2y8l Citations

Structure of mammalian AMPK and its regulation by ADP.

Abstract

The heterotrimeric AMP-activated protein kinase (AMPK) has a key role in regulating cellular energy metabolism; in response to a fall in intracellular ATP levels it activates energy-producing pathways and inhibits energy-consuming processes. AMPK has been implicated in a number of diseases related to energy metabolism including type 2 diabetes, obesity and, most recently, cancer. AMPK is converted from an inactive form to a catalytically competent form by phosphorylation of the activation loop within the kinase domain: AMP binding to the γ-regulatory domain promotes phosphorylation by the upstream kinase, protects the enzyme against dephosphorylation, as well as causing allosteric activation. Here we show that ADP binding to just one of the two exchangeable AXP (AMP/ADP/ATP) binding sites on the regulatory domain protects the enzyme from dephosphorylation, although it does not lead to allosteric activation. Our studies show that active mammalian AMPK displays significantly tighter binding to ADP than to Mg-ATP, explaining how the enzyme is regulated under physiological conditions where the concentration of Mg-ATP is higher than that of ADP and much higher than that of AMP. We have determined the crystal structure of an active AMPK complex. The structure shows how the activation loop of the kinase domain is stabilized by the regulatory domain and how the kinase linker region interacts with the regulatory nucleotide-binding site that mediates protection against dephosphorylation. From our biochemical and structural data we develop a model for how the energy status of a cell regulates AMPK activity.

Articles - 2y8l mentioned but not cited (2)

  1. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG. Biochem J 459 275-287 (2014)
  2. A novel, de novo mutation in the PRKAG2 gene: infantile-onset phenotype and the signaling pathway involved. Xu Y, Gray A, Hardie DG, Uzun A, Shaw S, Padbury J, Phornphutkul C, Tseng YT. Am J Physiol Heart Circ Physiol 313 H283-H292 (2017)


Reviews citing this publication (207)

  1. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Hardie DG, Ross FA, Hawley SA. Nat Rev Mol Cell Biol 13 251-262 (2012)
  2. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Mihaylova MM, Shaw RJ. Nat Cell Biol 13 1016-1023 (2011)
  3. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Hardie DG. Genes Dev 25 1895-1908 (2011)
  4. Cellular and molecular mechanisms of metformin: an overview. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Clin Sci (Lond) 122 253-270 (2012)
  5. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Alers S, Löffler AS, Wesselborg S, Stork B. Mol Cell Biol 32 2-11 (2012)
  6. Fueling immunity: insights into metabolism and lymphocyte function. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Science 342 1242454 (2013)
  7. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Garcia D, Shaw RJ. Mol Cell 66 789-800 (2017)
  8. AMPK and mTOR in cellular energy homeostasis and drug targets. Inoki K, Kim J, Guan KL. Annu Rev Pharmacol Toxicol 52 381-400 (2012)
  9. AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Hardie DG, Schaffer BE, Brunet A. Trends Cell Biol 26 190-201 (2016)
  10. AMPK, insulin resistance, and the metabolic syndrome. Ruderman NB, Carling D, Prentki M, Cacicedo JM. J Clin Invest 123 2764-2772 (2013)
  11. Autophagy regulation by nutrient signaling. Russell RC, Yuan HX, Guan KL. Cell Res 24 42-57 (2014)
  12. Metabolic signaling in fuel-induced insulin secretion. Prentki M, Matschinsky FM, Madiraju SR. Cell Metab 18 162-185 (2013)
  13. AMPK signalling in health and disease. Carling D. Curr Opin Cell Biol 45 31-37 (2017)
  14. AMPK--sensing energy while talking to other signaling pathways. Hardie DG. Cell Metab 20 939-952 (2014)
  15. AMPK activators: mechanisms of action and physiological activities. Kim J, Yang G, Kim Y, Kim J, Ha J. Exp Mol Med 48 e224 (2016)
  16. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Hardie DG. Curr Opin Cell Biol 33 1-7 (2015)
  17. Amino acids and mTORC1: from lysosomes to disease. Efeyan A, Zoncu R, Sabatini DM. Trends Mol Med 18 524-533 (2012)
  18. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu Rev Biochem 81 587-613 (2012)
  19. AMP-activated protein kinase: nature's energy sensor. Carling D, Mayer FV, Sanders MJ, Gamblin SJ. Nat Chem Biol 7 512-518 (2011)
  20. AMP-activated protein kinase: new regulation, new roles? Carling D, Thornton C, Woods A, Sanders MJ. Biochem J 445 11-27 (2012)
  21. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Hardie DG. Diabetes 62 2164-2172 (2013)
  22. AMP-activated protein kinase: a target for drugs both ancient and modern. Hardie DG, Ross FA, Hawley SA. Chem Biol 19 1222-1236 (2012)
  23. AMPK at the nexus of energetics and aging. Burkewitz K, Zhang Y, Mair WB. Cell Metab 20 10-25 (2014)
  24. Treatment of nonalcoholic fatty liver disease: role of AMPK. Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Am J Physiol Endocrinol Metab 311 E730-E740 (2016)
  25. Nutrient sensing, metabolism, and cell growth control. Yuan HX, Xiong Y, Guan KL. Mol Cell 49 379-387 (2013)
  26. AMPK activation: a therapeutic target for type 2 diabetes? Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. Diabetes Metab Syndr Obes 7 241-253 (2014)
  27. LKB1 and AMPK and the cancer-metabolism link - ten years after. Hardie DG, Alessi DR. BMC Biol 11 36 (2013)
  28. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. Redox Biol 20 247-260 (2019)
  29. Nutrient-sensing mechanisms across evolution. Chantranupong L, Wolfson RL, Sabatini DM. Cell 161 67-83 (2015)
  30. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Schultze SM, Hemmings BA, Niessen M, Tschopp O. Expert Rev Mol Med 14 e1 (2012)
  31. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. Ross FA, MacKintosh C, Hardie DG. FEBS J 283 2987-3001 (2016)
  32. AMPK in skeletal muscle function and metabolism. Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. FASEB J 32 1741-1777 (2018)
  33. AMP-activated protein kinase regulation and biological actions in the heart. Zaha VG, Young LH. Circ Res 111 800-814 (2012)
  34. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, Pasanisi P, Pilotti S. Oncogene 32 1475-1487 (2013)
  35. Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Lahiri V, Hawkins WD, Klionsky DJ. Cell Metab 29 803-826 (2019)
  36. AMPK: regulating energy balance at the cellular and whole body levels. Hardie DG, Ashford ML. Physiology (Bethesda) 29 99-107 (2014)
  37. AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Sanli T, Steinberg GR, Singh G, Tsakiridis T. Cancer Biol Ther 15 156-169 (2014)
  38. AMPK: energy sensor and survival mechanism in the ischemic heart. Qi D, Young LH. Trends Endocrinol Metab 26 422-429 (2015)
  39. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Yin F, Boveris A, Cadenas E. Antioxid Redox Signal 20 353-371 (2014)
  40. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. Grahame Hardie D. J Intern Med 276 543-559 (2014)
  41. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Yang CS, Zhang J, Zhang L, Huang J, Wang Y. Mol Nutr Food Res 60 160-174 (2016)
  42. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Mackenzie RW, Elliott BT. Diabetes Metab Syndr Obes 7 55-64 (2014)
  43. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. López M, Nogueiras R, Tena-Sempere M, Diéguez C. Nat Rev Endocrinol 12 421-432 (2016)
  44. AMP-activated protein kinase, stress responses and cardiovascular diseases. Wang S, Song P, Zou MH. Clin Sci (Lond) 122 555-573 (2012)
  45. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Hardie DG. Annu Rev Nutr 34 31-55 (2014)
  46. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J. FEBS J 278 3978-3990 (2011)
  47. Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies. Zadra G, Batista JL, Loda M. Mol Cancer Res 13 1059-1072 (2015)
  48. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Front Plant Sci 5 190 (2014)
  49. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. Broeckx T, Hulsmans S, Rolland F. J Exp Bot 67 6215-6252 (2016)
  50. AMPK-Mediated Regulation of Lipid Metabolism by Phosphorylation. Wang Q, Liu S, Zhai A, Zhang B, Tian G. Biol Pharm Bull 41 985-993 (2018)
  51. AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System. Salt IP, Hardie DG. Circ Res 120 1825-1841 (2017)
  52. Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation. Salt IP, Palmer TM. Expert Opin Investig Drugs 21 1155-1167 (2012)
  53. Keeping the home fires burning: AMP-activated protein kinase. Hardie DG. J R Soc Interface 15 20170774 (2018)
  54. Molecular Pathways: Is AMPK a Friend or a Foe in Cancer? Hardie DG. Clin Cancer Res 21 3836-3840 (2015)
  55. Physiological functions of peroxisome proliferator-activated receptor β. Neels JG, Grimaldi PA. Physiol Rev 94 795-858 (2014)
  56. Current understanding of metformin effect on the control of hyperglycemia in diabetes. An H, He L. J Endocrinol 228 R97-106 (2016)
  57. Nonalcoholic Fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective. Gusdon AM, Song KX, Qu S. Oxid Med Cell Longev 2014 637027 (2014)
  58. Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer. Dasgupta B, Chhipa RR. Trends Pharmacol Sci 37 192-206 (2016)
  59. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Song P, Zou MH. Free Radic Biol Med 52 1607-1619 (2012)
  60. AMP-activated protein kinase: a target for old drugs against diabetes and cancer. Russo GL, Russo M, Ungaro P. Biochem Pharmacol 86 339-350 (2013)
  61. The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. Sanchez AM, Candau RB, Csibi A, Pagano AF, Raibon A, Bernardi H. Am J Physiol Cell Physiol 303 C475-85 (2012)
  62. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. Miller VJ, Villamena FA, Volek JS. J Nutr Metab 2018 5157645 (2018)
  63. Regulation of AMP-activated protein kinase by natural and synthetic activators. Grahame Hardie D. Acta Pharm Sin B 6 1-19 (2016)
  64. The role of AMPK in T cell metabolism and function. Ma EH, Poffenberger MC, Wong AH, Jones RG. Curr Opin Immunol 46 45-52 (2017)
  65. CBS domains: Ligand binding sites and conformational variability. Ereño-Orbea J, Oyenarte I, Martínez-Cruz LA. Arch Biochem Biophys 540 70-81 (2013)
  66. Expanding roles for AMPK in skeletal muscle plasticity. Mounier R, Théret M, Lantier L, Foretz M, Viollet B. Trends Endocrinol Metab 26 275-286 (2015)
  67. Structure and Physiological Regulation of AMPK. Yan Y, Zhou XE, Xu HE, Melcher K. Int J Mol Sci 19 E3534 (2018)
  68. Signaling networks in immunometabolism. Saravia J, Raynor JL, Chapman NM, Lim SA, Chi H. Cell Res 30 328-342 (2020)
  69. Activation of mTOR: a culprit of Alzheimer's disease? Cai Z, Chen G, He W, Xiao M, Yan LJ. Neuropsychiatr Dis Treat 11 1015-1030 (2015)
  70. Role of AMP-activated protein kinase in cancer therapy. Rehman G, Shehzad A, Khan AL, Hamayun M. Arch Pharm (Weinheim) 347 457-468 (2014)
  71. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Ahmad B, Serpell CJ, Fong IL, Wong EH. Front Mol Biosci 7 76 (2020)
  72. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? . Vara-Ciruelos D, Russell FM, Hardie DG. Open Biol 9 190099 (2019)
  73. AMP-activated protein kinase pathway and bone metabolism. Jeyabalan J, Shah M, Viollet B, Chenu C. J Endocrinol 212 277-290 (2012)
  74. AMPK, Mitochondrial Function, and Cardiovascular Disease. Wu S, Zou MH. Int J Mol Sci 21 E4987 (2020)
  75. AMPK: restoring metabolic homeostasis over space and time. Trefts E, Shaw RJ. Mol Cell 81 3677-3690 (2021)
  76. How metabolites modulate metabolic flux. Wegner A, Meiser J, Weindl D, Hiller K. Curr Opin Biotechnol 34 16-22 (2015)
  77. Molecular Insights into the Enigmatic Metabolic Regulator, SnRK1. Emanuelle S, Doblin MS, Stapleton DI, Bacic A, Gooley PR. Trends Plant Sci 21 341-353 (2016)
  78. Cellular Metabolism in Lung Health and Disease. Liu G, Summer R. Annu Rev Physiol 81 403-428 (2019)
  79. Integrins and Cell Metabolism: An Intimate Relationship Impacting Cancer. Ata R, Antonescu CN. Int J Mol Sci 18 E189 (2017)
  80. Bioenergy sensing in the brain: the role of AMP-activated protein kinase in neuronal metabolism, development and neurological diseases. Amato S, Man HY. Cell Cycle 10 3452-3460 (2011)
  81. Circadian clocks and breast cancer. Blakeman V, Williams JL, Williams JL, Meng QJ, Streuli CH. Breast Cancer Res 18 89 (2016)
  82. Nutritional Modulation of AMPK-Impact upon Metabolic-Inflammation. Lyons CL, Roche HM. Int J Mol Sci 19 E3092 (2018)
  83. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. Rødkaer SV, Faergeman NJ. FEMS Yeast Res 14 683-696 (2014)
  84. SIRT3: as simple as it seems? Lombard DB, Zwaans BM. Gerontology 60 56-64 (2014)
  85. Targeting LKB1 in cancer - exposing and exploiting vulnerabilities. Momcilovic M, Shackelford DB. Br J Cancer 113 574-584 (2015)
  86. Hypothalamic AMPK and energy balance. López M. Eur J Clin Invest 48 e12996 (2018)
  87. LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Blagih J, Krawczyk CM, Jones RG. Immunol Rev 249 59-71 (2012)
  88. Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke. Manwani B, McCullough LD. J Neurosci Res 91 1018-1029 (2013)
  89. Rhizoma Coptidis and Berberine as a Natural Drug to Combat Aging and Aging-Related Diseases via Anti-Oxidation and AMPK Activation. Xu Z, Feng W, Shen Q, Yu N, Yu K, Wang S, Chen Z, Shioda S, Guo Y. Aging Dis 8 760-777 (2017)
  90. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis-Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Front Physiol 11 580167 (2020)
  91. Perivascular fat, AMP-activated protein kinase and vascular diseases. Almabrouk TA, Ewart MA, Salt IP, Kennedy S. Br J Pharmacol 171 595-617 (2014)
  92. Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Lim SM, Mohamad Hanif EA, Chin SF. Cell Biosci 11 56 (2021)
  93. New insights into activation and function of the AMPK. Steinberg GR, Hardie DG. Nat Rev Mol Cell Biol 24 255-272 (2023)
  94. AMP-activated protein kinase - not just an energy sensor. Hardie DG, Lin SC. F1000Res 6 1724 (2017)
  95. 5'-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications. Yao F, Zhang M, Chen L. Acta Pharm Sin B 6 20-25 (2016)
  96. Adenosine monophosphate-activated kinase and its key role in catabolism: structure, regulation, biological activity, and pharmacological activation. Krishan S, Richardson DR, Richardson DR, Sahni S. Mol Pharmacol 87 363-377 (2015)
  97. Regulation and function of uncoordinated-51 like kinase proteins. Chan EY. Antioxid Redox Signal 17 775-785 (2012)
  98. Interactive Roles for AMPK and Glycogen from Cellular Energy Sensing to Exercise Metabolism. Janzen NR, Whitfield J, Hoffman NJ. Int J Mol Sci 19 E3344 (2018)
  99. mTOR in Down syndrome: Role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia. Di Domenico F, Tramutola A, Foppoli C, Head E, Perluigi M, Butterfield DA. Free Radic Biol Med 114 94-101 (2018)
  100. AMP-activated protein kinase: structure, function, and role in pathological processes. Novikova DS, Garabadzhiu AV, Melino G, Barlev NA, Tribulovich VG. Biochemistry (Mosc) 80 127-144 (2015)
  101. AMPK: a therapeutic target of heart failure-not only metabolism regulation. Li X, Liu J, Lu Q, Ren D, Sun X, Rousselle T, Tan Y, Li J. Biosci Rep 39 BSR20181767 (2019)
  102. Lysosomes: Signaling Hubs for Metabolic Sensing and Longevity. Savini M, Zhao Q, Wang MC. Trends Cell Biol 29 876-887 (2019)
  103. Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. Yin F, Sancheti H, Liu Z, Cadenas E. J Physiol 594 2025-2042 (2016)
  104. Organismal carbohydrate and lipid homeostasis. Hardie DG. Cold Spring Harb Perspect Biol 4 a006031 (2012)
  105. EJE PRIZE 2017: Hypothalamic AMPK: a golden target against obesity? López M. Eur J Endocrinol 176 R235-R246 (2017)
  106. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Knuiman P, Hopman MT, Mensink M. Nutr Metab (Lond) 12 59 (2015)
  107. Metabolic regulation of the cell cycle. Lee IH, Finkel T. Curr Opin Cell Biol 25 724-729 (2013)
  108. What has passed is prolog: new cellular and physiological roles of G6PD. Yang HC, Wu YH, Liu HY, Stern A, Chiu DT. Free Radic Res 50 1047-1064 (2016)
  109. AMP-activated protein kinase regulation of kidney tubular transport. Pastor-Soler NM, Hallows KR. Curr Opin Nephrol Hypertens 21 523-533 (2012)
  110. The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective. Agius L, Ford BE, Chachra SS. Int J Mol Sci 21 3240 (2020)
  111. Direct AMP-activated protein kinase activators: a review of evidence from the patent literature. Giordanetto F, Karis D. Expert Opin Ther Pat 22 1467-1477 (2012)
  112. TAK1 mediates convergence of cellular signals for death and survival. Aashaq S, Batool A, Andrabi KI. Apoptosis 24 3-20 (2019)
  113. AMPK signaling and its targeting in cancer progression and treatment. Hsu CC, Peng D, Cai Z, Lin HK. Semin Cancer Biol 85 52-68 (2022)
  114. AMPK: a balancer of the renin-angiotensin system. Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. Biosci Rep 39 BSR20181994 (2019)
  115. Metformin: Insights into its anticancer potential with special reference to AMPK dependent and independent pathways. Ikhlas S, Ahmad M. Life Sci 185 53-62 (2017)
  116. AMPK-mTOR Signaling and Cellular Adaptations in Hypoxia. Chun Y, Kim J. Int J Mol Sci 22 9765 (2021)
  117. AMPK: opposing the metabolic changes in both tumour cells and inflammatory cells? Dandapani M, Hardie DG. Biochem Soc Trans 41 687-693 (2013)
  118. AMPKβ subunits: more than just a scaffold in the formation of AMPK complex. Sanz P, Rubio T, Garcia-Gimeno MA. FEBS J 280 3723-3733 (2013)
  119. Eukaryotic translation initiation factors as promising targets in cancer therapy. Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T. Cell Commun Signal 18 175 (2020)
  120. Hypothalamic AMPK as a Regulator of Energy Homeostasis. Huynh MK, Kinyua AW, Yang DJ, Kim KW. Neural Plast 2016 2754078 (2016)
  121. AMP-activated protein kinase: potential role in cardiac electrophysiology and arrhythmias. Harada M, Nattel SN, Nattel S. Circ Arrhythm Electrophysiol 5 860-867 (2012)
  122. Mitoplasticity: adaptation biology of the mitochondrion to the cellular redox state in physiology and carcinogenesis. Jose C, Melser S, Benard G, Rossignol R. Antioxid Redox Signal 18 808-849 (2013)
  123. Advances in anion binding and sensing using luminescent lanthanide complexes. Bodman SE, Butler SJ. Chem Sci 12 2716-2734 (2021)
  124. Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies. Martelli AM, Chiarini F, Evangelisti C, Ognibene A, Bressanin D, Billi AM, Manzoli L, Cappellini A, McCubrey JA. Expert Opin Ther Targets 16 729-742 (2012)
  125. The AMP-Activated Protein Kinase Plays a Role in Antioxidant Defense and Regulation of Vascular Inflammation. Jansen T, Kvandová M, Daiber A, Stamm P, Frenis K, Schulz E, Münzel T, Kröller-Schön S. Antioxidants (Basel) 9 E525 (2020)
  126. Small molecule adenosine 5'-monophosphate activated protein kinase (AMPK) modulators and human diseases. Rana S, Blowers EC, Natarajan A. J Med Chem 58 2-29 (2015)
  127. Therapeutic Mechanisms of Herbal Medicines Against Insulin Resistance: A Review. Li J, Bai L, Wei F, Zhao J, Wang D, Xiao Y, Yan W, Wei J. Front Pharmacol 10 661 (2019)
  128. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. Jamsheer K M, Jindal S, Laxmi A. J Exp Bot 70 2239-2259 (2019)
  129. Metabolic Reprogramming as a Driver of Fibroblast Activation in PulmonaryFibrosis. Para R, Romero F, George G, Summer R. Am J Med Sci 357 394-398 (2019)
  130. The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub. Kim E, Ahn H, Kim MG, Lee H, Kim S. Mol Cells 40 315-321 (2017)
  131. Adenylate Kinase and Metabolic Signaling in Cancer Cells. Klepinin A, Zhang S, Klepinina L, Rebane-Klemm E, Terzic A, Kaambre T, Dzeja P. Front Oncol 10 660 (2020)
  132. Involvement of AMP-activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain. Saito M, Saito M, Das BC. Int J Dev Neurosci 77 48-59 (2019)
  133. Recent progress in the identification of adenosine monophosphate-activated protein kinase (AMPK) activators. Cameron KO, Kurumbail RG. Bioorg Med Chem Lett 26 5139-5148 (2016)
  134. Understanding Metabolic Regulation at a Systems Level: Metabolite Sensing, Mathematical Predictions, and Model Organisms. Watson E, Yilmaz LS, Walhout AJ. Annu Rev Genet 49 553-575 (2015)
  135. Implications of AMPK in the Formation of Epithelial Tight Junctions. Rowart P, Wu J, Caplan MJ, Jouret F. Int J Mol Sci 19 E2040 (2018)
  136. AMP kinase in exercise adaptation of skeletal muscle. Jessen N, Sundelin EI, Møller AB. Drug Discov Today 19 999-1002 (2014)
  137. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Russell FM, Hardie DG. Int J Mol Sci 22 E186 (2020)
  138. Role of AMP-activated protein kinase in metabolic depression in animals. Rider MH. J Comp Physiol B 186 1-16 (2016)
  139. AMP-Activated Protein Kinase (AMPK)-Dependent Regulation of Renal Transport. Glosse P, Föller M. Int J Mol Sci 19 E3481 (2018)
  140. Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Duszka K, Gregor A, Guillou H, König J, Wahli W. Cells 9 E1708 (2020)
  141. The Implication of Oxidative Stress and AMPK-Nrf2 Antioxidative Signaling in Pneumonia Pathogenesis. Xu W, Zhao T, Xiao H. Front Endocrinol (Lausanne) 11 400 (2020)
  142. Unravelling the connection between metabolism and tumorigenesis through studies of the liver kinase B1 tumour suppressor. Shackelford DB. J Carcinog 12 16 (2013)
  143. Advances in the research of AMPK and its subunit genes. Liu WY, Jiang RS. Pak J Biol Sci 16 1459-1468 (2013)
  144. Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Bahar E, Han SY, Kim JY, Yoon H. Cancers (Basel) 14 1462 (2022)
  145. Recent Data on Cellular Component Turnover: Focus on Adaptations to Physical Exercise. Sanchez AM, Candau R, Bernardi H. Cells 8 E542 (2019)
  146. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. Maissan P, Mooij EJ, Barberis M. Biology (Basel) 10 194 (2021)
  147. Triggering receptor expressed on myeloid cells and 5'adenosine monophosphate-activated protein kinase in the inflammatory response: a potential therapeutic target. Thankam FG, Dilisio MF, Dougherty KA, Dietz NE, Agrawal DK. Expert Rev Clin Immunol 12 1239-1249 (2016)
  148. Unraveling the mystery of cancer metabolism in the genesis of tumor-initiating cells and development of cancer. Zhang G, Yang P, Guo P, Miele L, Sarkar FH, Wang Z, Zhou Q. Biochim Biophys Acta 1836 49-59 (2013)
  149. Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Shpakov AO. Pharmaceuticals (Basel) 14 42 (2021)
  150. Spatial control of AMPK signaling at subcellular compartments. Chauhan AS, Zhuang L, Gan B. Crit Rev Biochem Mol Biol 55 17-32 (2020)
  151. AMPK activation--protean potential for boosting healthspan. McCarty MF. Age (Dordr) 36 641-663 (2014)
  152. Adaptive immunity at the crossroads of autophagy and metabolism. Metur SP, Klionsky DJ. Cell Mol Immunol 18 1096-1105 (2021)
  153. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders. Su KH, Dai C, Dai C. Cell Mol Life Sci 73 4231-4248 (2016)
  154. Nutrient Signaling and Lysosome Positioning Crosstalk Through a Multifunctional Protein, Folliculin. de Martín Garrido N, Aylett CHS. Front Cell Dev Biol 8 108 (2020)
  155. A Narrative Review on the Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence from Human Studies. von Loeffelholz C, Coldewey SM, Birkenfeld AL. Cells 10 1822 (2021)
  156. AMP-activated protein kinase and energy balance in breast cancer. Zhao H, Orhan YC, Zha X, Esencan E, Chatterton RT, Bulun SE. Am J Transl Res 9 197-213 (2017)
  157. Emerging Roles and Therapeutic Interventions of Aerobic Glycolysis in Glioma. Han W, Shi J, Cao J, Dong B, Guan W. Onco Targets Ther 13 6937-6955 (2020)
  158. Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Sukumaran A, Choi K, Dasgupta B. Front Cell Dev Biol 8 671 (2020)
  159. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacol Rev 73 59-88 (2021)
  160. Reciprocal Association between the Apical Junctional Complex and AMPK: A Promising Therapeutic Target for Epithelial/Endothelial Barrier Function? Tsukita K, Yano T, Tamura A, Tsukita S. Int J Mol Sci 20 E6012 (2019)
  161. The role of AMPK in metabolism and its influence on DNA damage repair. Szewczuk M, Boguszewska K, Kaźmierczak-Barańska J, Karwowski BT. Mol Biol Rep 47 9075-9086 (2020)
  162. Enzymes Regulated via Cystathionine β-Synthase Domains. Anashkin VA, Baykov AA, Lahti R. Biochemistry (Mosc) 82 1079-1087 (2017)
  163. AMPK in the Ventromedial Nucleus of the Hypothalamus: A Key Regulator for Thermogenesis. Liu H, Xu Y, Hu F. Front Endocrinol (Lausanne) 11 578830 (2020)
  164. Interactions between Autophagy and DNA Viruses. Yin HC, Shao SL, Jiang XJ, Xie PY, Sun WS, Yu TF. Viruses 11 E776 (2019)
  165. Magnesium Signaling in Plants. Kleczkowski LA, Igamberdiev AU. Int J Mol Sci 22 1159 (2021)
  166. The Regulatory Role of Key Metabolites in the Control of Cell Signaling. Milanesi R, Coccetti P, Tripodi F. Biomolecules 10 E862 (2020)
  167. Past strategies and future directions for identifying AMP-activated protein kinase (AMPK) modulators. Sinnett SE, Brenman JE. Pharmacol Ther 143 111-118 (2014)
  168. Snapshot: Implications for mTOR in Aging-related Ischemia/Reperfusion Injury. Liu D, Xu L, Zhang X, Shi C, Qiao S, Ma Z, Yuan J. Aging Dis 10 116-133 (2019)
  169. In scarcity and abundance: metabolic signals regulating cell growth. Saad S, Peter M, Dechant R. Physiology (Bethesda) 28 298-309 (2013)
  170. Inositol polyphosphate multikinase: an emerging player for the central action of AMP-activated protein kinase. Dailey MJ, Kim S. Biochem Biophys Res Commun 421 1-3 (2012)
  171. AMPK and Pulmonary Hypertension: Crossroads Between Vasoconstriction and Vascular Remodeling. Zhao Q, Song P, Zou MH. Front Cell Dev Biol 9 691585 (2021)
  172. Adenosine Monophosphate-Activated Protein Kinase (AMPK) as a Diverse Therapeutic Target: A Computational Perspective. Ramesh M, Vepuri SB, Oosthuizen F, Soliman ME. Appl Biochem Biotechnol 178 810-830 (2016)
  173. Metabolic stress and cancer: is autophagy the common denominator and a feasible target? Giuliani CM, Dass CR. J Pharm Pharmacol 66 597-614 (2014)
  174. AMPK Localization: A Key to Differential Energy Regulation. Afinanisa Q, Cho MK, Seong HA. Int J Mol Sci 22 10921 (2021)
  175. Current Evidences and Future Perspectives for AMPK in the Regulation of Milk Production and Mammary Gland Biology. Wu Z, Tian M, Heng J, Chen J, Chen F, Guan W, Zhang S. Front Cell Dev Biol 8 530 (2020)
  176. Energy management - a critical role in cancer induction? Garland J. Crit Rev Oncol Hematol 88 198-217 (2013)
  177. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Huynh C, Ryu J, Lee J, Inoki A, Inoki K. Nat Rev Nephrol 19 102-122 (2023)
  178. Screening methods for AMP-activated protein kinase modulators: a patent review. Kim J, Shin J, Ha J. Expert Opin Ther Pat 25 261-277 (2015)
  179. Sprinkler Technology Improves Broiler Production Sustainability: From Stress Alleviation to Water Usage Conservation: A Mini Review. Liang Y, Tabler GT, Dridi S. Front Vet Sci 7 544814 (2020)
  180. Targeting of AMP-activated protein kinase: prospects for computer-aided drug design. Kim J, Yang G, Ha J. Expert Opin Drug Discov 12 47-59 (2017)
  181. The role of AMPK in regulation of Na+,K+-ATPase in skeletal muscle: does the gauge always plug the sink? Pirkmajer S, Petrič M, Chibalin AV. J Muscle Res Cell Motil 42 77-97 (2021)
  182. Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy. Eriau E, Paillet J, Kroemer G, Pol JG. Cancers (Basel) 13 1260 (2021)
  183. Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential. Digregorio M, Lombard A, Lumapat PN, Scholtes F, Rogister B, Coppieters N. Cells 8 E1542 (2019)
  184. SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Dutka M, Bobiński R, Francuz T, Garczorz W, Zimmer K, Ilczak T, Ćwiertnia M, Hajduga MB. Cancers (Basel) 14 5811 (2022)
  185. Structural and biochemical insights into the allosteric activation mechanism of AMP-activated protein kinase. Li J, Li S, Wang F, Xin F. Chem Biol Drug Des 89 663-669 (2017)
  186. The Role of Sugar Signaling in Regulating Plant Fatty Acid Synthesis. Zhai Z, Keereetaweep J, Liu H, Xu C, Shanklin J. Front Plant Sci 12 643843 (2021)
  187. AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen? Evans AM, Hardie DG. Int J Mol Sci 21 E3518 (2020)
  188. Activators of AMPK: not just for type II diabetes. Zaks I, Getter T, Gruzman A. Future Med Chem 6 1325-1353 (2014)
  189. Contraction-induced signaling: evidence of convergent cascades in the regulation of muscle fatty acid metabolism. Turcotte LP, Abbott MJ. Can J Physiol Pharmacol 90 1419-1433 (2012)
  190. The Roles of AMPK in Revascularization. Chen MH, Fu QM. Cardiol Res Pract 2020 4028635 (2020)
  191. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Flores K, Siques P, Brito J, Arribas SM. Int J Mol Sci 23 6205 (2022)
  192. Autophagy in Cancer: A Metabolic Perspective. Sikder S, Mondal A, Das C, Kundu TK. Subcell Biochem 100 143-172 (2022)
  193. AMPK and Diseases: State of the Art Regulation by AMPK-Targeting Molecules. Tarasiuk O, Miceli M, Di Domizio A, Nicolini G. Biology (Basel) 11 1041 (2022)
  194. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Front Pharmacol 13 947387 (2022)
  195. Is the secret for a successful aging to keep track of cancer pathways? Tramontano D, Tramontano D, De Amicis F. J Cell Physiol 233 8467-8476 (2018)
  196. Role of AMPK in Myocardial Ischemia-Reperfusion Injury-Induced Cell Death in the Presence and Absence of Diabetes. Kandula N, Kumar S, Mandlem VKK, Siddabathuni A, Singh S, Kosuru R. Oxid Med Cell Longev 2022 7346699 (2022)
  197. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ. Front Immunol 14 1114582 (2023)
  198. Cellular Senescence in Obesity and Associated Complications: a New Therapeutic Target. Narasimhan A, Flores RR, Camell CD, Bernlohr DA, Robbins PD, Niedernhofer LJ. Curr Diab Rep 22 537-548 (2022)
  199. Pharmacological Approaches to Decelerate Aging: A Promising Path. Hassani B, Goshtasbi G, Nooraddini S, Firouzabadi N. Oxid Med Cell Longev 2022 4201533 (2022)
  200. A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: a review. Tavakoli-Rouzbehani OM, Maleki V, Shadnoush M, Taheri E, Alizadeh M. Daru 28 779-787 (2020)
  201. AMPK Signalling Pathway: A Potential Strategy for the Treatment of Heart Failure with Chinese Medicine. Liu C, Guo X, Zhou Y, Wang H. J Inflamm Res 16 5451-5464 (2023)
  202. Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer. Wang X, Li N, Zheng M, Yu Y, Zhang S. Transl Oncol 39 101815 (2024)
  203. Numerous Trigger-like Interactions of Kinases/Protein Phosphatases in Human Skeletal Muscles Can Underlie Transient Processes in Activation of Signaling Pathways during Exercise. Vertyshev AY, Akberdin IR, Kolpakov FA. Int J Mol Sci 24 11223 (2023)
  204. Sensing local energetics to acutely regulate mitophagy in skeletal muscle. Nichenko AS, Specht KS, Craige SM, Drake JC. Front Cell Dev Biol 10 987317 (2022)
  205. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Goul C, Peruzzo R, Zoncu R. Nat Rev Mol Cell Biol 24 857-875 (2023)
  206. The role of AMP-activated protein kinase in GVHD-causing T cells. Ramgopal A, Sun LK, Byersdorfer CA. Immunometabolism (Cobham) 4 e00009 (2022)
  207. The role of AMPK in macrophage metabolism, function and polarisation. Cui Y, Chen J, Zhang Z, Shi H, Sun W, Yi Q. J Transl Med 21 892 (2023)

Articles citing this publication (287)

  1. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH. Cell 148 421-433 (2012)
  2. The ancient drug salicylate directly activates AMP-activated protein kinase. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG. Science 336 918-922 (2012)
  3. AMPK is a direct adenylate charge-regulated protein kinase. Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S, Kemp BE. Science 332 1433-1435 (2011)
  4. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M, Wu YQ, Li TY, Ye Z, Lin SY, Yin H, Piao HL, Hardie DG, Lin SC. Nature 548 112-116 (2017)
  5. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Gowans GJ, Hawley SA, Ross FA, Hardie DG. Cell Metab 18 556-566 (2013)
  6. Structural basis of AMPK regulation by small molecule activators. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ. Nat Commun 4 3017 (2013)
  7. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Nukarinen E, Nägele T, Pedrotti L, Wurzinger B, Mair A, Landgraf R, Börnke F, Hanson J, Teige M, Baena-Gonzalez E, Dröge-Laser W, Weckwerth W. Sci Rep 6 31697 (2016)
  8. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, Elias A, Rabissi A, Lumbreras V, González-Guzmán M, Antoni R, Rodriguez PL, Baena-González E. Plant Cell 25 3871-3884 (2013)
  9. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Han X, Tai H, Wang X, Wang Z, Zhou J, Wei X, Ding Y, Gong H, Mo C, Zhang J, Qin J, Ma Y, Huang N, Xiang R, Xiao H. Aging Cell 15 416-427 (2016)
  10. Inhibition of AMPK catabolic action by GSK3. Suzuki T, Bridges D, Nakada D, Skiniotis G, Morrison SJ, Lin JD, Saltiel AR, Inoki K. Mol Cell 50 407-419 (2013)
  11. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity. O'Neill HM. Diabetes Metab J 37 1-21 (2013)
  12. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Mayer FV, Heath R, Underwood E, Sanders MJ, Carmena D, McCartney RR, Leiper FC, Xiao B, Jing C, Walker PA, Haire LF, Ogrodowicz R, Martin SR, Schmidt MC, Gamblin SJ, Carling D. Cell Metab 14 707-714 (2011)
  13. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Stenesen D, Suh JM, Seo J, Yu K, Lee KS, Kim JS, Min KJ, Graff JM. Cell Metab 17 101-112 (2013)
  14. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Cho YH, Hong JW, Kim EC, Yoo SD. Plant Physiol 158 1955-1964 (2012)
  15. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Ducommun S, Deak M, Sumpton D, Ford RJ, Núñez Galindo A, Kussmann M, Viollet B, Steinberg GR, Foretz M, Dayon L, Morrice NA, Sakamoto K. Cell Signal 27 978-988 (2015)
  16. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway. Zhao H, Chen S, Gao K, Zhou Z, Wang C, Shen Z, Guo Y, Li Z, Wan Z, Liu C, Mei X. Neuroscience 348 241-251 (2017)
  17. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). Cao J, Meng S, Chang E, Beckwith-Fickas K, Xiong L, Cole RN, Radovick S, Wondisford FE, He L. J Biol Chem 289 20435-20446 (2014)
  18. Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R, Withka JM, Wang H, Borzilleri KA, Sahasrabudhe PV, Hoth LR, Geoghegan KF, Han S, Brown J, Subashi TA, Reyes AR, Frisbie RK, Ward J, Miller RA, Landro JA, Londregan AT, Carpino PA, Cabral S, Smith AC, Conn EL, Cameron KO, Qiu X, Kurumbail RG. Structure 22 1161-1172 (2014)
  19. Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling. Scott JW, Ling N, Issa SM, Dite TA, O'Brien MT, Chen ZP, Galic S, Langendorf CG, Steinberg GR, Kemp BE, Oakhill JS. Chem Biol 21 619-627 (2014)
  20. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Li X, Wang L, Zhou XE, Ke J, de Waal PW, Gu X, Tan MH, Wang D, Wu D, Xu HE, Melcher K. Cell Res 25 50-66 (2015)
  21. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Ross FA, Jensen TE, Hardie DG. Biochem J 473 189-199 (2016)
  22. MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1α signaling network. Zhang H, Guan M, Townsend KL, Huang TL, An D, Yan X, Xue R, Schulz TJ, Winnay J, Mori M, Hirshman MF, Kristiansen K, Tsang JS, White AP, Cypess AM, Goodyear LJ, Tseng YH. EMBO Rep 16 1378-1393 (2015)
  23. AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Chen L, Wang J, Zhang YY, Yan SF, Neumann D, Schlattner U, Wang ZX, Wu JW. Nat Struct Mol Biol 19 716-718 (2012)
  24. AMPK: a cellular energy sensor primarily regulated by AMP. Gowans GJ, Hardie DG. Biochem Soc Trans 42 71-75 (2014)
  25. SnRK1 from Arabidopsis thaliana is an atypical AMPK. Emanuelle S, Hossain MI, Moller IE, Pedersen HL, van de Meene AM, Doblin MS, Koay A, Oakhill JS, Scott JW, Willats WG, Kemp BE, Bacic A, Gooley PR, Stapleton DI. Plant J 82 183-192 (2015)
  26. Folliculin regulates ampk-dependent autophagy and metabolic stress survival. Possik E, Jalali Z, Nouët Y, Yan M, Gingras MC, Schmeisser K, Panaite L, Dupuy F, Kharitidi D, Chotard L, Jones RG, Hall DH, Pause A. PLoS Genet 10 e1004273 (2014)
  27. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Lin YY, Kiihl S, Suhail Y, Liu SY, Chou YH, Kuang Z, Lu JY, Khor CN, Lin CL, Bader JS, Irizarry R, Boeke JD. Nature 482 251-255 (2012)
  28. Mechanism of action of compound-13: an α1-selective small molecule activator of AMPK. Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, Hawley SA, Shpiro N, Viollet B, Barron D, Kemp BE, Steinberg GR, Hardie DG, Sakamoto K. Chem Biol 21 866-879 (2014)
  29. Loss of AMP-activated protein kinase-α2 impairs the insulin-sensitizing effect of calorie restriction in skeletal muscle. Wang P, Zhang RY, Song J, Guan YF, Xu TY, Du H, Viollet B, Miao CY. Diabetes 61 1051-1061 (2012)
  30. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. Moser TS, Schieffer D, Cherry S. PLoS Pathog 8 e1002661 (2012)
  31. Dengue Virus Activates the AMP Kinase-mTOR Axis To Stimulate a Proviral Lipophagy. Jordan TX, Randall G. J Virol 91 e02020-16 (2017)
  32. Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. Willows R, Sanders MJ, Xiao B, Patel BR, Martin SR, Read J, Wilson JR, Hubbard J, Gamblin SJ, Carling D. Biochem J 474 3059-3073 (2017)
  33. Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. Auciello FR, Ross FA, Ikematsu N, Hardie DG. FEBS Lett 588 3361-3366 (2014)
  34. Chronic Activation of γ2 AMPK Induces Obesity and Reduces β Cell Function. Yavari A, Stocker CJ, Ghaffari S, Wargent ET, Steeples V, Czibik G, Pinter K, Bellahcene M, Woods A, Martínez de Morentin PB, Cansell C, Lam BY, Chuster A, Petkevicius K, Nguyen-Tu MS, Martinez-Sanchez A, Pullen TJ, Oliver PL, Stockenhuber A, Nguyen C, Lazdam M, O'Dowd JF, Harikumar P, Tóth M, Beall C, Kyriakou T, Parnis J, Sarma D, Katritsis G, Wortmann DD, Harper AR, Brown LA, Willows R, Gandra S, Poncio V, de Oliveira Figueiredo MJ, Qi NR, Peirson SN, McCrimmon RJ, Gereben B, Tretter L, Fekete C, Redwood C, Yeo GS, Heisler LK, Rutter GA, Smith MA, Withers DJ, Carling D, Sternick EB, Arch JR, Cawthorne MA, Watkins H, Ashrafian H. Cell Metab 23 821-836 (2016)
  35. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Hadad SM, Hardie DG, Appleyard V, Thompson AM. Clin Transl Oncol 16 746-752 (2014)
  36. Glucose Transporter 1-Dependent Glycolysis Is Increased during Aging-Related Lung Fibrosis, and Phloretin Inhibits Lung Fibrosis. Cho SJ, Moon JS, Lee CM, Choi AM, Stout-Delgado HW. Am J Respir Cell Mol Biol 56 521-531 (2017)
  37. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. Ramon M, Ruelens P, Li Y, Sheen J, Geuten K, Rolland F. Plant J 75 11-25 (2013)
  38. Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators. Miyamoto T, Rho E, Sample V, Akano H, Magari M, Ueno T, Gorshkov K, Chen M, Tokumitsu H, Zhang J, Inoue T. Cell Rep 11 657-670 (2015)
  39. Mg2+-dependent interactions of ATP with the cystathionine-β-synthase (CBS) domains of a magnesium transporter. Hirata Y, Funato Y, Takano Y, Miki H. J Biol Chem 289 14731-14739 (2014)
  40. Toll-like receptor 4 engagement inhibits adenosine 5'-monophosphate-activated protein kinase activation through a high mobility group box 1 protein-dependent mechanism. Tadie JM, Bae HB, Deshane JS, Bell CP, Lazarowski ER, Chaplin DD, Thannickal VJ, Abraham E, Zmijewski JW. Mol Med 18 659-668 (2012)
  41. Conserved regulatory elements in AMPK. Chen L, Xin FJ, Wang J, Hu J, Zhang YY, Wan S, Cao LS, Lu C, Li P, Yan SF, Neumann D, Schlattner U, Xia B, Wang ZX, Wu JW. Nature 498 E8-10 (2013)
  42. GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury. Park DW, Jiang S, Liu Y, Siegal GP, Inoki K, Abraham E, Zmijewski JW. Am J Physiol Lung Cell Mol Physiol 307 L735-45 (2014)
  43. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress. Ling NXY, Kaczmarek A, Hoque A, Davie E, Ngoei KRW, Morrison KR, Smiles WJ, Forte GM, Wang T, Lie S, Dite TA, Langendorf CG, Scott JW, Oakhill JS, Petersen J. Nat Metab 2 41-49 (2020)
  44. Default Activation and Nuclear Translocation of the Plant Cellular Energy Sensor SnRK1 Regulate Metabolic Stress Responses and Development. Ramon M, Dang TVT, Broeckx T, Hulsmans S, Crepin N, Sheen J, Rolland F. Plant Cell 31 1614-1632 (2019)
  45. Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Tian G, Sawashita J, Kubo H, Nishio SY, Hashimoto S, Suzuki N, Yoshimura H, Tsuruoka M, Wang Y, Liu Y, Luo H, Xu Z, Mori M, Kitano M, Hosoe K, Takeda T, Usami S, Higuchi K. Antioxid Redox Signal 20 2606-2620 (2014)
  46. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH) isoforms. Thomas EC, Gunter JH, Webster JA, Schieber NL, Oorschot V, Parton RG, Whitehead JP. PLoS One 7 e51096 (2012)
  47. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Combes A, Dekerle J, Webborn N, Watt P, Bougault V, Daussin FN. Physiol Rep 3 e12462 (2015)
  48. AMPK: mediating the metabolic effects of salicylate-based drugs? Steinberg GR, Dandapani M, Hardie DG. Trends Endocrinol Metab 24 481-487 (2013)
  49. Evolving role of adiponectin in cancer-controversies and update. Katira A, Tan PH. Cancer Biol Med 13 101-119 (2016)
  50. AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma. Li YH, Luo J, Mosley YY, Hedrick VE, Paul LN, Chang J, Zhang G, Wang YK, Banko MR, Brunet A, Kuang S, Wu JL, Chang CJ, Scott MP, Yang JY. Cell Rep 12 599-609 (2015)
  51. Kinase suppressor of Ras 2 (KSR2) regulates tumor cell transformation via AMPK. Fernandez MR, Henry MD, Lewis RE. Mol Cell Biol 32 3718-3731 (2012)
  52. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Drake JC, Wilson RJ, Laker RC, Guan Y, Spaulding HR, Nichenko AS, Shen W, Shang H, Dorn MV, Huang K, Zhang M, Bandara AB, Brisendine MH, Kashatus JA, Sharma PR, Young A, Gautam J, Cao R, Wallrabe H, Chang PA, Wong M, Desjardins EM, Hawley SA, Christ GJ, Kashatus DF, Miller CL, Wolf MJ, Periasamy A, Steinberg GR, Hardie DG, Yan Z. Proc Natl Acad Sci U S A 118 e2025932118 (2021)
  53. Mutation in the γ2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Kim M, Hunter RW, Garcia-Menendez L, Gong G, Yang YY, Kolwicz SC, Xu J, Sakamoto K, Wang W, Tian R. Circ Res 114 966-975 (2014)
  54. Neuropathogenic role of adenylate kinase-1 in Aβ-mediated tau phosphorylation via AMPK and GSK3β. Park H, Kam TI, Kim Y, Choi H, Gwon Y, Kim C, Koh JY, Jung YK. Hum Mol Genet 21 2725-2737 (2012)
  55. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Seip J, Jackson R, He H, Zhu Q, Hong SP. Appl Environ Microbiol 79 7360-7370 (2013)
  56. Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro. Klaus A, Zorman S, Berthier A, Polge C, Ramirez S, Michelland S, Sève M, Vertommen D, Rider M, Lentze N, Auerbach D, Schlattner U. PLoS One 8 e62497 (2013)
  57. Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M, Terada T, Shirouzu M, Suzuki A, Lee S, Yamauchi T, Okada-Iwabu M, Iwabu M, Kadowaki T, Minokoshi Y, Yokoyama S. Acta Crystallogr D Biol Crystallogr 67 480-487 (2011)
  58. AMP-activated protein kinase connects cellular energy metabolism to KATP channel function. Yoshida H, Bao L, Kefaloyianni E, Taskin E, Okorie U, Hong M, Dhar-Chowdhury P, Kaneko M, Coetzee WA. J Mol Cell Cardiol 52 410-418 (2012)
  59. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance. Tang HY, Ho HY, Wu PR, Chen SH, Kuypers FA, Cheng ML, Chiu DT. Antioxid Redox Signal 22 744-759 (2015)
  60. Inhibition of AMP Kinase by the Protein Phosphatase 2A Heterotrimer, PP2APpp2r2d. Joseph BK, Liu HY, Francisco J, Pandya D, Donigan M, Gallo-Ebert C, Giordano C, Bata A, Nickels JT. J Biol Chem 290 10588-10598 (2015)
  61. The Lipid Kinase PI5P4Kβ Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis. Sumita K, Lo YH, Takeuchi K, Senda M, Kofuji S, Ikeda Y, Terakawa J, Sasaki M, Yoshino H, Majd N, Zheng Y, Kahoud ER, Yokota T, Emerling BM, Asara JM, Ishida T, Locasale JW, Daikoku T, Anastasiou D, Senda T, Sasaki AT. Mol Cell 61 187-198 (2016)
  62. 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8+ T cell proliferation. Choi BK, Lee DY, Lee DG, Kim YH, Kim SH, Oh HS, Han C, Kwon BS. Cell Mol Immunol 14 748-757 (2017)
  63. Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Walter C, Clemens LE, Müller AJ, Fallier-Becker P, Proikas-Cezanne T, Riess O, Metzger S, Nguyen HP. Neuropharmacology 108 24-38 (2016)
  64. Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice. Huang J, Simcox J, Mitchell TC, Jones D, Cox J, Luo B, Cooksey RC, Boros LG, McClain DA. FASEB J 27 2845-2854 (2013)
  65. Transcriptomic profiles of aging in purified human immune cells. Reynolds LM, Ding J, Taylor JR, Lohman K, Soranzo N, Soranzo N, de la Fuente A, Liu TF, Johnson C, Barr RG, Register TC, Donohue KM, Talor MV, Cihakova D, Gu C, Divers J, Siscovick D, Burke G, Post W, Shea S, Jacobs DR, Hoeschele I, McCall CE, Kritchevsky SB, Herrington D, Tracy RP, Liu Y. BMC Genomics 16 333 (2015)
  66. An evolutionary perspective of AMPK-TOR signaling in the three domains of life. Roustan V, Jain A, Teige M, Ebersberger I, Weckwerth W. J Exp Bot 67 3897-3907 (2016)
  67. CHIP protects against cardiac pressure overload through regulation of AMPK. Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C. J Clin Invest 123 3588-3599 (2013)
  68. Water-soluble triarylboron compound for ATP imaging in vivo using analyte-induced finite aggregation. Li X, Guo X, Cao L, Xun Z, Wang S, Li S, Li Y, Yang G. Angew Chem Int Ed Engl 53 7809-7813 (2014)
  69. Chronic caloric restriction and exercise improve metabolic conditions of dietary-induced obese mice in autophagy correlated manner without involving AMPK. Cui M, Yu H, Wang J, Gao J, Li J. J Diabetes Res 2013 852754 (2013)
  70. Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding. Langendorf CG, Ngoei KRW, Scott JW, Ling NXY, Issa SMA, Gorman MA, Parker MW, Sakamoto K, Oakhill JS, Kemp BE. Nat Commun 7 10912 (2016)
  71. Identification of 5' AMP-activated kinase as a target of reactive aldehydes during chronic ingestion of high concentrations of ethanol. Shearn CT, Backos DS, Orlicky DJ, Smathers-McCullough RL, Petersen DR. J Biol Chem 289 15449-15462 (2014)
  72. PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis. Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang L, Xia J, Hu Y, Zhang W, Huang A, Wang K, Tang N. J Exp Clin Cancer Res 38 50 (2019)
  73. Berberine attenuates ischemia-reperfusion injury via regulation of adenosine-5'-monophosphate kinase activity in both non-ischemic and ischemic areas of the rat heart. Chang W, Zhang M, Li J, Meng Z, Xiao D, Wei S, Chen L, Wang C, Hatch GM. Cardiovasc Drugs Ther 26 467-478 (2012)
  74. Choreography of AMPK activation. Langendorf CG, Kemp BE. Cell Res 25 5-6 (2015)
  75. Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Braun KA, Vaga S, Dombek KM, Fang F, Palmisano S, Aebersold R, Young ET. Sci Signal 7 ra64 (2014)
  76. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice. Noda K, Nakajima S, Godo S, Saito H, Ikeda S, Shimizu T, Enkhjargal B, Fukumoto Y, Tsukita S, Yamada T, Katagiri H, Shimokawa H. PLoS One 9 e110446 (2014)
  77. AMPK Causes Cell Cycle Arrest in LKB1-Deficient Cells via Activation of CAMKK2. Fogarty S, Ross FA, Vara Ciruelos D, Gray A, Gowans GJ, Hardie DG. Mol Cancer Res 14 683-695 (2016)
  78. Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells. Bhanot H, Reddy MM, Nonami A, Weisberg EL, Bonal D, Kirschmeier PT, Salgia S, Podar K, Galinsky I, Chowdary TK, Neuberg D, Tonon G, Stone RM, Asara J, Griffin JD, Sattler M. Leukemia 29 1555-1563 (2015)
  79. A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic-ischaemic brain injury in mice. Rousset CI, Leiper FC, Kichev A, Gressens P, Carling D, Hagberg H, Thornton C. J Neurochem 133 242-252 (2015)
  80. Letter Coordinated regulation of AMPK activity by multiple elements in the α-subunit. Xin FJ, Wang J, Zhao RQ, Wang ZX, Wu JW. Cell Res 23 1237-1240 (2013)
  81. Dapagliflozin Restores Impaired Autophagy and Suppresses Inflammation in High Glucose-Treated HK-2 Cells. Xu J, Kitada M, Ogura Y, Liu H, Koya D. Cells 10 1457 (2021)
  82. Mechanisms of Paradoxical Activation of AMPK by the Kinase Inhibitors SU6656 and Sorafenib. Ross FA, Hawley SA, Auciello FR, Gowans GJ, Atrih A, Lamont DJ, Hardie DG. Cell Chem Biol 24 813-824.e4 (2017)
  83. The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs. Dite TA, Ling NXY, Scott JW, Hoque A, Galic S, Parker BL, Ngoei KRW, Langendorf CG, O'Brien MT, Kundu M, Viollet B, Steinberg GR, Sakamoto K, Kemp BE, Oakhill JS. Nat Commun 8 571 (2017)
  84. AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR. Collodet C, Foretz M, Deak M, Bultot L, Metairon S, Viollet B, Lefebvre G, Raymond F, Parisi A, Civiletto G, Gut P, Descombes P, Sakamoto K. FASEB J 33 12374-12391 (2019)
  85. Activation of AMP-activated protein kinase by 3,3'-Diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. Chen D, Banerjee S, Cui QC, Kong D, Sarkar FH, Dou QP. PLoS One 7 e47186 (2012)
  86. Activation of AMP-activated protein kinase inhibits the proliferation of human endothelial cells. Peyton KJ, Liu XM, Yu Y, Yates B, Durante W. J Pharmacol Exp Ther 342 827-834 (2012)
  87. Brain-specific repression of AMPKα1 alleviates pathophysiology in Alzheimer's model mice. Zimmermann HR, Yang W, Kasica NP, Zhou X, Wang X, Beckelman BC, Lee J, Furdui CM, Keene CD, Ma T. J Clin Invest 130 3511-3527 (2020)
  88. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans. Tullet JM, Araiz C, Sanders MJ, Au C, Benedetto A, Papatheodorou I, Clark E, Schmeisser K, Jones D, Schuster EF, Thornton JM, Gems D. PLoS Genet 10 e1004109 (2014)
  89. PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain. Jensen TE, Ross FA, Kleinert M, Sylow L, Knudsen JR, Gowans GJ, Hardie DG, Richter EA. Biochem J 467 461-472 (2015)
  90. A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. Timmermans AD, Balteau M, Gélinas R, Renguet E, Ginion A, de Meester C, Sakamoto K, Balligand JL, Bontemps F, Vanoverschelde JL, Horman S, Beauloye C, Bertrand L. Am J Physiol Heart Circ Physiol 306 H1619-30 (2014)
  91. Caloric Restriction Extends Yeast Chronological Life Span by Optimizing the Snf1 (AMPK) Signaling Pathway. Wierman MB, Maqani N, Strickler E, Li M, Smith JS. Mol Cell Biol 37 e00562-16 (2017)
  92. Eukaryotic elongation factor 2 kinase regulates the cold stress response by slowing translation elongation. Knight JR, Bastide A, Roobol A, Roobol J, Jackson TJ, Utami W, Barrett DA, Smales CM, Willis AE. Biochem J 465 227-238 (2015)
  93. Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases. Ruiz A, Liu Y, Xu X, Carlson M. Proc Natl Acad Sci U S A 109 8652-8657 (2012)
  94. Targeting AMPK in the treatment of malignancies. Vakana E, Altman JK, Platanias LC. J Cell Biochem 113 404-409 (2012)
  95. Berberine Pretreatment Confers Cardioprotection Against Ischemia-Reperfusion Injury in a Rat Model of Type 2 Diabetes. Chang W, Li K, Guan F, Yao F, Yu Y, Zhang M, Hatch GM, Chen L. J Cardiovasc Pharmacol Ther 21 486-494 (2016)
  96. NFE2L2/NRF2 Activity Is Linked to Mitochondria and AMP-Activated Protein Kinase Signaling in Cancers Through miR-181c/Mitochondria-Encoded Cytochrome c Oxidase Regulation. Jung KA, Lee S, Kwak MK. Antioxid Redox Signal 27 945-961 (2017)
  97. Probing the enzyme kinetics, allosteric modulation and activation of α1- and α2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Rajamohan F, Reyes AR, Frisbie RK, Hoth LR, Sahasrabudhe P, Magyar R, Landro JA, Withka JM, Caspers NL, Calabrese MF, Ward J, Kurumbail RG. Biochem J 473 581-592 (2016)
  98. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Bultot L, Jensen TE, Lai YC, Madsen AL, Collodet C, Kviklyte S, Deak M, Yavari A, Foretz M, Ghaffari S, Bellahcene M, Ashrafian H, Rider MH, Richter EA, Sakamoto K. Am J Physiol Endocrinol Metab 311 E706-E719 (2016)
  99. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Tanner CB, Madsen SR, Hallowell DM, Goring DM, Moore TM, Hardman SE, Heninger MR, Atwood DR, Thomson DM. Am J Physiol Endocrinol Metab 305 E1018-29 (2013)
  100. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice. Li YY, Yu LF, Zhang LN, Qiu BY, Su MB, Wu F, Chen DK, Pang T, Gu M, Zhang W, Ma WP, Jiang HW, Li JY, Nan FJ, Li J. Toxicol Appl Pharmacol 273 325-334 (2013)
  101. STIM2 interacts with AMPK and regulates calcium-induced AMPK activation. Chauhan AS, Liu X, Jing J, Lee H, Yadav RK, Liu J, Zhou Y, Gan B. FASEB J 33 2957-2970 (2019)
  102. AMP-activated protein kinase is required for the macropinocytic internalization of ebolavirus. Kondratowicz AS, Hunt CL, Davey RA, Cherry S, Maury WJ. J Virol 87 746-755 (2013)
  103. AMPK protects proximal tubular cells from stress-induced apoptosis by an ATP-independent mechanism: potential role of Akt activation. Lieberthal W, Zhang L, Patel VA, Levine JS. Am J Physiol Renal Physiol 301 F1177-92 (2011)
  104. Activation of AMPK by bitter melon triterpenoids involves CaMKKβ. Iseli TJ, Turner N, Zeng XY, Cooney GJ, Kraegen EW, Yao S, Ye Y, James DE, Ye JM. PLoS One 8 e62309 (2013)
  105. Nutrient Excess in AMPK Downregulation and Insulin Resistance. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. J Endocrinol Diabetes Obes 1 1008 (2013)
  106. 5'-AMP-activated protein kinase-activating transcription factor 1 cascade modulates human monocyte-derived macrophages to atheroprotective functions in response to heme or metformin. Wan X, Huo Y, Johns M, Piper E, Mason JC, Carling D, Haskard DO, Boyle JJ. Arterioscler Thromb Vasc Biol 33 2470-2480 (2013)
  107. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing. Gu X, Yan Y, Novick SJ, Kovach A, Goswami D, Ke J, Tan MHE, Wang L, Li X, de Waal PW, Webb MR, Griffin PR, Xu HE, Melcher K. J Biol Chem 292 12653-12666 (2017)
  108. Effect of different γ-subunit isoforms on the regulation of AMPK. Willows R, Navaratnam N, Lima A, Read J, Carling D. Biochem J 474 1741-1754 (2017)
  109. The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. Young ET, Zhang C, Shokat KM, Parua PK, Braun KA. J Biol Chem 287 29021-29034 (2012)
  110. Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). Wu J, Puppala D, Feng X, Monetti M, Lapworth AL, Geoghegan KF. J Biol Chem 288 35904-35912 (2013)
  111. Ketamine's antidepressant effect is mediated by energy metabolism and antioxidant defense system. Weckmann K, Deery MJ, Howard JA, Feret R, Asara JM, Dethloff F, Filiou MD, Iannace J, Labermaier C, Maccarrone G, Webhofer C, Teplytska L, Lilley K, Müller MB, Turck CW. Sci Rep 7 15788 (2017)
  112. Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. Chandrashekarappa DG, McCartney RR, Schmidt MC. J Biol Chem 288 89-98 (2013)
  113. Mechanism of Activation of AMPK by Cordycepin. Hawley SA, Ross FA, Russell FM, Atrih A, Lamont DJ, Hardie DG. Cell Chem Biol 27 214-222.e4 (2020)
  114. Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation. Chandrashekarappa DG, McCartney RR, Schmidt MC. J Biol Chem 286 44532-44541 (2011)
  115. α-SNAP inhibits AMPK signaling to reduce mitochondrial biogenesis and dephosphorylates Thr172 in AMPKα in vitro. Wang L, Brautigan DL. Nat Commun 4 1559 (2013)
  116. Activation of AMP-activated protein kinase revealed by hydrogen/deuterium exchange mass spectrometry. Landgraf RR, Goswami D, Rajamohan F, Harris MS, Calabrese MF, Hoth LR, Magyar R, Pascal BD, Chalmers MJ, Busby SA, Kurumbail RG, Griffin PR. Structure 21 1942-1953 (2013)
  117. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps. García-Salcedo R, Lubitz T, Beltran G, Elbing K, Tian Y, Frey S, Wolkenhauer O, Krantz M, Klipp E, Hohmann S. FEBS J 281 1901-1917 (2014)
  118. Letter Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. Wurzinger B, Mair A, Fischer-Schrader K, Nukarinen E, Roustan V, Weckwerth W, Teige M. FEBS Lett 591 3625-3636 (2017)
  119. Role of binding and nucleoside diphosphate kinase A in the regulation of the cystic fibrosis transmembrane conductance regulator by AMP-activated protein kinase. King JD, Lee J, Riemen CE, Neumann D, Xiong S, Foskett JK, Mehta A, Muimo R, Hallows KR. J Biol Chem 287 33389-33400 (2012)
  120. Comment Signal transduction: How cells sense energy. Hardie DG. Nature 472 176-177 (2011)
  121. Traumatic brain injury decreases AMP-activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome. Hill JL, Kobori N, Zhao J, Rozas NS, Hylin MJ, Moore AN, Dash PK. J Neurochem 139 106-119 (2016)
  122. α-Enolase plays a catalytically independent role in doxorubicin-induced cardiomyocyte apoptosis and mitochondrial dysfunction. Gao S, Li H, Feng XJ, Li M, Liu ZP, Cai Y, Lu J, Huang XY, Wang JJ, Li Q, Chen SR, Ye JT, Liu PQ. J Mol Cell Cardiol 79 92-103 (2015)
  123. Salidroside exerts protective effects against chronic hypoxia-induced pulmonary arterial hypertension via AMPKα1-dependent pathways. Chen M, Cai H, Yu C, Wu P, Fu Y, Xu X, Fan R, Xu C, Chen Y, Wang L, Huang X. Am J Transl Res 8 12-27 (2016)
  124. The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice. Lin WS, Chen JY, Wang JC, Chen LY, Lin CH, Hsieh TR, Wang MF, Fu TF, Wang PY. Age (Dordr) 36 689-703 (2014)
  125. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Kong G, Zhou L, Serger E, Palmisano I, De Virgiliis F, Hutson TH, Mclachlan E, Freiwald A, La Montanara P, Shkura K, Puttagunta R, Di Giovanni S. Nat Metab 2 918-933 (2020)
  126. AMP-activated protein kinase activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Lv G, Zhu H, Zhou F, Lin Z, Lin G, Li C. Biochem Biophys Res Commun 453 13-18 (2014)
  127. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis. Jamsheer K M, Sharma M, Singh D, Mannully CT, Jindal S, Shukla BN, Laxmi A. Plant J 94 232-245 (2018)
  128. New dammarane-type glucosides as potential activators of AMP-activated protein kinase (AMPK) from Gynostemma pentaphyllum. Nguyen PH, Gauhar R, Hwang SL, Dao TT, Park DC, Kim JE, Song H, Huh TL, Oh WK. Bioorg Med Chem 19 6254-6260 (2011)
  129. Prolyl isomerase Pin1 negatively regulates AMP-activated protein kinase (AMPK) by associating with the CBS domain in the γ subunit. Nakatsu Y, Iwashita M, Sakoda H, Ono H, Nagata K, Matsunaga Y, Fukushima T, Fujishiro M, Kushiyama A, Kamata H, Takahashi S, Katagiri H, Honda H, Kiyonari H, Uchida T, Asano T. J Biol Chem 290 24255-24266 (2015)
  130. Structure of an AMPK complex in an inactive, ATP-bound state. Yan Y, Mukherjee S, Harikumar KG, Strutzenberg TS, Zhou XE, Suino-Powell K, Xu TH, Sheldon RD, Lamp J, Brunzelle JS, Radziwon K, Ellis A, Novick SJ, Vega IE, Jones RG, Miller LJ, Xu HE, Griffin PR, Kossiakoff AA, Melcher K. Science 373 413-419 (2021)
  131. TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose. Zhang Y, Higgins CB, Mayer AL, Mysorekar IU, Razani B, Graham MJ, Hruz PW, DeBosch BJ. Autophagy 14 1959-1975 (2018)
  132. Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. Bendrioua L, Smedh M, Almquist J, Cvijovic M, Jirstrand M, Goksör M, Adiels CB, Hohmann S. J Biol Chem 289 12863-12875 (2014)
  133. Cellular adaptation to nutrient deprivation: crosstalk between the mTORC1 and eIF2α signaling pathways and implications for autophagy. Wengrod JC, Gardner LB. Cell Cycle 14 2571-2577 (2015)
  134. Heat-processed Gynostemma pentaphyllum extract improves obesity in ob/ob mice by activating AMP-activated protein kinase. Gauhar R, Hwang SL, Jeong SS, Kim JE, Song H, Park DC, Song KS, Kim TY, Oh WK, Huh TL. Biotechnol Lett 34 1607-1616 (2012)
  135. Metformin reverses mesenchymal phenotype of primary breast cancer cells through STAT3/NF-κB pathways. Esparza-López J, Alvarado-Muñoz JF, Escobar-Arriaga E, Ulloa-Aguirre A, de Jesús Ibarra-Sánchez M. BMC Cancer 19 728 (2019)
  136. Cationic Europium Complexes for Visualizing Fluctuations in Mitochondrial ATP Levels in Living Cells. Mailhot R, Traviss-Pollard T, Pal R, Butler SJ. Chemistry 24 10745-10755 (2018)
  137. LKB1 and AMPKα1 are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia. Sun G, da Silva Xavier G, Gorman T, Priest C, Solomou A, Hodson DJ, Foretz M, Viollet B, Herrera PL, Parker H, Reimann F, Gribble FM, Migrenne S, Magnan C, Marley A, Rutter GA. Mol Metab 4 277-286 (2015)
  138. LncRNA LncHrt preserves cardiac metabolic homeostasis and heart function by modulating the LKB1-AMPK signaling pathway. Liu N, Kataoka M, Wang Y, Pu L, Dong X, Fu X, Zhang F, Gao F, Liang T, Pei J, Xiao C, Qiu Q, Hong T, Chen Q, Zhao J, Zhu L, He J, Hu X, Nie Y, Zhu W, Yu H, Cowan DB, Hu X, Wang J, Wang DZ, Chen J. Basic Res Cardiol 116 48 (2021)
  139. Metabolic benefits of inhibiting cAMP-PDEs with resveratrol. Chung JH. Adipocyte 1 256-258 (2012)
  140. Heat Shock Factor 1 Is a Direct Antagonist of AMP-Activated Protein Kinase. Su KH, Dai S, Tang Z, Xu M, Dai C. Mol Cell 76 546-561.e8 (2019)
  141. Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. Liu Y, Bai R, Wang L, Zhang C, Zhao R, Wan D, Chen X, Caceres G, Barr D, Barajas-Martinez H, Antzelevitch C, Antzelevitch C, Hu D. PLoS One 8 e64603 (2013)
  142. The Long-HER study: clinical and molecular analysis of patients with HER2+ advanced breast cancer who become long-term survivors with trastuzumab-based therapy. Gámez-Pozo A, Pérez Carrión RM, Manso L, Crespo C, Mendiola C, López-Vacas R, Berges-Soria J, López IÁ, Margeli M, Calero JL, Farre XG, Santaballa A, Ciruelos EM, Afonso R, Lao J, Catalán G, Gallego JV, López JM, Bofill FJ, Borrego MR, Espinosa E, Vara JA, Zamora P. PLoS One 9 e109611 (2014)
  143. 17-β estradiol attenuates ovariectomy-induced changes in cardiomyocyte contractile function via activation of AMP-activated protein kinase. Turdi S, Huff AF, Pang J, He EY, Chen X, Wang S, Chen Y, Zhang Y, Ren J. Toxicol Lett 232 253-262 (2015)
  144. Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-α? Alves CR, Ferreira JC, de Siqueira-Filho MA, Carvalho CR, Lancha AH, Gualano B. Amino Acids 43 1803-1807 (2012)
  145. Metformin Protects ARPE-19 Cells from Glyoxal-Induced Oxidative Stress. Qu S, Zhang C, Liu D, Wu J, Tian H, Lu L, Xu GT, Liu F, Zhang J. Oxid Med Cell Longev 2020 1740943 (2020)
  146. Overexpression of AMP-metabolizing enzymes controls adenine nucleotide levels and AMPK activation in HEK293T cells. Plaideau C, Liu J, Hartleib-Geschwindner J, Bastin-Coyette L, Bontemps F, Oscarsson J, Hue L, Rider MH. FASEB J 26 2685-2694 (2012)
  147. Capsaicin induces apoptosis in human osteosarcoma cells through AMPK-dependent and AMPK-independent signaling pathways. Ying H, Wang Z, Zhang Y, Yang TY, Ding ZH, Liu SY, Shao J, Liu Y, Fan XB. Mol Cell Biochem 384 229-237 (2013)
  148. Changes in proteolytic enzyme activities, tenderness-related traits, and quality properties of spent hen meat affected by adenosine 5'-monophosphate during cold storage. Barido FH, Lee SK. Poult Sci 100 101056 (2021)
  149. Cryo-EM structures of human GMPPA-GMPPB complex reveal how cells maintain GDP-mannose homeostasis. Zheng L, Liu Z, Wang Y, Yang F, Wang J, Huang W, Qin J, Tian M, Cai X, Liu X, Mo X, Gao N, Jia D. Nat Struct Mol Biol 28 1-12 (2021)
  150. Differential regulation of AMPK activation in leptin- and creatine-deficient mice. Stockebrand M, Sauter K, Neu A, Isbrandt D, Choe CU. FASEB J 27 4147-4156 (2013)
  151. Exercise training can induce cardiac autophagy at end-stage chronic conditions: insights from a graft-versus-host-disease mouse model. Fiuza-Luces C, Delmiro A, Soares-Miranda L, González-Murillo Á, Martínez-Palacios J, Ramírez M, Lucia A, Lucia A, Morán M. Brain Behav Immun 39 56-60 (2014)
  152. Extracellular ATP and glutamate drive pyruvate production and energy demand to regulate mitochondrial respiration in astrocytes. Juaristi I, Llorente-Folch I, Satrústegui J, Del Arco A. Glia 67 759-774 (2019)
  153. Hypoxia induces arginase II expression and increases viable human pulmonary artery smooth muscle cell numbers via AMPKα1 signaling. Xue J, Nelin LD, Chen B. Am J Physiol Lung Cell Mol Physiol 312 L568-L578 (2017)
  154. In Vitro Anti-Echinococcal and Metabolic Effects of Metformin Involve Activation of AMP-Activated Protein Kinase in Larval Stages of Echinococcus granulosus. Loos JA, Cumino AC. PLoS One 10 e0126009 (2015)
  155. Myeloid-Restricted AMPKα1 Promotes Host Immunity and Protects against IL-12/23p40-Dependent Lung Injury during Hookworm Infection. Nieves W, Hung LY, Oniskey TK, Boon L, Foretz M, Viollet B, Herbert DR. J Immunol 196 4632-4640 (2016)
  156. AMP-activated protein kinase α2 protects against liver injury from metastasized tumors via reduced glucose deprivation-induced oxidative stress. Qiu SL, Xiao ZC, Piao CM, Xian YL, Jia LX, Qi YF, Han JH, Zhang YY, Du J. J Biol Chem 289 9449-9459 (2014)
  157. AMPK modulatory activity of olive-tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach. Jiménez-Sánchez C, Olivares-Vicente M, Rodríguez-Pérez C, Herranz-López M, Lozano-Sánchez J, Segura-Carretero A, Fernández-Gutiérrez A, Encinar JA, Micol V. PLoS One 12 e0173074 (2017)
  158. Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter. Schmitt DL, Curtis SD, Lyons AC, Zhang JF, Chen M, He CY, Mehta S, Shaw RJ, Zhang J. Nat Commun 13 3856 (2022)
  159. Determinants of oligosaccharide specificity of the carbohydrate-binding modules of AMP-activated protein kinase. Mobbs JI, Koay A, Di Paolo A, Bieri M, Petrie EJ, Gorman MA, Doughty L, Parker MW, Stapleton DI, Griffin MD, Gooley PR. Biochem J 468 245-257 (2015)
  160. Investigation of the specificity and mechanism of action of the ULK1/AMPK inhibitor SBI-0206965. Ahwazi D, Neopane K, Markby GR, Kopietz F, Ovens AJ, Dall M, Hassing AS, Gräsle P, Alshuweishi Y, Treebak JT, Salt IP, Göransson O, Zeqiraj E, Scott JW, Sakamoto K. Biochem J 478 2977-2997 (2021)
  161. Mitochondrial glycerol 3-phosphate dehydrogenase promotes skeletal muscle regeneration. Liu X, Qu H, Zheng Y, Liao Q, Zhang L, Liao X, Xiong X, Wang Y, Zhang R, Wang H, Tong Q, Liu Z, Dong H, Yang G, Zhu Z, Xu J, Zheng H. EMBO Mol Med 10 e9390 (2018)
  162. Single-cell study links metabolism with nutrient signaling and reveals sources of variability. Welkenhuysen N, Borgqvist J, Backman M, Bendrioua L, Goksör M, Adiels CB, Cvijovic M, Hohmann S. BMC Syst Biol 11 59 (2017)
  163. The aldolase inhibitor aldometanib mimics glucose starvation to activate lysosomal AMPK. Zhang CS, Li M, Wang Y, Li X, Zong Y, Long S, Zhang M, Feng JW, Wei X, Liu YH, Zhang B, Wu J, Zhang C, Lian W, Ma T, Tian X, Qu Q, Yu Y, Xiong J, Liu DT, Wu Z, Zhu M, Xie C, Wu Y, Xu Z, Yang C, Chen J, Huang G, He Q, Huang X, Zhang L, Sun X, Liu Q, Ghafoor A, Gui F, Zheng K, Wang W, Wang ZC, Yu Y, Zhao Q, Lin SY, Wang ZX, Piao HL, Deng X, Lin SC. Nat Metab 4 1369-1401 (2022)
  164. Transient phases of OXPHOS inhibitor resistance reveal underlying metabolic heterogeneity in single cells. Kosaisawe N, Sparta B, Pargett M, Teragawa CK, Albeck JG. Cell Metab 33 649-665.e8 (2021)
  165. Cell biology. ADaPting to energetic stress. Bland ML, Birnbaum MJ. Science 332 1387-1388 (2011)
  166. Cerulein hyperstimulation decreases AMP-activated protein kinase levels at the site of maximal zymogen activation. Shugrue CA, Alexandre M, Diaz de Villalvilla A, Kolodecik TR, Young LH, Gorelick FS, Thrower EC. Am J Physiol Gastrointest Liver Physiol 303 G723-32 (2012)
  167. Change in single cystathionine β-synthase domain-containing protein from a bent to flat conformation upon adenosine monophosphate binding. Jeong BC, Park SH, Yoo KS, Shin JS, Song HK. J Struct Biol 183 40-46 (2013)
  168. HFS-Triggered AMPK Activation Phosphorylates GSK3β and Induces E-LTP in Rat Hippocampus In Vivo. Yu DF, Shen ZC, Wu PF, Guan XL, Chen T, Jin Y, Hu ZL, Ni L, Wang F, Chen JG, Long LH. CNS Neurosci Ther 22 525-531 (2016)
  169. Metabolomics profiling reveals differential adaptation of major energy metabolism pathways associated with autophagy upon oxygen and glucose reduction. Weckmann K, Diefenthäler P, Baeken MW, Yusifli K, Turck CW, Asara JM, Behl C, Hajieva P. Sci Rep 8 2337 (2018)
  170. Mice lacking AMP-activated protein kinase α1 catalytic subunit have increased bone remodelling and modified skeletal responses to hormonal challenges induced by ovariectomy and intermittent PTH treatment. Jeyabalan J, Shah M, Viollet B, Roux JP, Chavassieux P, Korbonits M, Chenu C. J Endocrinol 214 349-358 (2012)
  171. Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria. Hackenberg C, Hakanpää J, Cai F, Antonyuk S, Eigner C, Meissner S, Laitaoja M, Jänis J, Kerfeld CA, Dittmann E, Lamzin VS. Proc Natl Acad Sci U S A 115 7141-7146 (2018)
  172. The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae. Hübscher V, Mudholkar K, Chiabudini M, Fitzke E, Wölfle T, Pfeifer D, Drepper F, Warscheid B, Rospert S. Nucleic Acids Res 44 5629-5645 (2016)
  173. The WOMED model of benign thyroid disease: Acquired magnesium deficiency due to physical and psychological stressors relates to dysfunction of oxidative phosphorylation. Moncayo R, Moncayo H. BBA Clin 3 44-64 (2015)
  174. Abscisic acid signaling: thermal stability shift assays as tool to analyze hormone perception and signal transduction. Soon FF, Suino-Powell KM, Li J, Yong EL, Xu HE, Melcher K. PLoS One 7 e47857 (2012)
  175. Pharmacology of ME-344, a novel cytotoxic isoflavone. Zhang L, Zhang J, Ye Z, Townsend DM, Tew KD. Adv Cancer Res 142 187-207 (2019)
  176. δ-Opioid receptors stimulate the metabolic sensor AMP-activated protein kinase through coincident signaling with G(q/11)-coupled receptors. Olianas MC, Dedoni S, Olianas A, Onali P. Mol Pharmacol 81 154-165 (2012)
  177. A new role for AMP-activated protein kinase in the circadian regulation of L-type voltage-gated calcium channels in late-stage embryonic retinal photoreceptors. Huang CC, Shi L, Lin CH, Kim AJ, Ko ML, Ko GY. J Neurochem 135 727-741 (2015)
  178. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status. Lu J, Cao Y, Cheng K, Xu B, Wang T, Yang Q, Yang Q, Feng X, Xia Q. Exp Cell Res 334 194-206 (2015)
  179. Cell biology. Ancient sensor for ancient drug. Shaw RJ, Cantley LC. Science 336 813-814 (2012)
  180. Compound- and fiber type-selective requirement of AMPKγ3 for insulin-independent glucose uptake in skeletal muscle. Rhein P, Desjardins EM, Rong P, Ahwazi D, Bonhoure N, Stolte J, Santos MD, Ovens AJ, Ehrlich AM, Sanchez Garcia JL, Ouyang Q, Yabut JM, Kjolby M, Membrez M, Jessen N, Oakhill JS, Treebak JT, Maire P, Maire P, Scott JW, Sanders MJ, Descombes P, Chen S, Steinberg GR, Sakamoto K. Mol Metab 51 101228 (2021)
  181. Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama. El-Shesheny I, Hijaz F, El-Hawary I, Mesbah I, Killiny N. Comp Biochem Physiol A Mol Integr Physiol 192 28-37 (2016)
  182. Increased hepatocellular protein carbonylation in human end-stage alcoholic cirrhosis. Shearn CT, Orlicky DJ, Saba LM, Shearn AH, Petersen DR. Free Radic Biol Med 89 1144-1153 (2015)
  183. Mitochondrial porin Por1 and its homolog Por2 contribute to the positive control of Snf1 protein kinase in Saccharomyces cerevisiae. Strogolova V, Orlova M, Shevade A, Kuchin S. Eukaryot Cell 11 1568-1572 (2012)
  184. Skeletal muscle AMPK is not activated during 2 h of moderate intensity exercise at ∼65% V̇O2peak in endurance trained men. McConell GK, Wadley GD, Le Plastrier K, Linden KC. J Physiol 598 3859-3870 (2020)
  185. The importance of the AMPK gamma 1 subunit in metformin suppression of liver glucose production. An H, Wang Y, Qin C, Li M, Maheshwari A, He L. Sci Rep 10 10482 (2020)
  186. The tumor-suppressive long noncoding RNA DRAIC inhibits protein translation and induces autophagy by activating AMPK. Saha S, Zhang Y, Wilson B, Abounader R, Dutta A. J Cell Sci 134 jcs259306 (2021)
  187. Unique utilization of a phosphoprotein phosphatase fold by a mammalian phosphodiesterase associated with WAGR syndrome. Dermol U, Janardan V, Tyagi R, Visweswariah SS, Podobnik M. J Mol Biol 412 481-494 (2011)
  188. 1,3-dichloro-2-propanol induced lipid accumulation in HepG2 cells through cAMP/protein kinase A and AMP-activated protein kinase pathways via Gi/o-coupled receptors. Lu J, Fang B, Zheng Y, Yu X, Huang G, Wang Z, Deng X, Guan S. Environ Toxicol Pharmacol 55 118-126 (2017)
  189. A Ca2+-Dependent Mechanism Boosting Glycolysis and OXPHOS by Activating Aralar-Malate-Aspartate Shuttle, upon Neuronal Stimulation. Pérez-Liébana I, Juaristi I, González-Sánchez P, González-Moreno L, Rial E, Podunavac M, Zakarian A, Molgó J, Vallejo-Illarramendi A, Mosqueira-Martín L, Lopez de Munain A, Pardo B, Satrústegui J, Del Arco A. J Neurosci 42 3879-3895 (2022)
  190. A long-term maternal diet intervention is necessary to avoid the obesogenic effect of maternal high-fat diet in the offspring. Xu H, Fu Q, Zhou Y, Xue C, Olson P, Lynch EC, Zhang KK, Wu C, Murano P, Zhang L, Xie L. J Nutr Biochem 62 210-220 (2018)
  191. AMPK-α2 is involved in exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following high-fat diet. Abbott MJ, Turcotte LP. J Appl Physiol (1985) 117 869-879 (2014)
  192. Activation of AMP-activated protein kinase reduces collagen production via p38 MAPK in cardiac fibroblasts induced by coxsackievirus B3. Jiang S, Jiang D, Zhao P, He X, Tian S, Wu X, Tao Y. Mol Med Rep 14 989-994 (2016)
  193. Binding and structural analyses of potent inhibitors of the human Ca2+/calmodulin dependent protein kinase kinase 2 (CAMKK2) identified from a collection of commercially-available kinase inhibitors. Profeta GS, Dos Reis CV, Santiago ADS, Godoi PHC, Fala AM, Wells CI, Sartori R, Salmazo APT, Ramos PZ, Massirer KB, Elkins JM, Drewry DH, Gileadi O, Couñago RM. Sci Rep 9 16452 (2019)
  194. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM. Chennell G, Willows RJ, Warren SC, Carling D, French PM, Dunsby C, Sardini A. Sensors (Basel) 16 E1312 (2016)
  195. Metabolic sensor AMPK directly phosphorylates RAG1 protein and regulates V(D)J recombination. Um JH, Brown AL, Singh SK, Chen Y, Gucek M, Lee BS, Luckey MA, Kim MK, Park JH, Sleckman BP, Gellert M, Chung JH. Proc Natl Acad Sci U S A 110 9873-9878 (2013)
  196. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance. Sayers SR, Reimann F, Gribble FM, Parker H, Zac-Varghese S, Bloom SR, Foretz M, Viollet B, Rutter GA. PLoS One 11 e0149549 (2016)
  197. Sitagliptin improves functional recovery via GLP-1R-induced anti-apoptosis and facilitation of axonal regeneration after spinal cord injury. Han W, Li Y, Cheng J, Zhang J, Chen D, Fang M, Xiang G, Wu Y, Zhang H, Xu K, Wang H, Xie L, Xiao J. J Cell Mol Med 24 8687-8702 (2020)
  198. Unravelling Heterogeneity of Amplified Human Amniotic Fluid Stem Cells Sub-Populations. Casciaro F, Zia S, Forcato M, Zavatti M, Beretti F, Bertucci E, Zattoni A, Reschiglian P, Alviano F, Bonsi L, Follo MY, Demaria M, Roda B, Maraldi T. Cells 10 158 (2021)
  199. Ca2+/calmodulin-dependent protein kinase kinase is not involved in hypothalamic AMP-activated protein kinase activation by neuroglucopenia. Kawashima J, Alquier T, Tsuji Y, Peroni OD, Kahn BB. PLoS One 7 e36335 (2012)
  200. Discrimination of adenine nucleotides and pyrophosphate in water by a zinc complex of an anthracene-based cyclophane. Hu P, Yang S, Feng G. Org Biomol Chem 12 3701-3706 (2014)
  201. Glucose-dependent regulation of AMP-activated protein kinase in MIN6 beta cells is not affected by the protein kinase A pathway. Garcia-Haro L, Garcia-Gimeno MA, Neumann D, Beullens M, Bollen M, Sanz P. FEBS Lett 586 4241-4247 (2012)
  202. Modulation of glucose metabolism by a natural compound from Chloranthus japonicus via activation of AMP-activated protein kinase. Hu R, Yan H, Fei X, Liu H, Wu J. Sci Rep 7 778 (2017)
  203. QiDiTangShen Granules Activate Renal Nutrient-Sensing Associated Autophagy in db/db Mice. Wang X, Zhao L, Ajay AK, Jiao B, Zhang X, Wang C, Gao X, Yuan Z, Liu H, Liu WJ. Front Physiol 10 1224 (2019)
  204. Sedoheptulose-1,7-bisphospate Accumulation and Metabolic Anomalies in Hepatoma Cells Exposed to Oxidative Stress. Cheng ML, Lin JF, Huang CY, Li GJ, Shih LM, Chiu DT, Ho HY. Oxid Med Cell Longev 2019 5913635 (2019)
  205. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress. Chandrashekarappa DG, McCartney RR, O'Donnell AF, Schmidt MC. Cell Signal 28 1881-1893 (2016)
  206. β-subunit myristoylation functions as an energy sensor by modulating the dynamics of AMP-activated Protein Kinase. Ali N, Ling N, Krishnamurthy S, Oakhill JS, Scott JW, Stapleton DI, Kemp BE, Anand GS, Gooley PR. Sci Rep 6 39417 (2016)
  207. ADP is the dominant controller of AMP-activated protein kinase activity dynamics in skeletal muscle during exercise. Coccimiglio IF, Clarke DC. PLoS Comput Biol 16 e1008079 (2020)
  208. AMPK Is Involved in Regulating the Utilization of Carbon Sources, Conidiation, Pathogenicity, and Stress Response of the Nematode-Trapping Fungus Arthrobotrys oligospora. Wang W, Zhao Y, Bai N, Zhang KQ, Yang J. Microbiol Spectr 10 e0222522 (2022)
  209. Activation of AMPK reduces the co-transporter activity of NKCC1. Fraser SA, Davies M, Katerelos M, Gleich K, Choy SW, Steel R, Galic S, Mount PF, Kemp BE, Power DA. Mol Membr Biol 31 95-102 (2014)
  210. Conformational heterogeneity of the allosteric drug and metabolite (ADaM) site in AMP-activated protein kinase (AMPK). Gu X, Bridges MD, Yan Y, de Waal PW, Zhou XE, Suino-Powell KM, Xu HE, Hubbell WL, Melcher K. J Biol Chem 293 16994-17007 (2018)
  211. Cystathionine β-synthase (CBS) domains confer multiple forms of Mg2+-dependent cooperativity to family II pyrophosphatases. Salminen A, Anashkin VA, Lahti M, Tuominen HK, Lahti R, Baykov AA. J Biol Chem 289 22865-22876 (2014)
  212. Differential carbonylation of proteins in end-stage human fatty and nonfatty NASH. Shearn CT, Saba LM, Roede JR, Orlicky DJ, Shearn AH, Petersen DR. Free Radic Biol Med 113 280-290 (2017)
  213. Expression of recombinant SnRK1 in E. coli. Characterization of adenine nucleotide binding to the SnRK1.1/AKINβγ-β3 complex. Maya-Bernal JL, Ávila A, Ruiz-Gayosso A, Trejo-Fregoso R, Pulido N, Sosa-Peinado A, Zúñiga-Sánchez E, Martínez-Barajas E, Rodríguez-Sotres R, Coello P. Plant Sci 263 116-125 (2017)
  214. Synthetic energy sensor AMPfret deciphers adenylate-dependent AMPK activation mechanism. Pelosse M, Cottet-Rousselle C, Bidan CM, Dupont A, Gupta K, Berger I, Schlattner U. Nat Commun 10 1038 (2019)
  215. The MicroRNA miR-696 is regulated by SNARK and reduces mitochondrial activity in mouse skeletal muscle through Pgc1α inhibition. Queiroz AL, Lessard SJ, Ouchida AT, Araujo HN, Gonçalves DA, Simões Fróes Guimarães DSP, Teodoro BG, So K, Espreafico EM, Hirshman MF, Alberici LC, Kettelhut IDC, Goodyear LJ, Silveira LR. Mol Metab 51 101226 (2021)
  216. 2-[2-(4-(trifluoromethyl)phenylamino)thiazol-4-yl]acetic acid (Activator-3) is a potent activator of AMPK. Bung N, Surepalli S, Seshadri S, Patel S, Peddasomayajula S, Kummari LK, Kumar ST, Babu PP, Parsa KVL, Poondra RR, Bulusu G, Misra P. Sci Rep 8 9599 (2018)
  217. AMP-Activated Protein Kinase Signalling in Cancer and Cardiac Hypertrophy. Lipovka Y, Konhilas JP. Cardiovasc Pharm Open Access 4 154 (2015)
  218. AMPK synergizes with the combined treatment of 1'-acetoxychavicol acetate and sodium butyrate to upregulate phase II detoxifying enzyme activities. Yaku K, Matsui-Yuasa I, Konishi Y, Kojima-Yuasa A. Mol Nutr Food Res 57 1198-1208 (2013)
  219. Alkalization of cellular pH leads to cancer cell death by disrupting autophagy and mitochondrial function. Ying C, Jin C, Zeng S, Chao M, Hu X. Oncogene 41 3886-3897 (2022)
  220. Glucose regulates amyloid β production via AMPK. Yang TT, Shih YS, Chen YW, Kuo YM, Lee CW. J Neural Transm (Vienna) 122 1381-1390 (2015)
  221. Identification of Direct Activator of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by Structure-Based Virtual Screening and Molecular Docking Approach. Huang T, Sun J, Zhou S, Gao J, Liu Y. Int J Mol Sci 18 E1408 (2017)
  222. MicroRNA miR-214 Inhibits Snakehead Vesiculovirus Replication by Promoting IFN-α Expression via Targeting Host Adenosine 5'-Monophosphate-Activated Protein Kinase. Zhang C, Feng S, Zhang W, Chen N, Hegazy AM, Chen W, Liu X, Zhao L, Li J, Lin L, Tu J. Front Immunol 8 1775 (2017)
  223. Mitochondrial-derived reactive oxygen species influence ADP sensitivity, but not CPT-I substrate sensitivity. Barbeau PA, Miotto PM, Holloway GP. Biochem J 475 2997-3008 (2018)
  224. Regulation of O-GlcNAcylation on endothelial nitric oxide synthase by glucose deprivation and identification of its O-GlcNAcylation sites. He A, Hu S, Pi Q, Guo Y, Long Y, Luo S, Xia Y. Sci Rep 10 19364 (2020)
  225. Structural basis of the selective activation of enzyme isoforms: Allosteric response to activators of β1- and β2-containing AMPK complexes. Aledavood E, Forte A, Estarellas C, Javier Luque F. Comput Struct Biotechnol J 19 3394-3406 (2021)
  226. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae. Ye T, Bendrioua L, Carmena D, García-Salcedo R, Dahl P, Carling D, Hohmann S. FEBS Lett 588 2070-2077 (2014)
  227. The role of HEXOKINASE1 in Arabidopsis leaf growth. Van Dingenen J, Vermeersch M, De Milde L, Hulsmans S, De Winne N, Van Leene J, Gonzalez N, Dhondt S, De Jaeger G, Rolland F, Inzé D. Plant Mol Biol 99 79-93 (2019)
  228. Bypassing AMPK phosphorylation. Viollet B, Foretz M, Schlattner U. Chem Biol 21 567-569 (2014)
  229. Crystal structure of the single cystathionine β-synthase domain-containing protein CBSX1 from Arabidopsis thaliana. Jeong BC, Park SH, Yoo KS, Shin JS, Song HK. Biochem Biophys Res Commun 430 265-271 (2013)
  230. Drug resistance in diploid yeast is acquired through dominant alleles, haploinsufficiency, gene duplication and aneuploidy. Barney JB, Chandrashekarappa DG, Soncini SR, Schmidt MC. PLoS Genet 17 e1009800 (2021)
  231. Effect of AMP-activated protein kinase activation on cardiac fibroblast proliferation induced by coxsackievirus B3. Jiang S, Tian S, Wu X, Tao Y, Jiang D. Exp Ther Med 11 2547-2552 (2016)
  232. Fine-Tuning of Energy Levels Regulates SUC2 via a SNF1-Dependent Feedback Loop. Persson S, Welkenhuysen N, Shashkova S, Cvijovic M. Front Physiol 11 954 (2020)
  233. Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases. Schmidt GW, Welkenhuysen N, Ye T, Cvijovic M, Hohmann S. Mol Genet Genomics 295 1489-1500 (2020)
  234. Mitochondrial Voltage-Dependent Anion Channel Protein Por1 Positively Regulates the Nuclear Localization of Saccharomyces cerevisiae AMP-Activated Protein Kinase. Shevade A, Strogolova V, Orlova M, Yeo CT, Kuchin S. mSphere 3 e00482-17 (2018)
  235. Natural (dihydro)phenanthrene plant compounds are direct activators of AMPK through its allosteric drug and metabolite-binding site. Sanders MJ, Ratinaud Y, Neopane K, Bonhoure N, Day EA, Ciclet O, Lassueur S, Naranjo Pinta M, Deak M, Brinon B, Christen S, Steinberg GR, Barron D, Sakamoto K. J Biol Chem 298 101852 (2022)
  236. Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate. Bodman SE, Breen C, Kirkland S, Wheeler S, Robertson E, Plasser F, Butler SJ. Chem Sci 13 3386-3394 (2022)
  237. Susceptibility to ATP depletion of primary proximal tubular cell cultures derived from mice lacking either the α1 or the α2 isoform of the catalytic domain of AMPK. Lieberthal W, Tang M, Zhang L, Viollet B, Patel V, Levine JS. BMC Nephrol 14 251 (2013)
  238. WW domain-binding protein 2 overexpression prevents diet-induced liver steatosis and insulin resistance through AMPKβ1. Zheng Z, Li Y, Fan S, An J, Luo X, Liang M, Zhu F, Huang K. Cell Death Dis 12 228 (2021)
  239. A High Throughput Assay for Discovery of Small Molecules that Bind AMP-activated Protein Kinase (AMPK). Sinnett SE, Sexton JZ, Brenman JE. Curr Chem Genom Transl Med 7 30-38 (2013)
  240. AMP-Activated Protein Kinase Regulates Circadian Rhythm by Affecting CLOCK in Drosophila. Cho E, Kwon M, Jung J, Kang DH, Jin S, Choi SE, Kang Y, Kim EY. J Neurosci 39 3537-3550 (2019)
  241. AMP-activated protein kinase(AMPK) channel: A Global Bibliometric analysis From 2012 to 2021. Lyu T, Tian C, Tan T, Lyu J, Yan K, Zhao X, Wang R, Zhang C, Liu M, Wei Y. Channels (Austin) 16 60-71 (2022)
  242. AMPK is a mechano-metabolic sensor linking cell adhesion and mitochondrial dynamics to Myosin-dependent cell migration. Crosas-Molist E, Graziani V, Maiques O, Pandya P, Monger J, Samain R, George SL, Malik S, Salise J, Morales V, Le Guennec A, Atkinson RA, Marti RM, Matias-Guiu X, Charras G, Conte MR, Elosegui-Artola A, Holt M, Sanz-Moreno V. Nat Commun 14 2740 (2023)
  243. ATP sensitive bi-quinoline activator of the AMP-activated protein kinase. Scott JW, Oakhill JS, Ling NX, Langendorf CG, Foitzik RC, Kemp BE, Issinger OG. Biochem Biophys Res Commun 443 435-440 (2014)
  244. Architectural plasticity of AMPK revealed by electron microscopy and X-ray crystallography. Ouyang Y, Zhu L, Li Y, Guo M, Liu Y, Cheng J, Zhao J, Wu Y. Sci Rep 6 24191 (2016)
  245. Ginsenoside CK Inhibits the Early Stage of Adipogenesis via the AMPK, MAPK, and AKT Signaling Pathways. Oh JM, Chun S. Antioxidants (Basel) 11 1890 (2022)
  246. In silico design for adenosine monophosphate-activated protein kinase agonist from traditional chinese medicine for treatment of metabolic syndromes. Tang HC, Chen CY, Chen CY. Evid Based Complement Alternat Med 2014 928589 (2014)
  247. The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids. Desjardins EM, Smith BK, Day EA, Ducommun S, Sanders MJ, Nederveen JP, Ford RJ, Pinkosky SL, Townsend LK, Gutgesell RM, Lu R, Sakamoto K, Steinberg GR. Proc Natl Acad Sci U S A 119 e2119824119 (2022)
  248. Tumor protein D52 (TPD52) affects cancer cell metabolism by negatively regulating AMPK. Chen Y, Peng C, Tan W, Yu J, Zayas J, Peng Y, Lou Z, Pei H, Wang L. Cancer Med 12 488-499 (2023)
  249. AMPK Phosphorylation Is Controlled by Glucose Transport Rate in a PKA-Independent Manner. Milanesi R, Tripodi F, Vertemara J, Tisi R, Coccetti P. Int J Mol Sci 22 9483 (2021)
  250. AMPKα2 activation by an energy-independent signal ensures chromosomal stability during mitosis. Lu J, Huang Y, Zhan L, Wang M, Xu L, Mullen M, Zang J, Fang G, Dou Z, Liu X, Liu W, Garcia-Barrio M, Yao X. iScience 24 102363 (2021)
  251. Adenylates regulate Arabidopsis plastidial thioredoxin activities through the binding of a CBS domain protein. Baudry K, Barbut F, Domenichini S, Guillaumot D, Thy MP, Vanacker H, Majeran W, Krieger-Liszkay A, Issakidis-Bourguet E, Lurin C. Plant Physiol 189 2298-2314 (2022)
  252. DHHC17 Is a New Regulator of AMPK Signaling. Sun Y, Du K. Mol Cell Biol 42 e0013122 (2022)
  253. GROWTH AND DEVELOPMENT SYMPOSIUM: Adenosine monophosphate-activated protein kinase and mitochondria in Rendement Napole pig growth. Scheffler TL, Gerrard DE. J Anim Sci 94 3601-3612 (2016)
  254. Genome-wide identification and characterization of the AMPK genes and their distinct expression patterns in response to air exposure in the Manila clam (Ruditapes philippinarum). Wang J, Fang L, Wu Q, Li D, Huo Z, Yan X. Genes Genomics 42 1-12 (2020)
  255. Guanosine inhibits hepatitis C virus replication and increases indel frequencies, associated with altered intracellular nucleotide pools. Sabariegos R, Ortega-Prieto AM, Díaz-Martínez L, Grande-Pérez A, García Crespo C, Gallego I, de Ávila AI, Albentosa-González L, Soria ME, Gastaminza P, Domingo E, Perales C, Mas A. PLoS Pathog 18 e1010210 (2022)
  256. Host Adaptive Immune Status Regulates Expression of the Schistosome AMP-Activated Protein Kinase. Hunter KS, Davies SJ. Front Immunol 9 2699 (2018)
  257. Individuals Diagnosed with Binge-Eating Disorder Have DNA Hypomethylated Sites in Genes of the Metabolic System: A Pilot Study. Rodríguez-López ML, Martínez-Magaña JJ, Ruiz-Ramos D, García AR, Gonzalez L, Tovilla-Zarate CA, Sarmiento E, Juárez-Rojop IE, Nicolini H, Gonzalez-Castro TB, Genis-Mendoza AD. Nutrients 13 1413 (2021)
  258. Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells. Song M, Lee J, Kim YJ, Hoang DH, Choe W, Kang I, Kim SS, Ha J. Mar Drugs 18 E473 (2020)
  259. The inhibitory effect in Fraxinellone on oxidative stress-induced senescence correlates with AMP-activated protein kinase-dependent autophagy restoration. Han X, Chen H, Zhou J, Tai H, Gong H, Wang X, Huang N, Qin J, Fang T, Wang F, Xiao H. J Cell Physiol 233 3945-3954 (2018)
  260. The signalling mechanisms of a novel mitochondrial complex I inhibitor prevent lipid accumulation and attenuate TNF-α-induced insulin resistance in vitro. Leonard S, Tobin LM, Findlay JB. Eur J Pharmacol 800 1-8 (2017)
  261. AMP-activated protein kinase and adenosine are both metabolic modulators that regulate chloride secretion in the shark rectal gland ( Squalus acanthias). Neuman RI, van Kalmthout JAM, Pfau DJ, Menendez DM, Young LH, Forrest JN. Am J Physiol Cell Physiol 314 C473-C482 (2018)
  262. Chromophorylation of cyanobacteriochrome Slr1393 from Synechocystis sp. PCC 6803 is regulated by protein Slr2111 through allosteric interaction. He Q, Tang QY, Sun YF, Zhou M, Gärtner W, Zhao KH. J Biol Chem 293 17705-17715 (2018)
  263. Fetal lung hypoxia and energetic cell failure in the nitrofen-induced congenital diaphragmatic hernia rat model. Romero-Lopez M, Oria M, Ferrer-Marquez F, Varela MF, Lampe K, Watanabe-Chailland M, Martinez L, Peiro JL. Pediatr Surg Int 39 180 (2023)
  264. Insight into the role of the Bateman domain at the molecular and physiological levels through engineered IMP dehydrogenases. Gedeon A, Ayoub N, Brûlé S, Raynal B, Karimova G, Gelin M, Mechaly A, Haouz A, Labesse G, Munier-Lehmann H. Protein Sci 32 e4703 (2023)
  265. Metabolic and microbiota response to arginine supplementation and cyclic heat stress in broiler chickens. Brugaletta G, Laghi L, Zampiga M, Oliveri C, Indio V, Piscitelli R, Pignata S, Petracci M, De Cesare A, Sirri F. Front Physiol 14 1155324 (2023)
  266. Metformin Inhibits Na+/H+ Exchanger NHE3 Resulting in Intestinal Water Loss. Han Y, Yun CC. Front Physiol 13 867244 (2022)
  267. Soyasapogenol C from Fermented Soybean (Glycine Max) Acting as a Novel AMPK/PPARα Dual Activator Ameliorates Hepatic Steatosis: A Novel SANDA Methodology. Arulkumar R, Jung HJ, Noh SG, Chung HY. Int J Mol Sci 23 5468 (2022)
  268. AMP-activated kinase regulates porcine reproductive and respiratory syndrome virus infection in vitro. Fang J, Wang H, Lang L, Li H, Li S, Wang K. Virus Genes 58 133-142 (2022)
  269. AMPKβ isoform expression patterns in various adipocyte models and in relation to body mass index. Kopietz F, Degerman E, Göransson O. Front Physiol 13 928964 (2022)
  270. An intrinsic purine metabolite AICAR blocks lung tumour growth by targeting oncoprotein mucin 1. Aftab F, Rodriguez-Fuguet A, Silva L, Kobayashi IS, Sun J, Politi K, Levantini E, Zhang W, Kobayashi SS, Zhang WC. Br J Cancer 128 1647-1664 (2023)
  271. CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. Negoita F, Addinsall AB, Hellberg K, Bringas CF, Hafen PS, Sermersheim TJ, Agerholm M, Lewis CTA, Ahwazi D, Ling NXY, Larsen JK, Deshmukh AS, Hossain MA, Oakhill JS, Ochala J, Brault JJ, Sankar U, Drewry DH, Scott JW, Witczak CA, Sakamoto K. Mol Metab 75 101761 (2023)
  272. Canagliflozin mediates tumor suppression alone and in combination with radiotherapy in non-small cell lung cancer (NSCLC) through inhibition of HIF-1α. Biziotis OD, Tsakiridis EE, Ali A, Ahmadi E, Wu J, Wang S, Mekhaeil B, Singh K, Menjolian G, Farrell T, Abdulkarim B, Sur RK, Mesci A, Ellis P, Berg T, Bramson JL, Muti P, Steinberg GR, Tsakiridis T. Mol Oncol 17 2235-2256 (2023)
  273. Compound 13 Promotes Epidermal Healing in Mouse Fetuses via Activation of AMPK. Takaya K, Okabe K, Sakai S, Aramaki-Hattori N, Asou T, Kishi K. Biomedicines 11 1013 (2023)
  274. Comprehensive and Quantitative Analysis of the Changes in Proteomic and Phosphoproteomic Profiles during Stimulation and Repression of Steroidogenesis in MA-10 Leydig Cells. Demmouche ZB, Tremblay JJ. Int J Mol Sci 23 12846 (2022)
  275. Coordination of the AMPK, Akt, mTOR, and p53 Pathways under Glucose Starvation. Zhou Y, Liu F. Int J Mol Sci 23 14945 (2022)
  276. Dietary restriction to optimize T cell immunity is an ancient survival strategy conserved in vertebrate evolution. Li K, Wei X, Li K, Zhang Q, Zhang J, Wang D, Yang J. Cell Mol Life Sci 80 219 (2023)
  277. Differential effects of AMP-activated protein kinase in isolated rat atria subjected to simulated ischemia-reperfusion depending on the energetic substrates available. Hermann R, Mestre Cordero VE, Fernández Pazos MLM, Reznik FJ, Vélez DE, Savino EA, Marina Prendes MG, Varela A. Pflugers Arch 470 367-383 (2018)
  278. Direct effects of adipocyte lipolysis on AMPK through intracellular long-chain acyl-CoA signaling. Rahman AA, Butcko AJ, Songyekutu E, Granneman JG, Mottillo EP. Sci Rep 14 19 (2024)
  279. Effect of Cyclic Heat Stress on Hypothalamic Oxygen Homeostasis and Inflammatory State in the Jungle Fowl and Three Broiler-Based Research Lines. Brugaletta G, Greene E, Ramser A, Maynard CW, Tabler TW, Sirri F, Anthony NB, Orlowski S, Dridi S. Front Vet Sci 9 905225 (2022)
  280. Elaiophylin reduces body weight and lowers glucose levels in obese mice by activating AMPK. Bao R, Meng Y, Zhang H, Yang C, Li W, Zhang C, Zhang J, Sun R, Li Z, Jiang W, Zhang C, Zhang C, Yuan HX, Dang Y. Cell Death Dis 12 972 (2021)
  281. Elucidating the Activation Mechanism of AMPK by Direct Pan-Activator PF-739. Aledavood E, Gheeraert A, Forte A, Vuillon L, Rivalta I, Luque FJ, Estarellas C. Front Mol Biosci 8 760026 (2021)
  282. Frequent loss-of-function mutations in the AMPK-α2 catalytic subunit suggest a tumour suppressor role in human skin cancers. Ross FA, Hawley SA, Russell FM, Goodman N, Hardie DG. Biochem J 480 1951-1968 (2023)
  283. N-myc downstream regulated gene 1 (ndrg1) functions as a molecular switch for cellular adaptation to hypoxia. Park JS, Gabel AM, Kassir P, Kang L, Chowdhary PK, Osei-Ntansah A, Tran ND, Viswanathan S, Canales B, Ding P, Lee YS, Brewster R. Elife 11 e74031 (2022)
  284. Physiological and skeletal muscle responses to high-intensity interval exercise in Thoroughbred horses. Mukai K, Ohmura H, Takahashi Y, Ebisuda Y, Yoneda K, Miyata H. Front Vet Sci 10 1241266 (2023)
  285. The AMP-Activated Protein Kinase (AMPK) Positively Regulates Lysine Biosynthesis Induced by Citric Acid in Flammulina filiformis. Fan H, Ge F, Wu T, Liu Y, Tian L, Liu Y, Xiang T, Yu H, Shi L, He Q, Ren A, Jiang A. J Fungi (Basel) 9 340 (2023)
  286. Comment Transcript variant dictates Prkag2 cardiomyopathy? Kim M, Tian R. J Mol Cell Cardiol 53 317-319 (2012)
  287. Untargeted metabolomics of saliva in pregnant women with and without gestational diabetes mellitus and healthy non-pregnant women. Li Y, Feng Y, Yang Z, Zhou Z, Jiang D, Luo J. Front Cell Infect Microbiol 13 1206462 (2023)