan DN, Paradkar PN, Chong Y, Davidson AD, Kotaka M, Lescar J, Vasudevan SG. J Biol Chem 285 18817-18827 (2010)
  4. Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Zhang Z, Li Y, Loh YR, Phoo WW, Hung AW, Kang C, Luo D. Science 354 1597-1600 (2016)
  5. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. Brecher M, Li Z, Liu B, Zhang J, Koetzner CA, Alifarag A, Jones SA, Lin Q, Kramer LD, Li H. PLoS Pathog 13 e1006411 (2017)
  6. A crystal structure of the dengue virus non-structural protein 5 (NS5) polymerase delineates interdomain amino acid residues that enhance its thermostability and de novo initiation activities. Lim SP, Koh JH, Seh CC, Liew CW, Davidson AD, Chua LS, Chandrasekaran R, Cornvik TC, Shi PY, Lescar J. J Biol Chem 288 31105-31114 (2013)
  7. Novel ATP-independent RNA annealing activity of the dengue virus NS3 helicase. Gebhard LG, Kaufman SB, Gamarnik AV. PLoS One 7 e36244 (2012)
  8. Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast. Li G, Poulsen M, Fenyvuesvolgyi C, Yashiroda Y, Yoshida M, Simard JM, Gallo RC, Zhao RY. Proc Natl Acad Sci U S A 114 E376-E385 (2017)
  9. Interferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3. Wang K, Zou C, Wang X, Huang C, Feng T, Pan W, Wu Q, Wang P, Dai J. PLoS Pathog 14 e1007287 (2018)
  10. Dengue virus nonstructural protein 5 adopts multiple conformations in solution. Bussetta C, Choi KH. Biochemistry 51 5921-5931 (2012)
  11. A macrocyclic HCV NS3/4A protease inhibitor interacts with protease and helicase residues in the complex with its full-length target. Schiering N, D'Arcy A, Villard F, Simic O, Kamke M, Monnet G, Hassiepen U, Svergun DI, Pulfer R, Eder J, Raman P, Bodendorf U. Proc Natl Acad Sci U S A 108 21052-21056 (2011)
  12. Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Coutard B, Decroly E, Li C, Sharff A, Lescar J, Bricogne G, Barral K. Antiviral Res 106 61-70 (2014)
  13. The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. Li XD, Shan C, Deng CL, Ye HQ, Shi PY, Yuan ZM, Gong P, Zhang B. PLoS Negl Trop Dis 8 e2891 (2014)
  14. Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells. García Cordero J, León Juárez M, González-Y-Merchand JA, Cedillo Barrón L, Gutiérrez Castañeda B. PLoS One 9 e90704 (2014)
  15. NS3 helicase from dengue virus specifically recognizes viral RNA sequence to ensure optimal replication. Swarbrick CMD, Basavannacharya C, Chan KWK, Chan SA, Singh D, Wei N, Phoo WW, Luo D, Lescar J, Vasudevan SG. Nucleic Acids Res 45 12904-12920 (2017)
  16. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Xu S, Ci Y, Wang L, Yang Y, Zhang L, Xu C, Qin C, Shi L. Nucleic Acids Res 47 8693-8707 (2019)
  17. Benzothiazole and Pyrrolone Flavivirus Inhibitors Targeting the Viral Helicase. Sweeney NL, Hanson AM, Mukherjee S, Ndjomou J, Geiss BJ, Steel JJ, Frankowski KJ, Li K, Schoenen FJ, Frick DN. ACS Infect Dis 1 140-148 (2015)
  18. High affinity human antibody fragments to dengue virus non-structural protein 3. Moreland NJ, Tay MY, Lim E, Paradkar PN, Doan DN, Yau YH, Geifman Shochat S, Vasudevan SG. PLoS Negl Trop Dis 4 e881 (2010)
  19. Comparison of the live-attenuated Japanese encephalitis vaccine SA14-14-2 strain with its pre-attenuated virulent parent SA14 strain: similarities and differences in vitro and in vivo. Yun SI, Song BH, Polejaeva IA, Davies CJ, White KL, Lee YM. J Gen Virol 97 2575-2591 (2016)
  20. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production. Gebhard LG, Iglesias NG, Byk LA, Filomatori CV, De Maio FA, Gamarnik AV. J Virol 90 5451-5461 (2016)
  21. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side. Lin KH, Ali A, Rusere L, Soumana DI, Kurt Yilmaz N, Schiffer CA. J Virol 91 e00045-17 (2017)
  22. Letter Substrate profiling of Zika virus NS2B-NS3 protease. Gruba N, Rodriguez Martinez JI, Grzywa R, Wysocka M, Skoreński M, Burmistrz M, Łęcka M, Lesner A, Sieńczyk M, Pyrć K. FEBS Lett 590 3459-3468 (2016)
  23. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis. Dubrau D, Tortorici MA, Rey FA, Tautz N. PLoS Pathog 13 e1006134 (2017)
  24. Hepatitis C virus RNA replication and virus particle assembly require specific dimerization of the NS4A protein transmembrane domain. Kohlway A, Pirakitikulr N, Barrera FN, Potapova O, Engelman DM, Pyle AM, Lindenbach BD. J Virol 88 628-642 (2014)
  25. Profiling of viral proteins expressed from the genomic RNA of Japanese encephalitis virus using a panel of 15 region-specific polyclonal rabbit antisera: implications for viral gene expression. Kim JK, Kim JM, Song BH, Yun SI, Yun GN, Byun SJ, Lee YM. PLoS One 10 e0124318 (2015)
  26. Synergistic interactions between the NS3(hel) and E proteins contribute to the virulence of dengue virus type 1. de Borba L, Strottmann DM, de Noronha L, Mason PW, Dos Santos CN. PLoS Negl Trop Dis 6 e1624 (2012)
  27. Dengue Protease Substrate Recognition: Binding of the Prime Side. Lin KH, Nalivaika EA, Prachanronarong KL, Yilmaz NK, Schiffer CA. ACS Infect Dis 2 734-743 (2016)
  28. X-ray structure of the pestivirus NS3 helicase and its conformation in solution. Tortorici MA, Duquerroy S, Kwok J, Vonrhein C, Perez J, Lamp B, Bricogne G, Rümenapf T, Vachette P, Rey FA. J Virol 89 4356-4371 (2015)
  29. Catching a Moving Target: Comparative Modeling of Flaviviral NS2B-NS3 Reveals Small Molecule Zika Protease Inhibitors. Pach S, Sarter TM, Yousef R, Schaller D, Bergemann S, Arkona C, Rademann J, Nitsche C, Wolber G. ACS Med Chem Lett 11 514-520 (2020)
  30. Molecular docking study of P4-Benzoxaborolesubstituted ligands as inhibitors of HCV NS3/4A protease. Wadood A, Riaz M, Jamal SB, Shah M, Lodhi MA. Bioinformation 9 309-314 (2013)
  31. Crystal structure of the NS3-like helicase from Alongshan virus. Gao X, Zhu K, Wojdyla JA, Chen P, Qin B, Li Z, Wang M, Cui S. IUCrJ 7 375-382 (2020)
  32. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation. de Almeida H, Bastos IM, Ribeiro BM, Maigret B, Santana JM. PLoS One 8 e72402 (2013)
  33. In vitro and in vivo characterization of erythrosin B and derivatives against Zika virus. Li Z, Xu J, Lang Y, Wu X, Hu S, Samrat SK, Tharappel AM, Kuo L, Butler D, Song Y, Zhang QY, Zhou J, Li H. Acta Pharm Sin B 12 1662-1670 (2022)
  34. A P2 and P3 substrate specificity comparison between the Murray Valley encephalitis and West Nile virus NS2B/NS3 protease using C-terminal agmatine dipeptides. Ang MJ, Li Z, Lim HA, Ng FM, Then SW, Wee JL, Joy J, Hill J, Chia CS. Peptides 52 49-52 (2014)
  35. Biochemical characterisation of Murray Valley encephalitis virus proteinase. Joy J, Mee NF, Kuan WL, Perlyn KZ, Wen TS, Hill J. FEBS Lett 584 3149-3152 (2010)
  36. Biological Characterization of Yellow Fever Viruses Isolated From Non-human Primates in Brazil With Distinct Genomic Landscapes. Furtado ND, Raphael LM, Ribeiro IP, de Mello IS, Fernandes DR, Gómez MM, Dos Santos AAC, Nogueira MDS, de Castro MG, de Abreu FVS, Martins LC, Vasconcelos PFDC, Lourenço-de-Oliveira R, Bonaldo MC. Front Microbiol 13 757084 (2022)
  37. Letter The role of surface basic amino acids of dengue virus NS3 helicase in viral RNA replication and enzyme activities. Chiang PY, Wu HN. FEBS Lett 590 2307-2320 (2016)
  38. Identification of potential Zika virus NS2B-NS3 protease inhibitors via docking, molecular dynamics and consensus scoring-based virtual screening. Bowen LR, Li DJ, Nola DT, Anderson MO, Heying M, Groves AT, Eagon S. J Mol Model 25 194 (2019)
  39. Immunopathology of Renal Tissue in Fatal Cases of Dengue in Children. de Lima Siqueira Oliveira L, de Andrade Vieira Alves F, Rabelo K, Moragas LJ, Mohana-Borges R, de Carvalho JJ, Basílio-de-Oliveira C, Basílio-de-Oliveira R, Rosman FC, Salomão NG, Paes MV. Pathogens 11 1543 (2022)
  40. Mapping of molecular interactions between human E3 ligase TRIM69 and Dengue virus NS3 protease using hydrogen-deuterium exchange mass spectrometry. Bagga T, Tulsian NK, Mok YK, Kini RM, Sivaraman J. Cell Mol Life Sci 79 233 (2022)
  41. Use of small-angle X-ray scattering to investigate the structure and function of dengue virus NS3 and NS5. Choi KH, Morais M. Methods Mol Biol 1138 241-252 (2014)
  42. Analysis of worldwide sequence mutations in Zika virus proteins E, NS1, NS3 and NS5 from a structural point of view. Baez CF, Barel VA, de Souza AM, Rodrigues CR, Varella RB, Cirauqui N. Mol Biosyst 13 122-131 (2016)
  43. Mechanical regulation of the helicase activity of Zika virus NS3. Cao X, Liu K, Yan S, Li S, Li Y, Jin T, Liu S. Biophys J 121 4900-4908 (2022)
  44. TRAF6 Plays a Proviral Role in Tick-Borne Flavivirus Infection through Interaction with the NS3 Protease. Youseff BH, Brewer TG, McNally KL, Izuogu AO, Lubick KJ, Presloid JB, Alqahtani S, Chattopadhyay S, Best SM, Hu X, Taylor RT. iScience 15 489-501 (2019)
  45. Exploring Evolutionary Constraints in the Proteomes of Zika, Dengue, and Other Flaviviruses to Find Fitness-Critical Sites. Nunez-Castilla J, Rahaman J, Ahrens JB, Balbin CA, Siltberg-Liberles J. J Mol Evol 88 399-414 (2020)
  46. Potential Dual Role of West Nile Virus NS2B in Orchestrating NS3 Enzymatic Activity in Viral Replication. Tseng AC, Nerurkar VR, Neupane KR, Kae H, Kaufusi PH. Viruses 13 216 (2021)
  47. Widespread amyloid aggregates formation by Zika virus proteins and peptides. Giri R, Bhardwaj T, Kapuganti SK, Saumya KU, Sharma N, Bhardwaj A, Joshi R, Verma D, Gadhave K. Protein Sci 32 e4833 (2023)
  48. A Novel Approach to Develop New and Potent Inhibitors for the Simultaneous Inhibition of Protease and Helicase Activities of HCV NS3/4A Protease: A Computational Approach. Riaz M, Rehman AU, Waqas M, Khalid A, Abdalla AN, Mahmood A, Hu J, Wadood A. Molecules 28 1300 (2023)
  49. Dynamic Interactions of Post Cleaved NS2B Cofactor and NS3 Protease Identified by Integrative Structural Approaches. Quek JP, Ser Z, Chew BLA, Li X, Wang L, Sobota RM, Luo D, Phoo WW. Viruses 14 1440 (2022)
  50. Nanoparticular Inhibitors of Flavivirus Proteases from Zika, West Nile and Dengue Virus Are Cell-Permeable Antivirals. Schroeder B, Demirel P, Fischer C, Masri E, Kallis S, Redl L, Rudolf T, Bergemann S, Arkona C, Nitsche C, Bartenschlager R, Rademann J. ACS Med Chem Lett 12 1955-1961 (2021)
  51. Structural Modifications Introduced by NS2B Cofactor Binding to the NS3 Protease of the Kyasanur Forest Disease Virus. Kandagalla S, Kumbar B, Novak J. Int J Mol Sci 24 10907 (2023)