2yvz Citations

Crystal structure of the MgtE Mg2+ transporter.

Nature 448 1072-5 (2007)
Related entries: 2yvx, 2yvy

Cited: 115 times
EuropePMC logo PMID: 17700703

Abstract

The magnesium ion Mg2+ is a vital element involved in numerous physiological processes. Mg2+ has the largest hydrated radius among all cations, whereas its ionic radius is the smallest. It remains obscure how Mg2+ transporters selectively recognize and dehydrate the large, fully hydrated Mg2+ cation for transport. Recently the crystal structures of the CorA Mg2+ transporter were reported. The MgtE family of Mg2+ transporters is ubiquitously distributed in all phylogenetic domains, and human homologues have been functionally characterized and suggested to be involved in magnesium homeostasis. However, the MgtE transporters have not been thoroughly characterized. Here we determine the crystal structures of the full-length Thermus thermophilus MgtE at 3.5 A resolution, and of the cytosolic domain in the presence and absence of Mg2+ at 2.3 A and 3.9 A resolutions, respectively. The transporter adopts a homodimeric architecture, consisting of the carboxy-terminal five transmembrane domains and the amino-terminal cytosolic domains, which are composed of the superhelical N domain and tandemly repeated cystathionine-beta-synthase domains. A solvent-accessible pore nearly traverses the transmembrane domains, with one potential Mg2+ bound to the conserved Asp 432 within the pore. The transmembrane (TM)5 helices from both subunits close the pore through interactions with the 'connecting helices', which connect the cystathionine-beta-synthase and transmembrane domains. Four putative Mg2+ ions are bound at the interface between the connecting helices and the other domains, and this may lock the closed conformation of the pore. A structural comparison of the two states of the cytosolic domains showed the Mg2+-dependent movement of the connecting helices, which might reorganize the transmembrane helices to open the pore. These findings suggest a homeostasis mechanism, in which Mg2+ bound between cytosolic domains regulates Mg2+ flux by sensing the intracellular Mg2+ concentration. Whether this presumed regulation controls gating of an ion channel or opening of a secondary active transporter remains to be determined.

Articles - 2yvz mentioned but not cited (2)

  1. Mg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study. Ishitani R, Sugita Y, Dohmae N, Furuya N, Hattori M, Nureki O. Proc. Natl. Acad. Sci. U.S.A. 105 15393-15398 (2008)
  2. The structure of MgtE in the absence of magnesium provides new insights into channel gating. Jin F, Sun M, Fujii T, Yamada Y, Wang J, Maturana AD, Wada M, Su S, Ma J, Takeda H, Kusakizako T, Tomita A, Nakada-Nakura Y, Liu K, Uemura T, Nomura Y, Nomura N, Ito K, Nureki O, Namba K, Iwata S, Yu Y, Hattori M. PLoS Biol 19 e3001231 (2021)


Reviews citing this publication (22)

  1. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Apostolovic B, Danial M, Klok HA. Chem Soc Rev 39 3541-3575 (2010)
  2. Molecular identification of ancient and modern mammalian magnesium transporters. Quamme GA. Am. J. Physiol., Cell Physiol. 298 C407-29 (2010)
  3. The unique nature of mg2+ channels. Moomaw AS, Maguire ME. Physiology (Bethesda) 23 275-285 (2008)
  4. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. von Rozycki T, Nies DH. Antonie Van Leeuwenhoek 96 115-139 (2009)
  5. Bacterial Mg2+ homeostasis, transport, and virulence. Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. Annu. Rev. Genet. 47 625-646 (2013)
  6. Metal homeostasis and resistance in bacteria. Chandrangsu P, Rensing C, Helmann JD. Nat. Rev. Microbiol. 15 338-350 (2017)
  7. Structures of membrane proteins. Vinothkumar KR, Henderson R. Q. Rev. Biophys. 43 65-158 (2010)
  8. CBS domains: Ligand binding sites and conformational variability. Ereño-Orbea J, Oyenarte I, Martínez-Cruz LA. Arch. Biochem. Biophys. 540 70-81 (2013)
  9. The SLC41 family of MgtE-like magnesium transporters. Sahni J, Scharenberg AM. Mol. Aspects Med. 34 620-628 (2013)
  10. The structure and regulation of magnesium selective ion channels. Payandeh J, Pfoh R, Pai EF. Biochim. Biophys. Acta 1828 2778-2792 (2013)
  11. A Glimpse of Membrane Transport through Structures-Advances in the Structural Biology of the GLUT Glucose Transporters. Yan N. J. Mol. Biol. 429 2710-2725 (2017)
  12. Crystal structures of all-alpha type membrane proteins. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Eur. Biophys. J. 39 723-755 (2010)
  13. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Biotechnol. Adv. 35 575-596 (2017)
  14. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Nies DH. Metallomics 8 481-507 (2016)
  15. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Schalk IJ, Cunrath O. Environ. Microbiol. 18 3227-3246 (2016)
  16. Critical Issues in the Study of Magnesium Transport Systems and Magnesium Deficiency Symptoms in Plants. Kobayashi NI, Tanoi K. Int J Mol Sci 16 23076-23093 (2015)
  17. Drug transporters in the nasal epithelium: an overview of strategies in targeted drug delivery. Anand U, Parikh A, Ugwu MC, Agu RU. Future Med Chem 6 1381-1397 (2014)
  18. Leaf Senescence by Magnesium Deficiency. Tanoi K, Kobayashi NI. Plants (Basel) 4 756-772 (2015)
  19. Novel Aspects of Renal Magnesium Homeostasis. Giménez-Mascarell P, Schirrmacher CE, Martínez-Cruz LA, Müller D. Front Pediatr 6 77 (2018)
  20. Current Structural Knowledge on the CNNM Family of Magnesium Transport Mediators. Giménez-Mascarell P, González-Recio I, Fernández-Rodríguez C, Oyenarte I, Müller D, Martínez-Chantar ML, Martínez-Cruz LA. Int J Mol Sci 20 (2019)
  21. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. Elston R, Mulligan C, Thomas GH. Microbiology (Reading) 169 (2023)
  22. Structural and functional comparison of magnesium transporters throughout evolution. Franken GAC, Huynen MA, Martínez-Cruz LA, Bindels RJM, de Baaij JHF. Cell Mol Life Sci 79 418 (2022)

Articles citing this publication (91)

  1. Structural basis for autoregulation of the zinc transporter YiiP. Lu M, Chai J, Fu D. Nat. Struct. Mol. Biol. 16 1063-1067 (2009)
  2. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Zhou H, Clapham DE. Proc. Natl. Acad. Sci. U.S.A. 106 15750-15755 (2009)
  3. Rationalizing alpha-helical membrane protein crystallization. Newstead S, Ferrandon S, Iwata S. Protein Sci. 17 466-472 (2008)
  4. A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Hattori M, Hibbs RE, Gouaux E. Structure 20 1293-1299 (2012)
  5. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Stuiver M, Lainez S, Will C, Terryn S, Günzel D, Debaix H, Sommer K, Kopplin K, Thumfart J, Kampik NB, Querfeld U, Willnow TE, Němec V, Wagner CA, Hoenderop JG, Devuyst O, Knoers NV, Bindels RJ, Meij IC, Müller D. Am. J. Hum. Genet. 88 333-343 (2011)
  6. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Zhang D, Aravind L. Gene 469 18-30 (2010)
  7. An iris-like mechanism of pore dilation in the CorA magnesium transport system. Chakrabarti N, Neale C, Payandeh J, Pai EF, Pomès R. Biophys. J. 98 784-792 (2010)
  8. Mg(2+)-dependent gating of bacterial MgtE channel underlies Mg(2+) homeostasis. Hattori M, Iwase N, Furuya N, Tanaka Y, Tsukazaki T, Ishitani R, Maguire ME, Ito K, Maturana A, Nureki O. EMBO J. 28 3602-3612 (2009)
  9. Copper transport activity of yeast Ctr1 is down-regulated via its C terminus in response to excess copper. Wu X, Sinani D, Kim H, Lee J. J. Biol. Chem. 284 4112-4122 (2009)
  10. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Hardy S, Uetani N, Wong N, Kostantin E, Labbé DP, Bégin LR, Mes-Masson A, Miranda-Saavedra D, Tremblay ML. Oncogene 34 986-995 (2015)
  11. Binding of S-methyl-5'-thioadenosine and S-adenosyl-L-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. Lucas M, Encinar JA, Arribas EA, Oyenarte I, García IG, Kortazar D, Fernández JA, Mato JM, Martínez-Chantar ML, Martínez-Cruz LA. J. Mol. Biol. 396 800-820 (2010)
  12. Membrane topology and intracellular processing of cyclin M2 (CNNM2). de Baaij JH, Stuiver M, Meij IC, Lainez S, Kopplin K, Venselaar H, Müller D, Bindels RJ, Hoenderop JG. J. Biol. Chem. 287 13644-13655 (2012)
  13. The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. Martin JE, Waters LS, Storz G, Imlay JA. PLoS Genet. 11 e1004977 (2015)
  14. Why are polar residues within the membrane core evolutionary conserved? Illergård K, Kauko A, Elofsson A. Proteins 79 79-91 (2011)
  15. Regulation of CorA Mg2+ channel function affects the virulence of Salmonella enterica serovar typhimurium. Papp-Wallace KM, Maguire ME. J. Bacteriol. 190 6509-6516 (2008)
  16. The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system. Anderson GG, Yahr TL, Lovewell RR, O'Toole GA. Infect. Immun. 78 1239-1249 (2010)
  17. Engineering of ion sensing by the cystathionine beta-synthase module of the ABC transporter OpuA. Mahmood NA, Biemans-Oldehinkel E, Poolman B. J. Biol. Chem. 284 14368-14376 (2009)
  18. The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism. Moore KJ, Angevine CM, Vincent OD, Schwem BE, Fillingame RH. J. Biol. Chem. 283 13044-13052 (2008)
  19. Mg2+-dependent interactions of ATP with the cystathionine-β-synthase (CBS) domains of a magnesium transporter. Hirata Y, Funato Y, Takano Y, Miki H. J. Biol. Chem. 289 14731-14739 (2014)
  20. SLC41A1 Mg(2+) transport is regulated via Mg(2+)-dependent endosomal recycling through its N-terminal cytoplasmic domain. Mandt T, Song Y, Scharenberg AM, Sahni J. Biochem. J. 439 129-139 (2011)
  21. Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA. Guskov A, Nordin N, Reynaud A, Engman H, Lundbäck AK, Jong AJ, Cornvik T, Phua T, Eshaghi S. Proc. Natl. Acad. Sci. U.S.A. 109 18459-18464 (2012)
  22. Coils in the membrane core are conserved and functionally important. Kauko A, Illergård K, Elofsson A. J. Mol. Biol. 380 170-180 (2008)
  23. Comparative analysis of 126 cyanobacterial genomes reveals evidence of functional diversity among homologs of the redox-regulated CP12 protein. Stanley DN, Raines CA, Kerfeld CA. Plant Physiol. 161 824-835 (2013)
  24. MagFRET: the first genetically encoded fluorescent Mg2+ sensor. Lindenburg LH, Vinkenborg JL, Oortwijn J, Aper SJ, Merkx M. PLoS ONE 8 e82009 (2013)
  25. Mg2+, K+, and the ribosome. Nierhaus KH. J. Bacteriol. 196 3817-3819 (2014)
  26. Bacterial flagellar diversity and evolution: seek simplicity and distrust it? Snyder LA, Loman NJ, Fütterer K, Pallen MJ. Trends Microbiol. 17 1-5 (2009)
  27. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum. Naqvi AA, Shahbaaz M, Ahmad F, Hassan MI. PLoS ONE 10 e0124177 (2015)
  28. Structures and functional implications of an AMP-binding cystathionine beta-synthase domain protein from a hyperthermophilic archaeon. King NP, Lee TM, Sawaya MR, Cascio D, Yeates TO. J. Mol. Biol. 380 181-192 (2008)
  29. Crystal structures of the CBS and DRTGG domains of the regulatory region of Clostridiumperfringens pyrophosphatase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate. Tuominen H, Salminen A, Oksanen E, Jämsen J, Heikkilä O, Lehtiö L, Magretova NN, Goldman A, Baykov AA, Lahti R. J. Mol. Biol. 398 400-413 (2010)
  30. Direct visualization of KirBac3.1 potassium channel gating by atomic force microscopy. Jarosławski S, Zadek B, Ashcroft F, Vénien-Bryan C, Scheuring S. J. Mol. Biol. 374 500-505 (2007)
  31. Molecular mechanism of Mg2+-dependent gating in CorA. Dalmas O, Sompornpisut P, Bezanilla F, Perozo E. Nat Commun 5 3590 (2014)
  32. Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters. Yu Y, Zhou M, Kirsch F, Xu C, Zhang L, Wang Y, Jiang Z, Wang N, Li J, Eitinger T, Yang M. Cell Res. 24 267-277 (2014)
  33. The structure and unusual protein chemistry of hypoxic response protein 1, a latency antigen and highly expressed member of the DosR regulon in Mycobacterium tuberculosis. Sharpe ML, Gao C, Kendall SL, Baker EN, Lott JS. J. Mol. Biol. 383 822-836 (2008)
  34. Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Corral-Rodríguez MÁ, Stuiver M, Abascal-Palacios G, Diercks T, Oyenarte I, Ereño-Orbea J, de Opakua AI, Blanco FJ, Encinar JA, Spiwok V, Terashima H, Accardi A, Müller D, Martínez-Cruz LA. Biochem. J. 464 23-34 (2014)
  35. Structural insights of ZIP4 extracellular domain critical for optimal zinc transport. Zhang T, Sui D, Hu J. Nat Commun 7 11979 (2016)
  36. Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor. Lynch MJ, Levenson R, Kim EA, Sircar R, Blair DF, Dahlquist FW, Crane BR. Structure 25 317-328 (2017)
  37. Identification of SLC41A3 as a novel player in magnesium homeostasis. de Baaij JH, Arjona FJ, van den Brand M, Lavrijsen M, Lameris AL, Bindels RJ, Hoenderop JG. Sci Rep 6 28565 (2016)
  38. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca²⁺. Venco P, Bonora M, Giorgi C, Papaleo E, Iuso A, Prokisch H, Pinton P, Tiranti V. Front Genet 6 185 (2015)
  39. Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE. Takeda H, Hattori M, Nishizawa T, Yamashita K, Shah ST, Caffrey M, Maturana AD, Ishitani R, Nureki O. Nat Commun 5 5374 (2014)
  40. Cation selectivity by the CorA Mg2+ channel requires a fully hydrated cation. Moomaw AS, Maguire ME. Biochemistry 49 5998-6008 (2010)
  41. Defect in the formation of 70S ribosomes caused by lack of ribosomal protein L34 can be suppressed by magnesium. Akanuma G, Kobayashi A, Suzuki S, Kawamura F, Shiwa Y, Watanabe S, Yoshikawa H, Hanai R, Ishizuka M. J. Bacteriol. 196 3820-3830 (2014)
  42. Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Nordin N, Guskov A, Phua T, Sahaf N, Xia Y, Lu S, Eshaghi H, Eshaghi S. Biochem. J. 451 365-374 (2013)
  43. Assessment of the requirements for magnesium transporters in Bacillus subtilis. Wakeman CA, Goodson JR, Zacharia VM, Winkler WC. J. Bacteriol. 196 1206-1214 (2014)
  44. Measuring metals with RNA. Helmann JD. Mol. Cell 27 859-860 (2007)
  45. CLC anion channel regulatory phosphorylation and conserved signal transduction domains. Miyazaki H, Yamada T, Parton A, Morrison R, Kim S, Beth AH, Strange K. Biophys. J. 103 1706-1718 (2012)
  46. Change in single cystathionine β-synthase domain-containing protein from a bent to flat conformation upon adenosine monophosphate binding. Jeong BC, Park SH, Yoo KS, Shin JS, Song HK. J. Struct. Biol. 183 40-46 (2013)
  47. Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2). Gómez-García I, Stuiver M, Ereño J, Oyenarte I, Corral-Rodríguez MA, Müller D, Martínez-Cruz LA. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 1198-1203 (2012)
  48. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. Paparoditis P, Västermark A, Le AJ, Fuerst JA, Saier MH. Biochim. Biophys. Acta 1838 193-215 (2014)
  49. Magnesium-dependent processes are targets of bacterial manganese toxicity. Hohle TH, O'Brian MR. Mol. Microbiol. 93 736-747 (2014)
  50. Regulatory phosphorylation induces extracellular conformational changes in a CLC anion channel. Yamada T, Bhate MP, Strange K. Biophys. J. 104 1893-1904 (2013)
  51. Cystathionine β-synthase (CBS) domains 1 and 2 fulfill different roles in ionic strength sensing of the ATP-binding cassette (ABC) transporter OpuA. Karasawa A, Erkens GB, Berntsson RP, Otten R, Schuurman-Wolters GK, Mulder FA, Poolman B. J. Biol. Chem. 286 37280-37291 (2011)
  52. Identification and proximal tubular localization of the Mg²⁺ transporter, Slc41a1, in a seawater fish. Islam Z, Hayashi N, Yamamoto Y, Doi H, Romero MF, Hirose S, Kato A. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305 R385-96 (2013)
  53. Purification, crystallization and preliminary crystallographic analysis of the CBS pair of the human metal transporter CNNM4. Gómez García I, Oyenarte I, Martínez-Cruz LA. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 349-353 (2011)
  54. Unique gating properties of C. elegans ClC anion channel splice variants are determined by altered CBS domain conformation and the R-helix linker. Dave S, Sheehan JH, Meiler J, Strange K. Channels (Austin) 4 289-301 (2010)
  55. MgtE is a dual-function protein in Pseudomonas aeruginosa. Coffey BM, Akhand SS, Anderson GG. Microbiology (Reading, Engl.) 160 1200-1213 (2014)
  56. Pseudomonas aeruginosa Magnesium Transporter MgtE Inhibits Type III Secretion System Gene Expression by Stimulating rsmYZ Transcription. Chakravarty S, Melton CN, Bailin A, Yahr TL, Anderson GG. J. Bacteriol. 199 (2017)
  57. ATP-dependent modulation of MgtE in Mg2+ homeostasis. Tomita A, Zhang M, Jin F, Zhuang W, Takeda H, Maruyama T, Osawa M, Hashimoto KI, Kawasaki H, Ito K, Dohmae N, Ishitani R, Shimada I, Yan Z, Hattori M, Nureki O. Nat Commun 8 148 (2017)
  58. Crystal structure of an archaeal CorB magnesium transporter. Chen YS, Kozlov G, Moeller BE, Rohaim A, Fakih R, Roux B, Burke JE, Gehring K. Nat Commun 12 4028 (2021)
  59. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria. Anashkin VA, Salminen A, Tuominen HK, Orlov VN, Lahti R, Baykov AA. J. Biol. Chem. 290 27594-27603 (2015)
  60. Functional Prediction and Assignment of Methanobrevibacter ruminantium M1 Operome Using a Combined Bioinformatics Approach. Bharathi M, Senthil Kumar N, Chellapandi P. Front Genet 11 593990 (2020)
  61. Structural studies on cytosolic domain of magnesium transporter MgtE from Enterococcus faecalis. Ragumani S, Sauder JM, Burley SK, Swaminathan S. Proteins 78 487-491 (2010)
  62. Biochemical and biophysical characterization of a prokaryotic Mg2+ ion channel: Implications for cost-effective purification of membrane proteins. Chatterjee S, Das A, Raghuraman H. Protein Expr Purif 161 8-16 (2019)
  63. Crystal structure of the single cystathionine β-synthase domain-containing protein CBSX1 from Arabidopsis thaliana. Jeong BC, Park SH, Yoo KS, Shin JS, Song HK. Biochem. Biophys. Res. Commun. 430 265-271 (2013)
  64. Gating-related Structural Dynamics of the MgtE Magnesium Channel in Membrane-Mimetics Utilizing Site-Directed Tryptophan Fluorescence. Chatterjee S, Brahma R, Raghuraman H. J Mol Biol 433 166691 (2021)
  65. Genome analysis of Chlamydia trachomatis for functional characterization of hypothetical proteins to discover novel drug targets. Turab Naqvi AA, Rahman S, Rubi, Zeya F, Kumar K, Choudhary H, Jamal MS, Kim J, Hassan MI. Int. J. Biol. Macromol. 96 234-240 (2017)
  66. Model of active transport of ions in cardiac cell. Melkikh AV, Sutormina MI. J. Theor. Biol. 252 247-254 (2008)
  67. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. Began J, Cordier B, Březinová J, Delisle J, Hexnerová R, Srb P, Rampírová P, Kožíšek M, Baudet M, Couté Y, Galinier A, Veverka V, Doan T, Strisovsky K. EMBO J 39 e102935 (2020)
  68. The B. subtilis MgtE magnesium transporter can functionally compensate TRPM7-deficiency in vertebrate B-cells. Sahni J, Song Y, Scharenberg AM. PLoS ONE 7 e44452 (2012)
  69. Insight into the role of the Bateman domain at the molecular and physiological levels through engineered IMP dehydrogenases. Gedeon A, Ayoub N, Brûlé S, Raynal B, Karimova G, Gelin M, Mechaly A, Haouz A, Labesse G, Munier-Lehmann H. Protein Sci 32 e4703 (2023)
  70. MgtE Homolog FicI Acts as a Secondary Ferrous Iron Importer in Shewanella oneidensis Strain MR-1. Bennett BD, Redford KE, Gralnick JA. Appl. Environ. Microbiol. 84 (2018)
  71. Nucleotide-induced conformational transitions in the CBS domain protein MJ0729 of Methanocaldococcus jannaschii. Martínez-Cruz LA, Encinar JA, Sevilla P, Oyenarte I, Gómez-García I, Aguado-Llera D, García-Blanco F, Gómez J, Neira JL. Protein Eng. Des. Sel. 24 161-169 (2011)
  72. Purification, crystallization and preliminary X-ray diffraction analysis of the CBS-domain pair from the Methanococcus jannaschii protein MJ0100. Lucas M, Kortazar D, Astigarraga E, Fernández JA, Mato JM, Martínez-Chantar ML, Martínez-Cruz LA. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64 936-941 (2008)
  73. Purification, crystallization and preliminary crystallographic analysis of the CBS-domain protein MJ1004 from Methanocaldococcus jannaschii. Oyenarte I, Lucas M, Gómez García I, Martínez-Cruz LA. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 318-324 (2011)
  74. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel. Yamada T, Krzeminski M, Bozoky Z, Forman-Kay JD, Strange K. Biophys. J. 111 1876-1886 (2016)
  75. News Sensing cellular magnesium with RNA. DeRose VJ. Nat. Chem. Biol. 3 693-694 (2007)
  76. A Novel Neuroprotective Role of Phosphatase of Regenerating Liver-1 against CO2 Stimulation in Drosophila. Guo P, Xu X, Wang F, Yuan X, Tu Y, Zhang B, Zheng H, Yu D, Ge W, Gong Z, Yang X, Xi Y. iScience 19 291-302 (2019)
  77. Backbone resonance assignments for the cytoplasmic region of the Mg(2+) transporter MgtE in the Mg (2+)-unbound state. Maruyama T, Imai S, Osawa M, Hattori M, Ishitani R, Nureki O, Shimada I. Biomol NMR Assign 7 93-96 (2013)
  78. By Staying Together, Two Genes Keep the Motor Running. Zhulin IB. Structure 25 214-215 (2017)
  79. Crystal structure of a hypothetical protein, TTHA0829 from Thermus thermophilus HB8, composed of cystathionine-β-synthase (CBS) and aspartate-kinase chorismate-mutase tyrA (ACT) domains. Nakabayashi M, Shibata N, Ishido-Nakai E, Kanagawa M, Iio Y, Komori H, Ueda Y, Nakagawa N, Kuramitsu S, Higuchi Y. Extremophiles 20 275-282 (2016)
  80. Crystallization and preliminary crystallographic studies of CorC, a magnesium-ion transporter. Zhang N, Ren X, Zhu D, Li D, Wang D. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 681-683 (2010)
  81. Functional roles of Mg2+ binding sites in ion-dependent gating of a Mg2+ channel, MgtE, revealed by solution NMR. Maruyama T, Imai S, Kusakizako T, Hattori M, Ishitani R, Nureki O, Ito K, Maturana AD, Shimada I, Osawa M. Elife 7 (2018)
  82. Genetic screens reveal novel major and minor players in magnesium homeostasis of Staphylococcus aureus. Trachsel E, Redder P, Linder P, Armitano J. PLoS Genet. 15 e1008336 (2019)
  83. Ion selectivity and gating behavior of the CorA-type channel Bpss1228. Zhu Y, Wang Y, Zhang Y, Pu M, Miao W, Bai M, Bao R, Geng J. Front Chem 10 998075 (2022)
  84. Ion selectivity mechanism of the MgtE channel for Mg2+ over Ca2. Teng X, Sheng D, Wang J, Yu Y, Hattori M. iScience 25 105565 (2022)
  85. Magnesium Homeostasis: Lessons from Human Genetics. Morrison AR. Clin J Am Soc Nephrol (2023)
  86. Novel Mg 2+ binding sites in the cytoplasmic domain of the MgtE Mg 2+ channels revealed by X-ray crystal structures. Wang M, Zhao Y, Hayashi Y, Ito K, Hattori M. Acta Biochim Biophys Sin (Shanghai) 55 683-690 (2023)
  87. SLC41A1 is essential for magnesium homeostasis in vivo. Arjona FJ, Latta F, Mohammed SG, Thomassen M, van Wijk E, Bindels RJM, Hoenderop JGJ, de Baaij JHF. Pflugers Arch. 471 845-860 (2019)
  88. Structural Insights into the Intracellular Region of the Human Magnesium Transport Mediator CNNM4. Giménez-Mascarell P, Oyenarte I, González-Recio I, Fernández-Rodríguez C, Corral-Rodríguez MÁ, Campos-Zarraga I, Simón J, Kostantin E, Hardy S, Díaz Quintana A, Zubillaga Lizeaga M, Merino N, Diercks T, Blanco FJ, Díaz Moreno I, Martínez-Chantar ML, Tremblay ML, Müller D, Siliqi D, Martínez-Cruz LA. Int J Mol Sci 20 (2019)
  89. Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria. Hackenberg C, Hakanpää J, Cai F, Antonyuk S, Eigner C, Meissner S, Laitaoja M, Jänis J, Kerfeld CA, Dittmann E, Lamzin VS. Proc. Natl. Acad. Sci. U.S.A. 115 7141-7146 (2018)
  90. Structural and functional properties of a magnesium transporter of the SLC11/NRAMP family. Ramanadane K, Straub MS, Dutzler R, Manatschal C. Elife 11 e74589 (2022)
  91. Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial mercury methylation. Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, Kyrpides NC, Podar M, Ovchinnikov S, Ragsdale SW, Parks JM. Commun Biol 3 320 (2020)