2wx2 Citations

Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole.

OpenAccess logo PLoS Negl Trop Dis 4 e651 (2010)
Related entries: 2wuz, 2wv2, 2x2n

Cited: 70 times
EuropePMC logo PMID: 20386598

Abstract

Background

Chagas Disease is the leading cause of heart failure in Latin America. Current drug therapy is limited by issues of both efficacy and severe side effects. Trypansoma cruzi, the protozoan agent of Chagas Disease, is closely related to two other major global pathogens, Leishmania spp., responsible for leishmaniasis, and Trypansoma brucei, the causative agent of African Sleeping Sickness. Both T. cruzi and Leishmania parasites have an essential requirement for ergosterol, and are thus vulnerable to inhibitors of sterol 14alpha-demethylase (CYP51), which catalyzes the conversion of lanosterol to ergosterol. Clinically employed anti-fungal azoles inhibit ergosterol biosynthesis in fungi, and specific azoles are also effective against both Trypanosoma and Leishmania parasites. However, modification of azoles to enhance efficacy and circumvent potential drug resistance has been problematic for both parasitic and fungal infections due to the lack of structural insights into drug binding.

Reviews - 2wx2 mentioned but not cited (2)

Articles - 2wx2 mentioned but not cited (8)

  1. Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase. Sagatova AA, Keniya MV, Wilson RK, Monk BC, Tyndall JD. Antimicrob Agents Chemother 59 4982-4989 (2015)
  2. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. Chen CK, Leung SS, Guilbert C, Jacobson MP, McKerrow JH, Podust LM. PLoS Negl Trop Dis 4 e651 (2010)
  3. 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosoma cruzi drug leads with improved pharmacokinetic profile and in vivo potency. Calvet CM, Vieira DF, Choi JY, Kellar D, Cameron MD, Siqueira-Neto JL, Gut J, Johnston JB, Lin L, Khan S, McKerrow JH, Roush WR, Podust LM. J Med Chem 57 6989-7005 (2014)
  4. Amino acid substitutions at the major insertion loop of Candida albicans sterol 14alpha-demethylase are involved in fluconazole resistance. Alvarez-Rueda N, Fleury A, Morio F, Pagniez F, Gastinel L, Le Pape P. PLoS One 6 e21239 (2011)
  5. Dynamics of CYP51: implications for function and inhibitor design. Yu X, Cojocaru V, Mustafa G, Salo-Ahen OM, Lepesheva GI, Wade RC. J Mol Recognit 28 59-73 (2015)
  6. Expanding the binding envelope of CYP51 inhibitors targeting Trypanosoma cruzi with 4-aminopyridyl-based sulfonamide derivatives. Vieira DF, Choi JY, Roush WR, Podust LM. Chembiochem 15 1111-1120 (2014)
  7. New Promising Compounds with in Vitro Nanomolar Activity against Trypanosoma cruzi. Friggeri L, Scipione L, Costi R, Kaiser M, Moraca F, Zamperini C, Botta B, Di Santo R, De Vita D, Brun R, Tortorella S. ACS Med Chem Lett 4 538-541 (2013)
  8. Repurposing of terconazole as an anti Trypanosoma cruzi agent. Reigada C, Sayé M, Valera-Vera E, Miranda MR, Pereira CA. Heliyon 5 e01947 (2019)


Reviews citing this publication (16)

  1. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Becher R, Wirsel SG. Appl Microbiol Biotechnol 95 825-840 (2012)
  2. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Kelly SL, Kelly DE. Philos Trans R Soc Lond B Biol Sci 368 20120476 (2013)
  3. Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens. Price CL, Parker JE, Warrilow AG, Kelly DE, Kelly SL. Pest Manag Sci 71 1054-1058 (2015)
  4. Sterols in spermatogenesis and sperm maturation. Keber R, Rozman D, Horvat S. J Lipid Res 54 20-33 (2013)
  5. High Throughput and Computational Repurposing for Neglected Diseases. Hernandez HW, Soeung M, Zorn KM, Ashoura N, Mottin M, Andrade CH, Caffrey CR, de Siqueira-Neto JL, Ekins S. Pharm Res 36 27 (2018)
  6. Anthelmintic metabolism in parasitic helminths: proteomic insights. Brophy PM, MacKintosh N, Morphew RM. Parasitology 139 1205-1217 (2012)
  7. Advances in preclinical approaches to Chagas disease drug discovery. Villalta F, Rachakonda G. Expert Opin Drug Discov 14 1161-1174 (2019)
  8. Trypanocidal activity of marine natural products. Jones AJ, Grkovic T, Sykes ML, Avery VM. Mar Drugs 11 4058-4082 (2013)
  9. Targeting UDP-galactopyranose mutases from eukaryotic human pathogens. Kizjakina K, Tanner JJ, Sobrado P. Curr Pharm Des 19 2561-2573 (2013)
  10. Discovery and Genetic Validation of Chemotherapeutic Targets for Chagas' Disease. Osorio-Méndez JF, Cevallos AM. Front Cell Infect Microbiol 8 439 (2018)
  11. Function, essentiality, and expression of cytochrome P450 enzymes and their cognate redox partners in Mycobacterium tuberculosis: are they drug targets? Ortega Ugalde S, Boot M, Commandeur JNM, Jennings P, Bitter W, Vos JC. Appl Microbiol Biotechnol 103 3597-3614 (2019)
  12. Targeting CYP51 for drug design by the contributions of molecular modeling. Rabelo VW, Santos TF, Terra L, Santana MV, Castro HC, Rodrigues CR, Abreu PA. Fundam Clin Pharmacol 31 37-53 (2017)
  13. Indazoles: a new top seed structure in the search of efficient drugs against Trypanosoma cruzi. Aguilera-Venegas B, Olea-Azar C, Arán VJ, Speisky H. Future Med Chem 5 1843-1859 (2013)
  14. Synthesis and Biological Activity of Sterol 14α-Demethylase and Sterol C24-Methyltransferase Inhibitors. Leaver DJ. Molecules 23 E1753 (2018)
  15. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. Monk BC, Keniya MV. J Fungi (Basel) 7 67 (2021)
  16. Signal peptide peptidase: a potential therapeutic target for parasitic and viral infections. Schwake C, Hyon M, Chishti AH. Expert Opin Ther Targets 26 261-273 (2022)

Articles citing this publication (44)

  1. Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O'Connell JD, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, Stroud RM. Proc Natl Acad Sci U S A 111 3865-3870 (2014)
  2. Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Chen W, Lee MK, Jefcoate C, Kim SC, Chen F, Yu JH. Genome Biol Evol 6 1620-1634 (2014)
  3. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development. Moraes CB, Giardini MA, Kim H, Franco CH, Araujo-Junior AM, Schenkman S, Chatelain E, Freitas-Junior LH. Sci Rep 4 4703 (2014)
  4. Recent Developments in Sterol 14-demethylase Inhibitors for Chagas Disease. Buckner FS, Urbina JA. Int J Parasitol Drugs Drug Resist 2 236-242 (2012)
  5. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. Soares Medeiros LC, South L, Peng D, Bustamante JM, Wang W, Bunkofske M, Perumal N, Sanchez-Valdez F, Tarleton RL. mBio 8 e01788-17 (2017)
  6. A nonazole CYP51 inhibitor cures Chagas' disease in a mouse model of acute infection. Doyle PS, Chen CK, Johnston JB, Hopkins SD, Leung SS, Jacobson MP, Engel JC, McKerrow JH, Podust LM. Antimicrob Agents Chemother 54 2480-2488 (2010)
  7. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51. Gunatilleke SS, Calvet CM, Johnston JB, Chen CK, Erenburg G, Gut J, Engel JC, Ang KK, Mulvaney J, Chen S, Arkin MR, McKerrow JH, Podust LM. PLoS Negl Trop Dis 6 e1736 (2012)
  8. Antifungal Azoles: Structural Insights into Undesired Tight Binding to Cholesterol-Metabolizing CYP46A1. Mast N, Zheng W, Stout CD, Pikuleva IA. Mol Pharmacol 84 86-94 (2013)
  9. Aspergillus fumigatus harbouring the sole Y121F mutation shows decreased susceptibility to voriconazole but maintained susceptibility to itraconazole and posaconazole. Lescar J, Meyer I, Akshita K, Srinivasaraghavan K, Verma C, Palous M, Mazier D, Datry A, Fekkar A. J Antimicrob Chemother 69 3244-3247 (2014)
  10. Pharmacokinetics of posaconazole within epithelial cells and fungi: insights into potential mechanisms of action during treatment and prophylaxis. Campoli P, Perlin DS, Kristof AS, White TC, Filler SG, Sheppard DC. J Infect Dis 208 1717-1728 (2013)
  11. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy. Mast N, Lin JB, Pikuleva IA. Mol Pharmacol 88 428-436 (2015)
  12. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). Debnath A, Calvet CM, Jennings G, Zhou W, Aksenov A, Luth MR, Abagyan R, Nes WD, McKerrow JH, Podust LM. PLoS Negl Trop Dis 11 e0006104 (2017)
  13. Successful treatment of Old World cutaneous leishmaniasis caused by Leishmania infantum with posaconazole. Paniz Mondolfi AE, Stavropoulos C, Gelanew T, Loucas E, Perez Alvarez AM, Benaim G, Polsky B, Schoenian G, Sordillo EM. Antimicrob Agents Chemother 55 1774-1776 (2011)
  14. Rational development of 4-aminopyridyl-based inhibitors targeting Trypanosoma cruzi CYP51 as anti-chagas agents. Choi JY, Calvet CM, Gunatilleke SS, Ruiz C, Cameron MD, McKerrow JH, Podust LM, Roush WR. J Med Chem 56 7651-7668 (2013)
  15. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents. Yang PY, Wang M, Li L, Wu H, He CY, Yao SQ. Chemistry 18 6528-6541 (2012)
  16. Chemical-biological characterization of a cruzain inhibitor reveals a second target and a mammalian off-target. Choy JW, Bryant C, Calvet CM, Doyle PS, Gunatilleke SS, Leung SS, Ang KK, Chen S, Gut J, Oses-Prieto JA, Johnston JB, Arkin MR, Burlingame AL, Taunton J, Jacobson MP, McKerrow JM, Podust LM, Renslo AR. Beilstein J Org Chem 9 15-25 (2013)
  17. Design, structure-activity relationship and in vivo efficacy of piperazine analogues of fenarimol as inhibitors of Trypanosoma cruzi. Keenan M, Alexander PW, Diao H, Best WM, Khong A, Kerfoot M, Thompson RC, White KL, Shackleford DM, Ryan E, Gregg AD, Charman SA, von Geldern TW, Scandale I, Chatelain E. Bioorg Med Chem 21 1756-1763 (2013)
  18. Impact of Homologous Resistance Mutations from Pathogenic Yeast on Saccharomyces cerevisiae Lanosterol 14α-Demethylase. Sagatova AA, Keniya MV, Tyndall JDA, Monk BC. Antimicrob Agents Chemother 62 e02242-17 (2018)
  19. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection. Calvet CM, Choi JY, Thomas D, Suzuki B, Hirata K, Lostracco-Johnson S, de Mesquita LB, Nogueira A, Meuser-Batista M, Silva TA, Siqueira-Neto JL, Roush WR, de Souza Pereira MC, McKerrow JH, Podust LM. PLoS Negl Trop Dis 11 e0006132 (2017)
  20. Genetic profiling of the isoprenoid and sterol biosynthesis pathway genes of Trypanosoma cruzi. Cosentino RO, Agüero F. PLoS One 9 e96762 (2014)
  21. R-Configuration of 4-Aminopyridyl-Based Inhibitors of CYP51 Confers Superior Efficacy Against Trypanosoma cruzi. Choi JY, Calvet CM, Vieira DF, Gunatilleke SS, Cameron MD, McKerrow JH, Podust LM, Roush WR. ACS Med Chem Lett 5 434-439 (2014)
  22. Trypanosoma brucei CYP51: Essentiality and Targeting Therapy in an Experimental Model. Dauchy FA, Bonhivers M, Landrein N, Dacheux D, Courtois P, Lauruol F, Daulouède S, Vincendeau P, Robinson DR. PLoS Negl Trop Dis 10 e0005125 (2016)
  23. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale. Schiffer L, Anderko S, Hobler A, Hannemann F, Kagawa N, Bernhardt R. Microb Cell Fact 14 25 (2015)
  24. Azole resistance mechanisms in pathogenic M. furfur. Leong C, Kit JCW, Lee SM, Lam YI, Goh JPZ, Ianiri G, Dawson TL. Antimicrob Agents Chemother 65 AAC.01975-20 (2021)
  25. Interaction of Human Drug-Metabolizing CYP3A4 with Small Inhibitory Molecules. Sevrioukova I. Biochemistry 58 930-939 (2019)
  26. The Tetrazole VT-1161 Is a Potent Inhibitor of Trichophyton rubrum through Its Inhibition of T. rubrum CYP51. Warrilow AGS, Parker JE, Price CL, Garvey EP, Hoekstra WJ, Schotzinger RJ, Wiederhold NP, Nes WD, Kelly DE, Kelly SL. Antimicrob Agents Chemother 61 e00333-17 (2017)
  27. Molecular recognition of CYP26A1 binding pockets and structure-activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents. Sun B, Song S, Hao CZ, Huang WX, Liu CC, Xie HL, Lin B, Lin B, Cheng MS, Zhao DM. J Mol Graph Model 56 10-19 (2015)
  28. Coumarin Antifungal Lead Compounds from Millettia thonningii and Their Predicted Mechanism of Action. Ayine-Tora DM, Kingsford-Adaboh R, Asomaning WA, Harrison JJ, Mills-Robertson FC, Bukari Y, Sakyi PO, Kaminta S, Reynisson J. Molecules 21 E1369 (2016)
  29. Response surface methodology in drug design: A case study on docking analysis of a potent antifungal fluconazole. Bohlooli F, Sepehri S, Razzaghi-Asl N. Comput Biol Chem 67 158-173 (2017)
  30. The CYP51F1 Gene of Leptographium qinlingensis: Sequence Characteristic, Phylogeny and Transcript Levels. Dai L, Li Z, Yu J, Ma M, Zhang R, Chen H, Pham T. Int J Mol Sci 16 12014-12034 (2015)
  31. Drug discovery for neglected tropical diseases at the Sandler Center. Robertson SA, Renslo AR. Future Med Chem 3 1279-1288 (2011)
  32. Insights into Ergosterol Peroxide's Trypanocidal Activity. Meza-Menchaca T, Ramos-Ligonio A, López-Monteon A, Vidal Limón A, Kaluzhskiy LA, V Shkel T, V Strushkevich N, Jiménez-García LF, Agredano Moreno LT, Gallegos-García V, Suárez-Medellín J, Trigos Á. Biomolecules 9 E484 (2019)
  33. Molecular Modeling and Structural Stability of Wild-Type and Mutant CYP51 from Leishmania major: In Vitro and In Silico Analysis of a Laboratory Strain. Keighobadi M, Emami S, Lagzian M, Fakhar M, Rafiei A, Valadan R. Molecules 23 E696 (2018)
  34. A world-wide analysis of reduced sensitivity to DMI fungicides in the banana pathogen Pseudocercospora fijiensis. Chong P, Essoh JN, Arango Isaza RE, Keizer P, Stergiopoulos I, Seidl MF, Guzman M, Sandoval J, Verweij PE, Scalliet G, Sierotzski H, de Lapeyre de Bellaire L, Crous PW, Carlier J, Cros S, Meijer HJG, Peralta EL, Kema GHJ. Pest Manag Sci 77 3273-3288 (2021)
  35. Design, synthesis, and biological evaluation of 1-[(biarylmethyl)methylamino]-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ols as potent antifungal agents: new insights into structure-activity relationships. Guillon R, Pagniez F, Rambaud C, Picot C, Duflos M, Logé C, Le Pape P. ChemMedChem 6 1806-1815 (2011)
  36. Effects of (1E,4E)-2-Methyl-1,5-bis(4-nitrophenyl)penta-1,4-dien-3-one on Trypanosoma cruzi and Its Combinational Effect with Benznidazole, Ketoconazole, or Fluconazole. Peron F, Lazarin-Bidóia D, Ud Din Z, Rodrigues-Filho E, Ueda-Nakamura T, Silva SO, Nakamura CV, Nakamura CV. Biomed Res Int 2017 7254193 (2017)
  37. Homology modeling, molecular docking and spectra assay studies of sterol 14α-demethylase from Penicillium digitatum. Li S, Zhang J, Cao S, Han R, Yuan Y, Yang J, Yan Y, Liu D. Biotechnol Lett 33 2005-2011 (2011)
  38. Impact of Laboratory-Adapted Intracellular Trypanosoma cruzi Strains on the Activity Profiles of Compounds with Anti-T. cruzi Activity. Sykes ML, Kennedy EK, Avery VM. Microorganisms 11 476 (2023)
  39. Molecular modeling of human lanosterol 14α-demethylase complexes with substrates and their derivatives. Mukha DV, Feranchuk SI, Gilep AA, Usanov SA. Biochemistry (Mosc) 76 175-185 (2011)
  40. Syntheses of Novel 4-Substituted N-(5-amino-1H-1,2,4-triazol-3-yl)pyridine-3-sulfonamide Derivatives with Potential Antifungal Activity. Szafrański K, Sławiński J, Kędzia A, Kwapisz E. Molecules 22 E1926 (2017)
  41. Anti-Trypanosoma cruzi Activity, Mutagenicity, Hepatocytotoxicity and Nitroreductase Enzyme Evaluation of 3-Nitrotriazole, 2-Nitroimidazole and Triazole Derivatives. Menozzi CAC, França RRF, Luccas PH, Baptista MDS, Fernandes TVA, Hoelz LVB, Sales Junior PA, Murta SMF, Romanha A, Galvão BVD, Macedo MO, Goldstein ADC, Araujo-Lima CF, Felzenszwalb I, Nonato MC, Castelo-Branco FS, Boechat N. Molecules 28 7461 (2023)
  42. Cloning, expression, purification and spectrophotometric analysis of lanosterol 14-alpha demethylase from Leishmania braziliensis (LbCYP51). Freitas HF, Leal Pires AB, Castilho MS. Mol Biol Rep 45 175-183 (2018)
  43. Evaluation of Luminogenic Substrates as Probe Substrates for Bacterial Cytochrome P450 Enzymes: Application to Mycobacterium tuberculosis. Ortega Ugalde S, Ma D, Cali JJ, Commandeur JNM. SLAS Discov 24 745-754 (2019)
  44. In Silico Antiprotozoal Evaluation of 1,4-Naphthoquinone Derivatives against Chagas and Leishmaniasis Diseases Using QSAR, Molecular Docking, and ADME Approaches. Prieto Cárdenas LS, Arias Soler KA, Nossa González DL, Rozo Núñez WE, Cárdenas-Chaparro A, Duchowicz PR, Gómez Castaño JA. Pharmaceuticals (Basel) 15 687 (2022)