2yd0 Citations

Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming.

Abstract

Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)(18)-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K(528)R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.

Reviews - 2yd0 mentioned but not cited (3)

  1. Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases. Goettig P. Int J Mol Sci 17 E1969 (2016)
  2. The Role of Conformational Dynamics in Antigen Trimming by Intracellular Aminopeptidases. Papakyriakou A, Stratikos E. Front Immunol 8 946 (2017)
  3. Marine Invertebrates: A Promissory Still Unexplored Source of Inhibitors of Biomedically Relevant Metallo Aminopeptidases Belonging to the M1 and M17 Families. Pascual Alonso I, Almeida García F, Valdés Tresanco ME, Arrebola Sánchez Y, Ojeda Del Sol D, Sánchez Ramírez B, Florent I, Schmitt M, Avilés FX. Mar Drugs 21 279 (2023)

Articles - 2yd0 mentioned but not cited (22)

  1. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Kochan G, Krojer T, Harvey D, Fischer R, Chen L, Vollmar M, von Delft F, Kavanagh KL, Brown MA, Bowness P, Wordsworth P, Kessler BM, Oppermann U. Proc. Natl. Acad. Sci. U.S.A. 108 7745-7750 (2011)
  2. Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Louder RK, He Y, López-Blanco JR, Fang J, Chacón P, Nogales E. Nature 531 604-609 (2016)
  3. Structural basis for multifunctional roles of mammalian aminopeptidase N. Chen L, Lin YL, Peng G, Li F. Proc. Natl. Acad. Sci. U.S.A. 109 17966-17971 (2012)
  4. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. Mpakali A, Giastas P, Mathioudakis N, Mavridis IM, Saridakis E, Stratikos E. J. Biol. Chem. 290 26021-26032 (2015)
  5. Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides. Hermans SJ, Ascher DB, Hancock NC, Holien JK, Michell BJ, Chai SY, Morton CJ, Parker MW. Protein Sci. 24 190-199 (2015)
  6. Functional interpretation of a non-gut hemocoelic tissue aminopeptidase N (APN) in a lepidopteran insect pest Achaea janata. Ningshen TJ, Aparoy P, Ventaku VR, Dutta-Gupta A. PLoS ONE 8 e79468 (2013)
  7. Critical Role of Interdomain Interactions in the Conformational Change and Catalytic Mechanism of Endoplasmic Reticulum Aminopeptidase 1. Stamogiannos A, Maben Z, Papakyriakou A, Mpakali A, Kokkala P, Georgiadis D, Stern LJ, Stratikos E. Biochemistry 56 1546-1558 (2017)
  8. Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1. Maben Z, Arya R, Rane D, An WF, Metkar S, Hickey M, Bender S, Ali A, Nguyen TT, Evnouchidou I, Schilling R, Stratikos E, Golden J, Stern LJ. J Med Chem 63 103-121 (2020)
  9. The Anopheles-midgut APN1 structure reveals a new malaria transmission-blocking vaccine epitope. Atkinson SC, Armistead JS, Mathias DK, Sandeu MM, Tao D, Borhani-Dizaji N, Tarimo BB, Morlais I, Dinglasan RR, Dinglasan RR, Borg NA. Nat. Struct. Mol. Biol. 22 532-539 (2015)
  10. Screening Identifies Thimerosal as a Selective Inhibitor of Endoplasmic Reticulum Aminopeptidase 1. Stamogiannos A, Papakyriakou A, Mauvais FX, van Endert P, Stratikos E. ACS Med Chem Lett 7 681-685 (2016)
  11. Two specific membrane-bound aminopeptidase N isoforms from Aedes aegypti larvae serve as functional receptors for the Bacillus thuringiensis Cry4Ba toxin implicating counterpart specificity. Aroonkesorn A, Pootanakit K, Katzenmeier G, Angsuthanasombat C. Biochem. Biophys. Res. Commun. 461 300-306 (2015)
  12. Conformational dynamics linked to domain closure and substrate binding explain the ERAP1 allosteric regulation mechanism. Maben Z, Arya R, Georgiadis D, Stratikos E, Stern LJ. Nat Commun 12 5302 (2021)
  13. A Short ERAP2 That Binds IRAP Is Expressed in Macrophages Independently of Gene Variation. Mattorre B, Caristi S, Donato S, Volpe E, Faiella M, Paiardini A, Sorrentino R, Paladini F. Int J Mol Sci 23 4961 (2022)
  14. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  15. Trapping small caffeine in a large GPCR pocket. Xu F, Stevens RC. Structure 19 1204-1207 (2011)
  16. Bioinformatics analysis of genetic variants of endoplasmic reticulum aminopeptidase 1 in ankylosing spondylitis. Wang X, Ma J, Ma J, Wen Y, Meng L, Yang H, Zhang R, Hao D. Mol Med Rep 16 6532-6543 (2017)
  17. Crystallization and preliminary X-ray diffraction analysis of human endoplasmic reticulum aminopeptidase 2. Ascher DB, Polekhina G, Parker MW. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68 468-471 (2012)
  18. Mechanism for antigenic peptide selection by endoplasmic reticulum aminopeptidase 1. Giastas P, Mpakali A, Papakyriakou A, Lelis A, Kokkala P, Neu M, Rowland P, Liddle J, Georgiadis D, Stratikos E. Proc Natl Acad Sci U S A (2019)
  19. Aminobenzosuberone Scaffold as a Modular Chemical Tool for the Inhibition of Therapeutically Relevant M1 Aminopeptidases. Salomon E, Schmitt M, Marapaka AK, Stamogiannos A, Revelant G, Schmitt C, Alavi S, Florent I, Addlagatta A, Stratikos E, Tarnus C, Albrecht S. Molecules 23 (2018)
  20. High-Resolution Crystal Structure of Endoplasmic Reticulum Aminopeptidase 1 with Bound Phosphinic Transition-State Analogue Inhibitor. Giastas P, Neu M, Rowland P, Stratikos E. ACS Med Chem Lett 10 708-713 (2019)
  21. Abstract Simulation of the molecular interaction of CRY1A toxins and three Aminopeptidases N from the sugarcane giant borer (Telchin licus licus). Fonseca F, Martins-de-Sa D, Grossi-de-Sa F, Lucena W. BMC Proc 8 P107-P107 (2014)
  22. X-ray crystal structure and specificity of the Toxoplasma gondii ME49 TgAPN2. Marijanovic EM, Weronika Swiderska K, Andersen J, Aschenbrenner JC, Webb CT, Drag M, Drinkwater N, McGowan S. Biochem J 477 3819-3832 (2020)


Reviews citing this publication (55)

  1. Genetics of spondyloarthritis--beyond the MHC. Reveille JD. Nat Rev Rheumatol 8 296-304 (2012)
  2. Genetics of ankylosing spondylitis--insights into pathogenesis. Brown MA, Kenna T, Wordsworth BP. Nat Rev Rheumatol 12 81-91 (2016)
  3. Genetics of ankylosing spondylitis. Robinson PC, Brown MA. Mol. Immunol. 57 2-11 (2014)
  4. HLA-B27. Bowness P. Annu. Rev. Immunol. 33 29-48 (2015)
  5. The immunogenetics of Behçet's disease: A comprehensive review. Takeuchi M, Kastner DL, Remmers EF. J. Autoimmun. 64 137-148 (2015)
  6. The link between HLA-B27 and SpA--new ideas on an old problem. McHugh K, Bowness P. Rheumatology (Oxford) 51 1529-1539 (2012)
  7. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Alvarez-Navarro C, López de Castro JA. Mol. Immunol. 57 12-21 (2014)
  8. Antigenic peptide trimming by ER aminopeptidases--insights from structural studies. Stratikos E, Stern LJ. Mol Immunol 55 212-219 (2013)
  9. The putative role of endoplasmic reticulum aminopeptidases in autoimmunity: insights from genomic-wide association studies. Fierabracci A, Milillo A, Locatelli F, Fruci D. Autoimmun Rev 12 281-288 (2012)
  10. HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Busch R, Kollnberger S, Mellins ED. Nat Rev Rheumatol 15 364-381 (2019)
  11. Peptidases trimming MHC class I ligands. Weimershaus M, Evnouchidou I, Saveanu L, van Endert P. Curr. Opin. Immunol. 25 90-96 (2013)
  12. Pathogenesis of ankylosing spondylitis - recent advances and future directions. Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N. Nat Rev Rheumatol 13 359-367 (2017)
  13. T-cell receptor signaling and the pathogenesis of autoimmune arthritis: insights from mouse and man. Sakaguchi S, Benham H, Cope AP, Thomas R. Immunol. Cell Biol. 90 277-287 (2012)
  14. Old and new HLA associations with ankylosing spondylitis. Díaz-Peña R, López-Vázquez A, López-Larrea C. Tissue Antigens 80 205-213 (2012)
  15. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition. Stratikos E, Stamogiannos A, Zervoudi E, Fruci D. Front Oncol 4 363 (2014)
  16. Chemical biology of antigen presentation by MHC molecules. van Kasteren SI, Overkleeft H, Ovaa H, Neefjes J. Curr. Opin. Immunol. 26 21-31 (2014)
  17. ERAP1 and ankylosing spondylitis. Keidel S, Chen L, Pointon J, Wordsworth P. Curr. Opin. Immunol. 25 97-102 (2013)
  18. ERAP1 in the pathogenesis of ankylosing spondylitis. Reeves E, Elliott T, James E, Edwards CJ. Immunol. Res. 60 257-269 (2014)
  19. Endoplasmic reticulum aminopeptidases in the pathogenesis of ankylosing spondylitis. Kenna TJ, Robinson PC, Haroon N. Rheumatology (Oxford) 54 1549-1556 (2015)
  20. Cryo-EM in the study of challenging systems: the human transcription pre-initiation complex. Nogales E, Louder RK, He Y. Curr. Opin. Struct. Biol. 40 120-127 (2016)
  21. Endoplasmic reticulum aminopeptidase 1 and rheumatic disease: functional variation. Tran TM, Colbert RA. Curr Opin Rheumatol 27 357-363 (2015)
  22. Monitoring peptide processing for MHC class I molecules in the endoplasmic reticulum. Shastri N, Nagarajan N, Lind KC, Kanaseki T. Curr. Opin. Immunol. 26 123-127 (2014)
  23. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mahmoudi M, Aslani S, Nicknam MH, Karami J, Jamshidi AR. Mod Rheumatol 27 198-209 (2017)
  24. Endoplasmic reticulum aminopeptidases: biochemistry, physiology and pathology. Hattori A, Tsujimoto M. J. Biochem. 154 219-228 (2013)
  25. The Role of Insulin Regulated Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Descamps D, Evnouchidou I, Caillens V, Drajac C, Riffault S, van Endert P, Saveanu L. Front Mol Biosci 7 583556 (2020)
  26. Genetic associations and functional characterization of M1 aminopeptidases and immune-mediated diseases. Agrawal N, Brown MA. Genes Immun. 15 521-527 (2014)
  27. Genetics and the Causes of Ankylosing Spondylitis. Hanson A, Brown MA. Rheum. Dis. Clin. North Am. 43 401-414 (2017)
  28. The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis. Vitulano C, Tedeschi V, Paladini F, Sorrentino R, Fiorillo MT. Clin. Exp. Immunol. 190 281-290 (2017)
  29. ERAP1 in ankylosing spondylitis: genetics, biology and pathogenetic role. Alvarez-Navarro C, López de Castro JA. Curr Opin Rheumatol 25 419-425 (2013)
  30. M1 aminopeptidases as drug targets: broad applications or therapeutic niche? Drinkwater N, Lee J, Yang W, Malcolm TR, McGowan S. FEBS J. 284 1473-1488 (2017)
  31. Endoplasmic reticulum aminopeptidase 1 and interleukin-23 receptor in ankylosing spondylitis. Haroon N. Curr Rheumatol Rep 14 383-389 (2012)
  32. Regulating adaptive immune responses using small molecule modulators of aminopeptidases that process antigenic peptides. Stratikos E. Curr Opin Chem Biol 23 1-7 (2014)
  33. How ERAP1 and ERAP2 Shape the Peptidomes of Disease-Associated MHC-I Proteins. López de Castro JA. Front Immunol 9 2463 (2018)
  34. Progress of genome-wide association studies of ankylosing spondylitis. Li Z, Brown MA. Clin Transl Immunology 6 e163 (2017)
  35. Antigen presentation in SARS-CoV-2 infection: the role of class I HLA and ERAP polymorphisms. Saulle I, Vicentini C, Clerici M, Biasin M. Hum Immunol 82 551-560 (2021)
  36. Immunogenetic study in Chinese population with ankylosing spondylitis: are there specific genes recently disclosed? Zhai J, Rong J, Li Q, Gu J. Clin. Dev. Immunol. 2013 419357 (2013)
  37. Perspectives on the Genetic Associations of Ankylosing Spondylitis. Wordsworth BP, Cohen CJ, Davidson C, Vecellio M. Front Immunol 12 603726 (2021)
  38. Functional Genomics and Its Bench-to-Bedside Translation Pertaining to the Identified Susceptibility Alleles and Loci in Ankylosing Spondylitis. Kenna TJ, Hanson A, Costello ME, Brown MA. Curr Rheumatol Rep 18 63 (2016)
  39. Towards a mechanistic understanding of core promoter recognition from cryo-EM studies of human TFIID. Nogales E, Patel AB, Louder RK. Curr. Opin. Struct. Biol. 47 60-66 (2017)
  40. Tumour and placenta establishment: The importance of antigen processing and presentation. Reeves E, James E. Placenta 56 34-39 (2017)
  41. Antigen processing and presentation in cancer immunotherapy. Lee MY, Jeon JW, Sievers C, Allen CT. J Immunother Cancer 8 (2020)
  42. Behçet Disease: An Update for Dermatologists. Alpsoy E, Bozca BC, Bilgic A. Am J Clin Dermatol 22 477-502 (2021)
  43. Census of cytosolic aminopeptidase activity reveals two novel cytosolic aminopeptidases. Akkad N, Schatz M, Dengjel J, Tenzer S, Schild H. Med. Microbiol. Immunol. 201 463-473 (2012)
  44. The role of polymorphic ERAP1 in autoinflammatory disease. Reeves E, James E. Biosci. Rep. 38 (2018)
  45. Aberrant antigen processing and presentation: Key pathogenic factors leading to immune activation in Ankylosing spondylitis. Nakamura A, Boroojeni SF, Haroon N. Semin Immunopathol (2021)
  46. An Overview on ERAP Roles in Infectious Diseases. Saulle I, Vicentini C, Clerici M, Biasin M. Cells 9 (2020)
  47. Behçet's Disease: An Overview of Etiopathogenesis. Leccese P, Alpsoy E. Front Immunol 10 1067 (2019)
  48. Genetics and Functional Genomics of Spondyloarthritis. Costantino F, Breban M, Garchon HJ. Front Immunol 9 2933 (2018)
  49. Impact of Natural Occurring ERAP1 Single Nucleotide Polymorphisms within miRNA-Binding Sites on HCMV Infection. Melaiu O, D'Amico S, Tempora P, Lucarini V, Fruci D. Int J Mol Sci 21 (2020)
  50. RUNX3 and T-Bet in Immunopathogenesis of Ankylosing Spondylitis-Novel Targets for Therapy? Vecellio M, Cohen CJ, Roberts AR, Wordsworth PB, Kenna TJ. Front Immunol 9 3132 (2018)
  51. Shedding Light on the Role of ERAP1 in Axial Spondyloarthritis. Saad MA, Abdul-Sattar AB, Abdelal IT, Baraka A. Cureus 15 e48806 (2023)
  52. Structural aspects of chaperone-mediated peptide loading in the MHC-I antigen presentation pathway. Natarajan K, Jiang J, Margulies DH. Crit. Rev. Biochem. Mol. Biol. 54 164-173 (2019)
  53. The Pathogenesis of Ankylosing Spondylitis: an Update. Pedersen SJ, Maksymowych WP. Curr Rheumatol Rep 21 58 (2019)
  54. Translating GWAS in rheumatic disease: approaches to establishing mechanism and function for genetic associations with ankylosing spondylitis. Osgood JA, Knight JC. Brief Funct Genomics 17 308-318 (2018)
  55. Understanding the Pathogenesis of Spondyloarthritis. Sharip A, Kunz J. Biomolecules 10 (2020)

Articles citing this publication (69)

  1. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, van der Heijde D, McInnes I, van Laar JM, Landewé R, Wordsworth P, Wollenhaupt J, Kellner H, Paramarta J, Wei J, Brachat A, Bek S, Laurent D, Li Y, Wang YA, Bertolino AP, Gsteiger S, Wright AM, Hueber W. Lancet 382 1705-1713 (2013)
  2. Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1. Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, Ozyazgan Y, Sacli FS, Erer B, Inoko H, Emrence Z, Cakar A, Abaci N, Ustek D, Satorius C, Ueda A, Takeno M, Kim Y, Wood GM, Ombrello MJ, Meguro A, Gül A, Remmers EF, Kastner DL. Nat. Genet. 45 202-207 (2013)
  3. A large-scale screen for coding variants predisposing to psoriasis. Tang H, Jin X, Li Y, Jiang H, Tang X, Yang X, Cheng H, Qiu Y, Chen G, Mei J, Zhou F, Wu R, Zuo X, Zhang Y, Zheng X, Cai Q, Yin X, Quan C, Shao H, Cui Y, Tian F, Zhao X, Liu H, Xiao F, Xu F, Han J, Shi D, Zhang A, Zhou C, Li Q, Fan X, Lin L, Tian H, Wang Z, Fu H, Wang F, Yang B, Huang S, Liang B, Xie X, Ren Y, Gu Q, Wen G, Sun Y, Wu X, Dang L, Xia M, Shan J, Li T, Yang L, Zhang X, Li Y, He C, Xu A, Wei L, Zhao X, Gao X, Xu J, Zhang F, Zhang J, Li Y, Sun L, Liu J, Chen R, Yang S, Wang J, Zhang X. Nat. Genet. 46 45-50 (2014)
  4. Naturally occurring ERAP1 haplotypes encode functionally distinct alleles with fine substrate specificity. Reeves E, Edwards CJ, Elliott T, James E. J. Immunol. 191 35-43 (2013)
  5. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. Reguera J, Santiago C, Mudgal G, Ordoño D, Enjuanes L, Casasnovas JM. PLoS Pathog. 8 e1002859 (2012)
  6. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 1 polymorphism and HLA-B27 in vivo. García-Medel N, Sanz-Bravo A, Van Nguyen D, Galocha B, Gómez-Molina P, Martín-Esteban A, Alvarez-Navarro C, de Castro JA. Mol. Cell Proteomics 11 1416-1429 (2012)
  7. Functionally distinct ERAP1 allotype combinations distinguish individuals with Ankylosing Spondylitis. Reeves E, Colebatch-Bourn A, Elliott T, Edwards CJ, James E. Proc. Natl. Acad. Sci. U.S.A. 111 17594-17599 (2014)
  8. The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing. Wong AH, Zhou D, Rini JM. J. Biol. Chem. 287 36804-36813 (2012)
  9. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Chen L, Fischer R, Peng Y, Reeves E, McHugh K, Ternette N, Hanke T, Dong T, Elliott T, Shastri N, Kollnberger S, James E, Kessler B, Bowness P. 66 284-294 (2014)
  10. Discovery of candidate serum proteomic and metabolomic biomarkers in ankylosing spondylitis. Fischer R, Trudgian DC, Wright C, Thomas G, Bradbury LA, Brown MA, Bowness P, Kessler BM. Mol. Cell Proteomics 11 M111.013904 (2012)
  11. Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules. Trowitzsch S, Viola C, Scheer E, Conic S, Chavant V, Fournier M, Papai G, Ebong IO, Schaffitzel C, Zou J, Haffke M, Rappsilber J, Robinson CV, Schultz P, Tora L, Berger I. Nat Commun 6 6011 (2015)
  12. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens. Seregin SS, Rastall DP, Evnouchidou I, Aylsworth CF, Quiroga D, Kamal RP, Godbehere-Roosa S, Blum CF, York IA, Stratikos E, Amalfitano A. Autoimmunity 46 497-508 (2013)
  13. ERAP1 polymorphisms and haplotypes are associated with ankylosing spondylitis susceptibility and functional severity in a Spanish population. Szczypiorska M, Sánchez A, Bartolomé N, Arteta D, Sanz J, Brito E, Fernández P, Collantes E, Martínez A, Tejedor D, Artieda M, Mulero J. Rheumatology (Oxford) 50 1969-1975 (2011)
  14. ERAP1 genetic variations associated with HLA-B27 interaction and disease severity of syndesmophytes formation in Taiwanese ankylosing spondylitis. Wang CM, Ho HH, Chang SW, Wu YJ, Lin JC, Chang PY, Wu J, Chen JY. Arthritis Res. Ther. 14 R125 (2012)
  15. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis. Chen L, Ridley A, Hammitzsch A, Al-Mossawi MH, Bunting H, Georgiadis D, Chan A, Kollnberger S, Bowness P. Ann. Rheum. Dis. 75 916-923 (2016)
  16. Combined effects of ankylosing spondylitis-associated ERAP1 polymorphisms outside the catalytic and peptide-binding sites on the processing of natural HLA-B27 ligands. Martín-Esteban A, Gómez-Molina P, Sanz-Bravo A, López de Castro JA. J. Biol. Chem. 289 3978-3990 (2014)
  17. ERAP1-ERAP2 dimers trim MHC I-bound precursor peptides; implications for understanding peptide editing. Chen H, Li L, Weimershaus M, Evnouchidou I, van Endert P, Bouvier M. Sci Rep 6 28902 (2016)
  18. Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) Polymorphism Relevant to Inflammatory Disease Shapes the Peptidome of the Birdshot Chorioretinopathy-Associated HLA-A*29:02 Antigen. Alvarez-Navarro C, Martín-Esteban A, Barnea E, Admon A, López de Castro JA. Mol. Cell Proteomics 14 1770-1780 (2015)
  19. Ankylosing spondylitis: from cells to genes. Zambrano-Zaragoza JF, Agraz-Cibrian JM, González-Reyes C, Durán-Avelar Mde J, Vibanco-Pérez N. Int J Inflam 2013 501653 (2013)
  20. Dominant role of the ERAP1 polymorphism R528K in shaping the HLA-B27 Peptidome through differential processing determined by multiple peptide residues. Sanz-Bravo A, Campos J, Mazariegos MS, López de Castro JA. 67 692-701 (2015)
  21. The role of insulin-regulated aminopeptidase in MHC class I antigen presentation. Saveanu L, van Endert P. Front Immunol 3 57 (2012)
  22. ERAP1 Gene Expression Is Influenced by Nonsynonymous Polymorphisms Associated With Predisposition to Spondyloarthritis. Costantino F, Talpin A, Evnouchidou I, Kadi A, Leboime A, Said-Nahal R, Bonilla N, Letourneur F, Leturcq T, Ka Z, van Endert P, Garchon HJ, Chiocchia G, Breban M. 67 1525-1534 (2015)
  23. Structural insights into the molecular ruler mechanism of the endoplasmic reticulum aminopeptidase ERAP1. Gandhi A, Lakshminarasimhan D, Sun Y, Guo HC. Sci Rep 1 186 (2011)
  24. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Barnea E, Melamed Kadosh D, Haimovich Y, Satumtira N, Dorris ML, Nguyen MT, Hammer RE, Tran TM, Colbert RA, Taurog JD, Admon A. Mol. Cell Proteomics 16 642-662 (2017)
  25. Crystal Structure of Insulin-Regulated Aminopeptidase with Bound Substrate Analogue Provides Insight on Antigenic Epitope Precursor Recognition and Processing. Mpakali A, Saridakis E, Harlos K, Zhao Y, Papakyriakou A, Kokkala P, Georgiadis D, Stratikos E. J Immunol 195 2842-2851 (2015)
  26. Protective effect of an ERAP1 haplotype in ankylosing spondylitis: investigating non-MHC genes in HLA-B27-positive individuals. Bettencourt BF, Rocha FL, Alves H, Amorim R, Caetano-Lopes J, Vieira-Sousa E, Pimentel-Santos F, Lima M, Porto G, Branco JC, Fonseca JE, Bruges-Armas J. Rheumatology (Oxford) 52 2168-2176 (2013)
  27. Ankylosing spondylitis is associated with the anthrax toxin receptor 2 gene (ANTXR2). Karaderi T, Keidel SM, Pointon JJ, Appleton LH, Brown MA, Evans DM, Wordsworth BP. Ann. Rheum. Dis. 73 2054-2058 (2014)
  28. A novel family of soluble minimal scaffolds provides structural insight into the catalytic domains of integral membrane metallopeptidases. López-Pelegrín M, Cerdà-Costa N, Martínez-Jiménez F, Cintas-Pedrola A, Canals A, Peinado JR, Marti-Renom MA, López-Otín C, Arolas JL, Gomis-Rüth FX. J. Biol. Chem. 288 21279-21294 (2013)
  29. ERAP1 association with ankylosing spondylitis is attributable to common genotypes rather than rare haplotype combinations. Roberts AR, Appleton LH, Cortes A, Vecellio M, Lau J, Watts L, Brown MA, Wordsworth P. Proc. Natl. Acad. Sci. U.S.A. 114 558-561 (2017)
  30. The Behçet's disease-associated variant of the aminopeptidase ERAP1 shapes a low-affinity HLA-B*51 peptidome by differential subpeptidome processing. Guasp P, Barnea E, González-Escribano MF, Jiménez-Reinoso A, Regueiro JR, Admon A, López de Castro JA. J. Biol. Chem. 292 9680-9689 (2017)
  31. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells. Aldhamen YA, Pepelyayeva Y, Rastall DP, Seregin SS, Zervoudi E, Koumantou D, Aylsworth CF, Quiroga D, Godbehere S, Georgiadis D, Stratikos E, Amalfitano A. J Innate Immun 7 275-289 (2015)
  32. Epistatic interaction of ERAP1 and HLA-B in Behçet disease: a replication study in the Spanish population. Conde-Jaldón M, Montes-Cano MA, García-Lozano JR, Ortiz-Fernández L, Ortego-Centeno N, González-León R, Espinosa G, Graña-Gil G, Sánchez-Bursón J, González-Gay MA, Barnosi-Marín AC, Solans R, Fanlo P, Carballeira MR, Camps T, Castañeda S, Martín J, González-Escribano MF. PLoS ONE 9 e102100 (2014)
  33. Novel selective inhibitors of aminopeptidases that generate antigenic peptides. Papakyriakou A, Zervoudi E, Theodorakis EA, Saveanu L, Stratikos E, Vourloumis D. Bioorg. Med. Chem. Lett. 23 4832-4836 (2013)
  34. A polymorphism in ERAP1 is associated with susceptibility to ankylosing spondylitis in a Turkish population. Cinar M, Akar H, Yilmaz S, Simsek I, Karkucak M, Sagkan RI, Pekel A, Erdem H, Avci IY, Acikel C, Musabak U, Tunca Y, Pay S. Rheumatol. Int. 33 2851-2858 (2013)
  35. Allosteric inhibition of aminopeptidase N functions related to tumor growth and virus infection. Santiago C, Mudgal G, Reguera J, Recacha R, Albrecht S, Enjuanes L, Casasnovas JM. Sci Rep 7 46045 (2017)
  36. ERAP1 functions override the intrinsic selection of specific antigens as immunodominant peptides, thereby altering the potency of antigen-specific cytolytic and effector memory T-cell responses. Rastall DP, Aldhamen YA, Seregin SS, Godbehere S, Amalfitano A. Int. Immunol. 26 685-695 (2014)
  37. Genetic Variants in ERAP1 and ERAP2 Associated With Immune-Mediated Diseases Influence Protein Expression and the Isoform Profile. Hanson AL, Cuddihy T, Haynes K, Loo D, Morton CJ, Oppermann U, Leo P, Thomas GP, Lê Cao KA, Kenna TJ, Brown MA. 70 255-265 (2018)
  38. Redundancy and Complementarity between ERAP1 and ERAP2 Revealed by their Effects on the Behcet's Disease-associated HLA-B*51 Peptidome. Guasp P, Lorente E, Martín-Esteban A, Barnea E, Romania P, Fruci D, Kuiper JJW, Admon A, López de Castro JA. Mol Cell Proteomics 18 1491-1510 (2019)
  39. Structural Basis of Inhibition of Insulin-Regulated Aminopeptidase by a Macrocyclic Peptidic Inhibitor. Mpakali A, Saridakis E, Giastas P, Maben Z, Stern LJ, Larhed M, Hallberg M, Stratikos E. ACS Med Chem Lett 11 1429-1434 (2020)
  40. Structural basis of pH-dependent client binding by ERp44, a key regulator of protein secretion at the ER-Golgi interface. Watanabe S, Harayama M, Kanemura S, Sitia R, Inaba K. Proc. Natl. Acad. Sci. U.S.A. 114 E3224-E3232 (2017)
  41. Ranking the Contribution of Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) Polymorphisms to Shaping the HLA-B*27 Peptidome. Sanz-Bravo A, Alvarez-Navarro C, Martín-Esteban A, Barnea E, Admon A, López de Castro JA. Mol. Cell Proteomics 17 1308-1323 (2018)
  42. Differences between disease-associated endoplasmic reticulum aminopeptidase 1 (ERAP1) isoforms in cellular expression, interactions with tumour necrosis factor receptor 1 (TNF-R1) and regulation by cytokines. Yousaf N, Low WY, Onipinla A, Mein C, Caulfield M, Munroe PB, Chernajovsky Y. Clin. Exp. Immunol. 180 289-304 (2015)
  43. Distribution of rs17482078 and rs27044 ERAP1 polymorphisms in a group of Italian Behçet's syndrome patients: a preliminary case-control study. Padula MC, Leccese P, Pellizzieri E, Padula AA, Gilio M, Carbone T, Lascaro N, Tramontano G, Martelli G, D'Angelo S. Intern Emerg Med 14 713-718 (2019)
  44. Functional Genomic Analysis of a RUNX3 Polymorphism Associated With Ankylosing Spondylitis. Vecellio M, Chen L, Cohen CJ, Cortes A, Li Y, Bonham S, Selmi C, Brown MA, Fischer R, Knight JC, Wordsworth BP. Arthritis Rheumatol 73 980-990 (2021)
  45. Up-regulation of fatty acid oxidation in the ligament as a contributing factor of ankylosing spondylitis: A comparative proteomic study. Xu WD, Yang XY, Li DH, Zheng KD, Qiu PC, Zhang W, Li CY, Lei KF, Yan GQ, Jin SW, Wang JG. J Proteomics 113 57-72 (2015)
  46. Associations between ERAP1 polymorphisms and ankylosing spondylitis susceptibility: An updated meta-analysis. Cai G, Xin L, Wang L, Fan D, Liu L, Hu Y, Ding N, Xu S, Xia G, Jin X, Xu J, Zou Y, Pan F. Mod Rheumatol 25 453-461 (2015)
  47. Can ERAP1 and ERAP2 Form Functional Heterodimers? A Structural Dynamics Investigation. Papakyriakou A, Mpakali A, Stratikos E. Front Immunol 13 863529 (2022)
  48. ERAP1 variants are associated with ankylosing spondylitis in East Asian population: a new Chinese case-control study and meta-analysis of published series. Chen C, Zhang X. Int. J. Immunogenet. 42 168-173 (2015)
  49. Mapping the Pathway and Dynamics of Bestatin Inhibition of the Plasmodium falciparum M1 Aminopeptidase PfA-M1. Yang W, Riley BT, Lei X, Porebski BT, Kass I, Buckle AM, McGowan S. ChemMedChem 13 2504-2513 (2018)
  50. Role of glutamine-169 in the substrate recognition of human aminopeptidase B. Ogawa Y, Ohnishi A, Goto Y, Sakuma Y, Watanabe J, Hattori A, Tsujimoto M. Biochim. Biophys. Acta 1840 1872-1881 (2014)
  51. Structure-based elucidation of the regulatory mechanism for aminopeptidase activity. Ta HM, Bae S, Han S, Song J, Ahn TK, Hohng S, Lee S, Kim KK. Acta Crystallogr. D Biol. Crystallogr. 69 1738-1747 (2013)
  52. ERAP1 binds peptide C-termini of different sequences and/or lengths by a common recognition mechanism. Sui L, Guo HC. Immunobiology 226 152112 (2021)
  53. ERAP1 molecular characterization: Identification of a de novo allelic variant. Padula MC, Leccese P, Padula AA, D'Angelo S, Martelli G. HLA (2018)
  54. Gene interaction analysis of psoriasis in Chinese Han population. Xu Q, Zheng X, Mao Y, Chen W, Chen S, Zhang H, Zhen Q, Li B, Yong L, Ge H, Yu Y, Zhang R, Cao L, Cheng H, Wang W, Sun L. Mol Genet Genomic Med 10 e1858 (2022)
  55. Mapping the substrate specificity of the Plasmodium M1 and M17 aminopeptidases. Malcolm TR, Swiderska KW, Hayes BK, Webb CT, Drag M, Drinkwater N, McGowan S. Biochem J 478 2697-2713 (2021)
  56. Molecular pathways for antigenic peptide generation by ER aminopeptidase 1. Mpakali A, Maben Z, Stern LJ, Stratikos E. Mol. Immunol. (2018)
  57. Polymorphisms in endoplasmic reticulum aminopeptidase genes are associated with cervical cancer risk in a Chinese Han population. Li C, Li Y, Yan Z, Dai S, Liu S, Wang X, Wang J, Zhang X, Shi L, Yao Y. BMC Cancer 20 341 (2020)
  58. The partial dissociation of MHC class I-bound peptides exposes their N terminus to trimming by endoplasmic reticulum aminopeptidase 1. Papakyriakou A, Reeves E, Beton M, Mikolajek H, Douglas L, Cooper G, Elliott T, Werner JM, James E. J. Biol. Chem. 293 7538-7548 (2018)
  59. A peptide-based fluorescent probe images ERAAP activity in cells and in high throughput assays. Zhang J, Yang SJ, Gonzalez F, Yang J, Zhang Y, He M, Shastri N, Murthy N. Chem. Commun. (Camb.) 54 7215-7218 (2018)
  60. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X, Qiu G, Cao X, Weng X. Bone Res 7 22 (2019)
  61. Conformational remodeling enhances activity of lanthipeptide zinc-metallopeptidases. Zhao C, Sheng W, Wang Y, Zheng J, Xie X, Liang Y, Wei W, Bao R, Wang H. Nat Chem Biol (2022)
  62. ERAP1 promotes Hedgehog-dependent tumorigenesis by controlling USP47-mediated degradation of βTrCP. Bufalieri F, Infante P, Bernardi F, Caimano M, Romania P, Moretti M, Lospinoso Severini L, Talbot J, Melaiu O, Tanori M, Di Magno L, Bellavia D, Capalbo C, Puget S, De Smaele E, Canettieri G, Guardavaccaro D, Busino L, Peschiaroli A, Pazzaglia S, Giannini G, Melino G, Locatelli F, Gulino A, Ayrault O, Fruci D, Di Marcotullio L. Nat Commun 10 3304 (2019)
  63. Functional ERAP1 Variants Distinctively Associate with Ankylosing Spondylitis Susceptibility under the Influence of HLA-B27 in Taiwanese. Wang CM, Liu MK, Jan Wu YJ, Lin JC, Zheng JW, Wu J, Chen JY. Cells 11 2427 (2022)
  64. Generation of AMBER force field parameters for zinc centres of M1 and M17 family aminopeptidases. Yang W, Riley BT, Lei X, Porebski BT, Kass I, Buckle AM, McGowan S. J. Biomol. Struct. Dyn. 36 2595-2604 (2018)
  65. Genetic association of ERAP1 and ERAP2 with eclampsia and preeclampsia in northeastern Brazilian women. Ferreira LC, Gomes CEM, Duggal P, De Paula Holanda I, de Lima AS, do Nascimento PRP, Jeronimo SMB. Sci Rep 11 6764 (2021)
  66. Genome-Wide Analysis of Haemonchus contortus Proteases and Protease Inhibitors Using Advanced Informatics Provides Insights into Parasite Biology and Host-Parasite Interactions. Zheng Y, Young ND, Song J, Gasser RB. Int J Mol Sci 24 12320 (2023)
  67. Multifactor dimensionality reduction reveals the effect of interaction between ERAP1 and IFIH1 polymorphisms in psoriasis susceptibility genes. Zhang C, Qin Q, Li Y, Zheng X, Chen W, Zhen Q, Li B, Wang W, Sun L. Front Genet 13 1009589 (2022)
  68. Single-cell genome-wide association reveals that a nonsynonymous variant in ERAP1 confers increased susceptibility to influenza virus. Schott BH, Wang L, Zhu X, Harding AT, Ko ER, Bourgeois JS, Washington EJ, Burke TW, Anderson J, Bergstrom E, Gardener Z, Paterson S, Brennan RG, Chiu C, McClain MT, Woods CW, Gregory SG, Heaton NS, Ko DC. Cell Genom 2 100207 (2022)
  69. Structure of puromycin-sensitive aminopeptidase and polyglutamine binding. Madabushi S, Chow KM, Song ES, Goswami A, Hersh LB, Rodgers DW. PLoS One 18 e0287086 (2023)